OPTIMAL DESIGN OF FERROELECTRIC CERAMICS MICROSTRUCTURE

Size: px
Start display at page:

Download "OPTIMAL DESIGN OF FERROELECTRIC CERAMICS MICROSTRUCTURE"

Transcription

1 OPTIMAL DESIGN OF FERROELECTRIC CERAMICS MICROSTRUCTURE K. P. Jayachandran, J. M. Guedes, IDMEC, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, Lisbon, Portugal H. C. Rodrigues, IDMEC, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, Lisbon, Portugal Abstract. Piezoelectricity (or electric-field-induced strain) in ferroelectrics has found extensive applications in sensors and actuators and offers great potential for next generation high density storage devices such as NvRAM. Ceramic ferroelectrics which can be manufactured at a fraction of the cost of single crystals, which are prone to deficiencies such as depolarization and chemical inhomogeneity, are attracting keen interest lately. Recent reports on ceramic BaTiO 3 suggest that grain-orientation in a flux of random grain boundaries could greatly enhance the piezoelectricity. These findings underscore previous notion of the role of grain boundaries in the control and design of ceramic FE materials. Piezoelectric properties in ceramics can be optimized by a proper choice of the parameters which control the distribution of grain orientations although this choice is complicated and it is impossible to analyze all possible combinations. In this work we have implemented a finite element based computational homogenization model, characterizing ferroelectric properties, together with a stochastic optimization technique of simulated annealing to solve the optimization problem. We show that there could be an optimum choice of distribution parameters available at which the ceramic material shows better piezoelectric performance than its oriented single crystal counterpart. Keywords: Ferroelectrics, Ceramics, Optimization, Computational 1. INTRODUCTION The spatial configuration of crystallographic grains and their orientation distribution (texture) has a vital role in the piezoelectric anisotropy exhibited by conventional as well as new generation ferroelectric (FE) polycrystals and thin films (Scott, 2007). Ferroelectrics display extraordinary physical behaviors that make them crucial for many devices such as sensors and actuators and have been extensively studied for their applications of nonvolatile and high-speed random access memories (Uchino, 2000; Eerenstein et al., 2006). It is well established that some FEs in single crystal form display enhanced piezoelectricity when poled along a nonpolar direction (Park and Shrout, 1997; Wada et al., 2005). Nonpolar in the sense that a direction other than the spontaneous polarization direction. An as-grown polycrystalline FE is an aggregate of grains with randomly oriented polarizations. This randomness in polarizationvector orientation renders the resultant piezoelectricity of the material to be marginal or zero. Albeit the resultant polarization is zero for as-grown ceramic, overall piezoelectricity can be enabled by the application of an external electric field called poling field. Nevertheless, if we make use of this randomness judiciously in the design of FEs, it generates polycrystals (ceramics) with tailor-made configurations of grains useful for applications (e.g., Jayachandran et al. 2008). Recent reports (Wada et al, 2007) showing enhancement of macroscopic piezoelectricity in ferroelectric polycrystals by the introduction of randomness in texture offer vast prospect in material optimization. As stated above, the aggregate texture (orientation distribution) of an unpoled polycrystal can be assumed to have a uniform random distribution. With the strength of the poling field increases, the nature of the distribution becomes Gaussian or normal (Ruglovsky et al., 2006; Uetsuji et al., 2004). To arrive at an optimum texture of the ferroelectric polycrystal at which the material exhibits maximum piezoelectric performance, a global optimization method has to be employed. Stochastic optimization techniques like simulated annealing (SA) are quite suitable in this respect as the objective function is not sensitive to the starting point of the iterative process (Kirkpatrick et al., 1983; Sonmez, 2007). Besides being insensitive to the starting point, SA can search a large solution space and they can escape local optimum points thanks to the freedom for occasional uphill moves. Kirkpatrick et al. (1983) first proposed simulated annealing as a powerful stochastic optimization technique. The complex structure of configuration space is treated analogous to the state of material controllable by an adjustable parameter, the temperature, in simulated annealing. In other words, annealing is a strategy by which an optimum state can be approached by controlling the temperature. Annealing involves heating the material matrix to high temperature and then let it be cooled slowly so that at each step a near thermal equilibrium is achieved and finally render the material to a stable minimum energy crystalline (ordered) state. The idea to explore analogy of the annealing used in solid state physics with the optimization problems gives rise to simulated annealing technique. A control parameter similar to the temperature in physical annealing is introduced in optimization which will

2 dictate the number of states to be accessed in going through the successive steps of the optimization algorithm before being settled in the minimum energy state (the optimum configuration). 2. PROBLEM STATEMENT AND MODEL SETUP As remarked above, the crystallographic grains (crystallites) in an as-grown polycrystal are randomly oriented and require three angles to describe its orientation with reference to a fixed coordinate system. Euler angles (φ, θ, ψ) can completely specify the orientation of the crystallographic coordinate system embedded in crystallites and thereby the orientation of crystallites (Goldstein, 1978) Design variables and objective function The orientation distribution of a poled polycrystalline FE follows a Gaussian distribution with the probability distribution given by 2 2 f (, ) (1/ 2 )exp ( ) / 2. (1) Here and are the parameters of the distribution viz., the mean and the standard deviation respectively. α stands for the Euler angle (φ, θ, ψ). In a 3D case as in the present work, parameters and perform the role of the control parameters which will decide the scatter of the orientations (Euler angles) and hence be critical to the piezoelectric response of the polycrystalline ferroelectric material. Hence and are the design variables of the optimization problem. Thus we are aiming to find an optimum set of these parameters from a solution space controlled by the laws of coordinate transformations from a crystallographic coordinate system embedded in the grains to a local coordinate system which coincides with the global frame of reference. Also, the solution space is bounded by distribution parameters and ranging from those of uniform (in the case of random polycrystal) to those of Gaussian distribution (in the case of poled polycrystal). A fairly uniform kind of distribution can be achieved by putting standard deviation () equals 5 and for a poled ceramic ferroelectric the is set near zero. The piezoelectric strain coefficient d 33 is the most significant and widely used figure of merit of ferroelectric materials in piezoelectric applications like actuators (e.g., Park and Shrout, 1997). In single crystalline materials like BaTiO 3 the piezoelectric coefficients shows a maximum when they are poled along a nonpolar axis. However, our objective is to search possible ways of enhancing the piezoelectricity in ceramic ferroelectric materials. Given the difficulties in synthesizing good quality single crystals of fairly large size for integration and also the non-reliability of reproduction, polycrystals are often preferred to single crystals in device applications. In polycrystalline piezoelectric materials, the state of strain is inhomogeneous. Understanding the local and global ferroelectric response of these topologically complex materials by combining mathematical modeling and simulation could help effectively engineer material configurations. Keeping in mind the goal of getting the maximum piezoelectric efficiency from polycrystalline material, the present objective is to maximize the piezoelectric coefficients d 33 by the optimum choice of grain distribution. The grain distribution parameters chosen by the SA algorithm will prompt a normal random generator thereby create a set of Euler angles (φ, θ, ψ). These Euler angles will dictate the coordinate transformation in the electromechanical property tensors appearing in the homogenization equations Homogenization Effective material properties are calculated using the mathematical homogenization method. The numerical solution of the coupled piezoelectric problems is sought using the finite element method (FEM) to eventually compute the homogenized piezoelectric coefficients. The finite element method used for this study correlates each randomly oriented grain in a polycrystalline material with each element of the finite element mesh. Each grain in a polycrystalline material is assumed to be made of a single, pinned, chemically homogeneous ferroelectric domain. The asymptotic analysis and homogenization of the piezoelectric medium (Galka et al., 1992; Nelli Silva et al., 1999) has resulted in the macroscopic piezoelectric coefficients e 33 and thereby d 33. Full integration (2-point Gaussian integration rule in each direction) is used for the evaluation of the stiffness, piezoelectric and dielectric matrices and for the homogenization. As the representative unit-cell is expected to capture the response of the entire piezoelectric system, particular care is taken to ensure that the deformation across the boundaries of the cell is compatible with the deformation of adjacent cells. Hence all the load cases are solved by enforcing periodic boundary conditions in the unit-cell for the displacements and electrical potentials. The numerical simulation of ceramic BaTiO 3 is done using the parameters of single crystal data from Zgonic et al. (1194) using the present homogenization model computationally implemented in Fortran. 3. SIMULATED ANNEALING

3 The simulated annealing (SA) algorithm is based on the Metropolis algorithm (Metropolis et al., 1953) for simulating the behavior of an ensemble of atoms that are cooled slowly from their melted state to the minimum energy ground state. The ground state or minimum energy state corresponds to the global optimum we are seeking in material optimization. In order to apply SA to a piezoelectric material, we must first introduce the notion of system energy. In the present setup the piezoelectric coefficient d 33 acts as system energy and we are seeking a maximization of d 33. Following the discussion given in this paper, d33( ) d33(, ). Here [0, 5] and [0, / 2].The distribution parameters are selected randomly. The main goal of SA is to find the ground state(s), i.e., the minimum energy configuration(s), with a relatively small amount of computation. Minimum energy states are those that have a high likelihood of existence at low temperature. The likelihood that a configuration, R i, is allowed to exist is equal to the Boltzmann probability factor, ER ( ) i PR ( i ) exp kt B (2), where T is the temperature and k B is the Boltzmann constant. For computational convenience k B is often treated as unity. It is obvious from the above relation that as the temperature decreases, the Boltzmann distribution concentrate on the states with lowest energy and finally, when the temperature approaches zero, only the minimum energy states have the non-zero probability of occurrence. To simulate the evolution of thermal equilibrium of a solid for a fixed T, Metropolis et al. (1953) proposed a Monte Carlo method, which generates a sequence of states of the solid. Given the current state of energy E 1, another set of design variables are randomly generated which will eventually calculate the another energy E 2. If the difference in energy E, between the current state and the new state (E 2 -E 1 ) is positive (negative in the case of minimization) then the process is continued with the new state. If E 0 then the probability of acceptance of the new state is given by exp( E / k B T) for maximization problems as in the present work. Following this criterion, the system eventually evolves into thermal equilibrium. Once thermodynamic balance is reached at a given temperature the temperature is lowered slightly and new chain of iterations will be executed before the system finally ends up in equilibrium. 4. RESULTS AND DISCUSSION As stated above, we have six design variables, viz.,,,, and which corresponds to the standard deviations and means of the orientation [Euler angles (φ, θ, ψ)] distributions expressed in radians. The temperature T is set to fall by 20% from each of the previous step, i.e., T k+1 = 0.8T k. Ideally we must start the iteration with an initial guess of the design variables randomly picked up from [0, 5] and [0, / 2]. To verify correctness of the algorithm, first we have "Energy", Piezoelectric coefficient d 33 (pc/n) "Temperature" Figure 1. Energy (Piezoelectric coefficient d 33 ) as a function of temperature in single crystal BaTiO 3 applied this optimization procedure to the case of single crystal BaTiO 3. Thus we started with Euler angles (φ, θ, ψ) alone without going to the assumption of distribution of grain orientations since a single crystal has no grain structure.

4 All the three angles are allowed values between limits (,, ). The evolution of the objective function d 33 with the temperature is shown in Fig. 1. The piezoelectric coefficient d 33 obtained after optimization is pc/n which compares exactly with our homogenization results reported recently (Jayachandran et al., 2009). The solution (φ, θ, ψ) is (-2.182, 0.873, ). This corresponds to one of the {111} planes of the BaTiO 3 single crystal along which the maximum piezoelectric coefficient of d 33 = 203 pc/n is measured by Wada et al. (1999). The optimization of polycrystal BaTiO 3 is treated next. We analyze the most general case with (,, ) [0, 5] and (,, ) [0, /2]. The results are shown in Fig. 2. The solution (,,,,, ) obtained is (4.7, 0.873, 0, 0.698, 1.8, 1.223). The objective function converges with a value d 33 = pc/n which is much higher than both [001] poled and [111] poled single crystals. This supplements our suggestion (Jayachandran et al., 2008) that randomness in the orientation of grains, if utilized judiciously, might be useful for manufacturing piezoelectric ceramics which outperform single crystals. The solution suggests one should keep the Euler angle (φ and ψ) related to the orientation of ab-plane of the crystallites to be in random rather than keeping their value at zero while the orientation θ, of c-axes is kept at radians (θ = 40). This would further point out that c-axes of the crystallites should be constrained to have a specific orientation while the ab-plane need not be kept at a specific orientation. This condition will deliver a better piezoceramic. 280 "Energy", piezoelectric coefficient, d 33 pc/n "Temperature" Figure 2: Energy (Piezoelectric coefficient d 33 ) as a function of temperature in FE polycrystal BaTiO 3 5. ACKNOWLEDGEMENTS KPJ acknowledges the award of Ciência 2007 by the FCT, Portugal. Partial support from the project PTDC/EME- PME/67658/2006 is also acknowledged. 6. REFERENCES Eerenstein, W, Mathur, N.D. and Scott, J.F., Multiferroic and magnetoelectric materials, Nature, Vol. 442, pp Galka, A., Telega J.J., and Wojner, R., Homogenization and thermo piezoelectricity, Mech. Res. Commun., Vol. 19, pp Goldstein, H., Classical Mechanics, Addison-Wesley, Reading, MA. Jayachandran, K.P., Guedes, J.M., and Rodrigues, H.C., Piezoelectricity enhancement in ferroelectric ceramics due to orientation, Appl. Phys. Lett., Vol. 92, Jayachandran, K.P., Guedes, J.M., and Rodrigues, H.C., Enhancement of the electromechanical response in ferroelectric ceramics by design, J. Appl. Phys., Vol. 105, Kirkpatrick, S., Gelatt, Jr., C.D. and Vechi, M.P., Optimization by simulated annealing, Science, Vol. 220, pp Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., Vol. 21, pp

5 Nelli Silva, E.C., Ono Fonseca, J.S., Montero de Espinosa, F., Crumm, A.T., Brady, G.A., Halloran, J.W., and Kikuchi N., Design of piezoelectric materials and piezoelectric transducers using topology optimization-part 1, Arch. Comput. Methods Eng., Vol. 6, pp Park, S.E. and Shrout, T.R., Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals, J. Appl. Phys., Vol. 82, pp Ruglovsky, J.L., Li, J., Bhattacharya, K. and Atwater, H.A., The effect of biaxial texture on the effective electromechanical constants of polycrystalline barium titanate and lead titanate thin films, Acta Mater., Vol. 54, pp Scott, J.F., Applications of modern ferroelectrics, Science, Vol.315, pp Sonmez, F.O., Shape optimization of 2D structures using simulated annealing, Comput. Methods Appl. Mech. Engrg., Vol. 196, pp Uchino, K., Ferroelectric devices, Marcel Dekker, New York. Uetsuji, Y., Nakamura, Y., Ueda S., and Nakamachi, E., Numerical investigation on ferroelectric properties of piezoelectric materials using a crystallographic homogenization method, Model. Simul. Mater. Sci. Eng., Vol. 12, pp. S303 S317. Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.-E., Cross L.E., and Shrout, T.R., Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations, Jpn. J. Appl. Phys. Part 1, Vol. 38, pp Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., and Kiguchi, T., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes, J. Appl. Phys., Vol. 98, Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T., Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties, Jpn. J. Appl. Phys., Vol. 46, pp Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Gunter, P., Garrett, M.H., Rytz, D., Zhu, Y., and Wu, X., Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO 3 crystals, Phys. Rev. B, Vol. 50, pp RESPONSIBILITY NOTICE The authors are the only responsible for the printed material included in this paper.

Micromechanical modeling and simulation of piezoceramic materials

Micromechanical modeling and simulation of piezoceramic materials Micromechanical modeling and simulation of piezoceramic materials B. Delibas 1, A. Arockia Rajan 1 & W. Seemann 2 1 Workgroup for Machine Dynamics, Technical University of Kaiserslautern, Germany 2 Institut

More information

Domain-size dependence of piezoelectric properties of ferroelectrics

Domain-size dependence of piezoelectric properties of ferroelectrics Domain-size dependence of piezoelectric properties of ferroelectrics Rajeev Ahluwalia, 1 Turab Lookman, 1 Avadh Saxena, 1 and Wenwu Cao 2 1 Theoretical Division, Los Alamos National Laboratory, Los Alamos,

More information

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.: Piezo materials Ver1404

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.:  Piezo materials Ver1404 Noliac Group develops and manufactures piezoelectric materials based on modified lead zirconate titanate (PZT) of high quality and tailored for custom specifications. Piezoelectric materials may be used

More information

Deepam Maurya 1*, Yuan Zhou 1, Yaojin Wang 2, Yongke Yan 1, Jiefang Li 2, Dwight Viehland 2, and Shashank Priya 1*

Deepam Maurya 1*, Yuan Zhou 1, Yaojin Wang 2, Yongke Yan 1, Jiefang Li 2, Dwight Viehland 2, and Shashank Priya 1* Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials: supplementary information Deepam Maurya 1*,

More information

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation *Artjom Avakian 1), Andreas Ricoeur 2) 1), 2) Institute of Mechanics, University of Kassel, Kassel 34125, Germany 1)

More information

Optimization Computational Model for Piezoelectric Energy Harvesters Considering Material Piezoelectric Microstructure

Optimization Computational Model for Piezoelectric Energy Harvesters Considering Material Piezoelectric Microstructure Optimization Computational Model for Piezoelectric Energy Harvesters Considering Material Piezoelectric Microstructure Agostinho Matos, José Guedes, K. Jayachandran, Hélder Rodrigues Contact: ago.matoz@gmail.com

More information

Poling field versus piezoelectric property for [001] c oriented 91%Pb(Zn 1/3 Nb 2/3 )O 3 9%PbTiO 3 single crystals

Poling field versus piezoelectric property for [001] c oriented 91%Pb(Zn 1/3 Nb 2/3 )O 3 9%PbTiO 3 single crystals J Mater Sci (2011) 46:1839 1843 DOI 10.1007/s10853-010-5009-z Poling field versus piezoelectric property for [001] c oriented 91%Pb(Zn 1/3 Nb 2/3 )O 3 9%PbTiO 3 single crystals Yang Xiang Rui Zhang Wenwu

More information

Domain switching and electromechanical properties of pulse poled Pb Zn 1Õ3 Nb 2Õ3 O 3 PbTiO 3 crystals

Domain switching and electromechanical properties of pulse poled Pb Zn 1Õ3 Nb 2Õ3 O 3 PbTiO 3 crystals JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 1 1 JANUARY 2001 Domain switching and electromechanical properties of pulse poled Pb Zn 1Õ3 Nb 2Õ3 O 3 PbTiO 3 crystals Hanxing Yu, Venkat Gopalan, Jürgen Sindel,

More information

A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites

A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites Materials Science and Engineering A 412 (2005) 53 60 A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites Harald Berger a,,

More information

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions B.G. Potter, Jr., B.A. Tuttle, and V. Tikare Sandia National Laboratories Albuquerque, NM

More information

Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile

Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the

More information

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to 76 Chapter 4 Mechanical characterization of single crystal BaTiO 3 film and insitu XRD observation of microstructure change due to mechanical loading 4.1 Introduction Ferroelectric materials have many

More information

Microelectromechanical systems (MEMS) have become an increasingly important area of

Microelectromechanical systems (MEMS) have become an increasingly important area of 1 Chapter 1 Introduction 1.1 Background Microelectromechanical systems (MEMS) have become an increasingly important area of technology. This is due to the premise that the efficiencies of high volume production

More information

Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing

Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing A Almusallam, K Yang, Z Cao, D Zhu, J Tudor, S P Beeby Electronics

More information

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics

The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics Mechanics of Materials 36 (2004) 949 958 www.elsevier.com/locate/mechmat The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li * Department of Engineering Mechanics,

More information

( ) ( ) ( ) ( ) Simulated Annealing. Introduction. Pseudotemperature, Free Energy and Entropy. A Short Detour into Statistical Mechanics.

( ) ( ) ( ) ( ) Simulated Annealing. Introduction. Pseudotemperature, Free Energy and Entropy. A Short Detour into Statistical Mechanics. Aims Reference Keywords Plan Simulated Annealing to obtain a mathematical framework for stochastic machines to study simulated annealing Parts of chapter of Haykin, S., Neural Networks: A Comprehensive

More information

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology Multi-Disciplinary University Initiative Army Research Office Engineering Microstructural Complexity in Ferroelectric Devices Mechanical Characterization G. Ravichandran Aeronautics & Mechanical Engineering

More information

Direct measurement of giant electrocaloric effect in BaTiO 3 multilayer thick film structure beyond theoretical prediction

Direct measurement of giant electrocaloric effect in BaTiO 3 multilayer thick film structure beyond theoretical prediction Direct measurement of giant electrocaloric effect in BaTiO 3 multilayer thick film structure beyond theoretical prediction Yang Bai 1,2, Guangping Zheng 1 and Sanqiang Shi 1 1 Department of Mechanical

More information

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics 120 Addition 1 Shear Stack Piezoelectric Elements and Shear Effect Basics Introduction The STM scanner built up in this work is a Besocke type scanner (see room temperature STM instrumental chapter). The

More information

ELECTROMECHANICAL RESPONSE OF PIEZOELECTRIC FOAMS

ELECTROMECHANICAL RESPONSE OF PIEZOELECTRIC FOAMS 18 TH INTRNATIONAL CONFRNC ON COMPOSIT MATRIALS LCTROMCHANICAL RSPONS OF PIZOLCTRIC FOAMS K.S. Challagulla 1 *, T.A. Venkatesh 1 School of ngineering, Laurentian University, Sudbury, Canada, Department

More information

STRUCTURAL OPTIMIZATION OF A MATERIAL EXHIBITING NEGATIVE STIFFNESS

STRUCTURAL OPTIMIZATION OF A MATERIAL EXHIBITING NEGATIVE STIFFNESS International Conference on Engineering Vibration Ljubljana, Slovenia, 7-0 September 05 STRUCTURAL OPTIMIZATION OF A MATERIAL EXHIBITING NEGATIVE STIFFNESS Zuzana Dimitrovová*, Jan Heczo, Helder C. Rodrigues

More information

Orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals

Orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals J Mater Sci (2011) 46:63 68 DOI 10.1007/s10853-010-4804-x Orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals Yang Xiang Rui Zhang Wenwu Cao Received:

More information

Markov Chain Monte Carlo. Simulated Annealing.

Markov Chain Monte Carlo. Simulated Annealing. Aula 10. Simulated Annealing. 0 Markov Chain Monte Carlo. Simulated Annealing. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [RC] Stochastic search. General iterative formula for optimizing

More information

MODELING AND SIMULATION OF PIEZOCERAMIC MATERIALS USING MICROMECHANICAL APPROACH

MODELING AND SIMULATION OF PIEZOCERAMIC MATERIALS USING MICROMECHANICAL APPROACH European Congress on Computaional Methods in Applied Sciences and Engineering ECCOMAS 2004 P.Neittaanmäki, T.Rossi, K.Majava, and O.Pironneau (eds.) R.Owen and M.Mikkola (assoc. eds.) Jyväskylä, 24-28

More information

Domain and Phase Change Contributions to Response in High Strain Piezoelectric Actuators

Domain and Phase Change Contributions to Response in High Strain Piezoelectric Actuators Domain and Phase Change Contributions to Response in High Strain Piezoelectric Actuators L. Eric Cross Evan Pugh Professor Emeritus of Electrical Engineering Materials Research Laboratory The Pennsylvania

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Final Project Report. Constitutive Behavior of Relaxor Single Crystals. Submitted to W. Smith, ONR. August 21, Christopher S.

Final Project Report. Constitutive Behavior of Relaxor Single Crystals. Submitted to W. Smith, ONR. August 21, Christopher S. Final Project Report Constitutive Behavior of Relaxor Single Crystals Submitted to W. Smith, ONR August 21, 2007 Christopher S. Lynch The GWW School of Mechanical Engineering Georgia Institute of Technology

More information

FINITE ELEMENT MODELLING OF COMPOSITES USING PIEZOELECTRIC MATERIAL

FINITE ELEMENT MODELLING OF COMPOSITES USING PIEZOELECTRIC MATERIAL International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 2015 FINITE ELEMENT MODELLING OF COMPOSITES USING PIEZOELECTRIC MATERIAL K.TEJASWINI, tejaswinikota11@gmail.com.,

More information

Electro-shape-memory effect in Mn-doped BaTiO 3 single crystals and in situ observation of the reversible domain switching

Electro-shape-memory effect in Mn-doped BaTiO 3 single crystals and in situ observation of the reversible domain switching Materials Science and Engineering A 438 440 (2006) 354 359 Electro-shape-memory effect in Mn-doped BaTiO 3 single crystals and in situ observation of the reversible domain switching L.X. Zhang a,b,c,,x.ren

More information

Depolarization Field Effect on Dielectric and Piezoelectric Properties of Particulate. Ferroelectric Ceramic-Polymer Composites

Depolarization Field Effect on Dielectric and Piezoelectric Properties of Particulate. Ferroelectric Ceramic-Polymer Composites Depolarization Field Effect on Dielectric and Piezoelectric Properties of Particulate Ferroelectric Ceramic-Polymer Composites Fengde D. Ma and Yu U. Wang* Department of Materials Science and Engineering,

More information

Temperature-dependent phase transitions in Pb(Zn1/3Nb2/3)0.93Ti0.07O3 crystal

Temperature-dependent phase transitions in Pb(Zn1/3Nb2/3)0.93Ti0.07O3 crystal Temperature-dependent phase transitions in Pb(Zn1/3Nb2/3)0.93Ti0.07O3 crystal Authors: R. R. Chien, V. Hugo Schmidt, Chi-Shun Tu, F. -T. Wang & L. C. Lim This is an Accepted Manuscript of an article published

More information

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION Minoru Kuribayashi Kurosawa*, Hidehiko Yasui**, Takefumi Kanda** and Toshiro Higuchi** *Tokyo Institute of Technology, Dept. of Advanced

More information

Moving screw dislocations in piezoelectric bimaterials

Moving screw dislocations in piezoelectric bimaterials phys stat sol (b) 38 No 1 10 16 (003) / DOI 10100/pssb00301805 Moving screw dislocations in piezoelectric bimaterials Xiang-Fa Wu *1 Yuris A Dzenis 1 and Wen-Sheng Zou 1 Department of Engineering Mechanics

More information

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers F.J.O. RODRIGUES, L.M. GONÇALVES, J.H. CORREIA, P.M. MENDES University of Minho, Dept. Industrial Electronics,

More information

Intermediate ferroelectric orthorhombic and monoclinic M B phases in [110] electric-field-cooled Pb Mg 1/3 Nb 2/3 O 3 30%PbTiO 3 crystals

Intermediate ferroelectric orthorhombic and monoclinic M B phases in [110] electric-field-cooled Pb Mg 1/3 Nb 2/3 O 3 30%PbTiO 3 crystals Intermediate ferroelectric orthorhombic and monoclinic M B phases in [110] electric-field-cooled Pb Mg 1/3 Nb 2/3 O 3 30%PbTiO 3 crystals Hu Cao, Feiming Bai, Naigang Wang, Jiefang Li, and D. Viehland

More information

An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals

An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals JOURNAL OF ADVANCED DIELECTRICS Vol. 6, No. 2 (216) 1651 (5 pages) The Author(s) DOI: 1.1142/S21135X16517 by UNIVERSITY OF LEEDS on 6/2/16. For personal use only. An equivalent dipole analysis of PZT ceramics

More information

Numerical Properties of Spherical and Cubical Representative Volume Elements with Different Boundary Conditions

Numerical Properties of Spherical and Cubical Representative Volume Elements with Different Boundary Conditions TECHNISCHE MECHANIK, 33, 2, (2013), 97 103 submitted: December 11, 2012 Numerical Properties of Spherical and Cubical Representative Volume Elements with Different Boundary Conditions R. Glüge, M. Weber

More information

Composites: Part B 43 (2012) Contents lists available at SciVerse ScienceDirect. Composites: Part B

Composites: Part B 43 (2012) Contents lists available at SciVerse ScienceDirect. Composites: Part B Composites: Part B 43 (212) 2646 2654 Contents lists available at SciVerse ScienceDirect Composites: Part B journal homepage: www.elsevier.com/locate/compositesb Influence of pattern gradation on the design

More information

Newcastle University eprints

Newcastle University eprints Newcastle University eprints Ponon NK, Appleby DJR, Arac E, Kwa KSK, Goss JP, Hannemann U, Petrov PK, Alford NM, O'Neill A. Impact of Crystalline Orientation on the Switching Field in Barium Titanate Using

More information

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions f.... Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions o (n -+ B.G. Potter, Jr., B.A. Tuttle, and V. Tikare Sandia National Laboratories Albuquerque,

More information

Characteristics of piezoceramic and 3 3 piezocomposite hydrophones evaluated by finite element modelling

Characteristics of piezoceramic and 3 3 piezocomposite hydrophones evaluated by finite element modelling Computational Materials Science 30 (2004) 397 403 www.elsevier.com/locate/commatsci Characteristics of piezoceramic and 3 3 piezocomposite hydrophones evaluated by finite element modelling R. Ramesh, H.

More information

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms 1 What is Combinatorial Optimization? Combinatorial Optimization deals with problems where we have to search

More information

Sensors and Actuators A: Physical

Sensors and Actuators A: Physical Sensors and Actuators A 161 (2010) 266 270 Contents lists available at ScienceDirect Sensors and Actuators A: Physical journal homepage: www.elsevier.com/locate/sna Magnetic force memory effect using a

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 8: Simulated annealing Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass Bull. Mater. Sci., Vol. 9, No. 4, August 6, pp. 357 363. Indian Academy of Sciences. Acoustic study of nano-crystal embedded PbO P O 5 glass SUDIP K BATABYAL, A PAUL, P ROYCHOUDHURY and C BASU* Department

More information

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology MEMS Engineer Forum 2016/5/11 11:50-12:15 Content 1. Introduction 2. Processing 3. Materials Matter Content

More information

Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor- Based Ferroelectric Pb(Mg1 /3Nb2/3)1 - xtixo3 Single Crystals

Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor- Based Ferroelectric Pb(Mg1 /3Nb2/3)1 - xtixo3 Single Crystals Electric Field- and Temperature-Induced Phase Transitions in High-Strain Relaxor- Based Ferroelectric Pb(Mg1 /3Nb2/3)1 - xtixo3 Single Crystals Authors: R. R. Chien, V. Hugo Schmidt, C.-S. Tu, F.-T. Wang,

More information

Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets

Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets Study of xes Rotation during Simple Shear ests on luminum Sheets L. Duchêne 1, B. Diouf 1,. Lelotte 1, P. Flores 1, S. Bouvier 2,.M. Habraken 1 1. rgenco Dept., University of Liège, Chemin des Chevreuils

More information

An evaluation of switching criteria for ferroelectrics under stress and electric field

An evaluation of switching criteria for ferroelectrics under stress and electric field Acta Materialia 51 (2003) 6123 6137 www.actamat-journals.com An evaluation of switching criteria for ferroelectrics under stress and electric field J. Shieh, J.E. Huber, N.A. Fleck Department of Engineering,

More information

I. INTRODUCTION II. SAMPLE PREPARATION JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER

I. INTRODUCTION II. SAMPLE PREPARATION JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER 2002 Longitudinal and transverse piezoelectric coefficients of lead zirconate titanateõvinylidene fluoride-trifluoroethylene composites with different

More information

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring

Ferroelectricity. Phase transition. Material properties. 4/12/2011 Physics 403 Spring Ferroelectricity. Phase transition. Material properties 4/12/211 Physics 43 Spring 211 1 Ferroelectricity. outline Ferroelectricity. Definition Discovery Main properties Phenomenological theory Some materials

More information

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

Energy Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover

Energy Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover Tomoyuki Hiroyasu, Mitsunori Miki, Shinya Ogura, Keiko Aoi, Takeshi Yoshida, Yuko Okamoto Jack Dongarra

More information

MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL

MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL Emílio Carlos Nelli Silva Associate Professor Department of ofmechatronics and Mechanical Systems Engineering Escola Politécnica da dauniversidade de

More information

Modeling and analysis of the electromechanical behavior of surface-bonded piezoelectric actuators using finite element method

Modeling and analysis of the electromechanical behavior of surface-bonded piezoelectric actuators using finite element method Modeling and analysis of the electromechanical behavior of surface-bonded piezoelectric actuators using finite element method Huangchao Yu and Xiaodong Wang Abstract Piezoelectric actuators have been widely

More information

Ferroelectricity. Phase transition. Material properties

Ferroelectricity. Phase transition. Material properties Ferroelectricity. Phase transition. Material properties BaTiO 3 DKDP KDP PZN-PT(9%) PMN-PT(30%) PMN-PT(40%) 4/1/2016 Physics 403 Spring 2016 1 Ferroelectricity. outline Ferroelectricity. Definition Discovery

More information

In situ observation of reversible domain switching in aged Mn-doped BaTiO 3 single crystals

In situ observation of reversible domain switching in aged Mn-doped BaTiO 3 single crystals PHYSICAL REVIEW B 71, 174108 2005 In situ observation of reversible domain switching in aged Mn-doped BaTiO 3 single crystals L. X. Zhang 1,2,3 and X. Ren 1,2, * 1 Multi-Disciplinary Materials Research

More information

Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method

Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method Journal of Alloys and Compounds 462 (2008) 129 134 Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method F. Moura a,1, A.Z. Simões a,, B.D.

More information

Characteristics of Lead Free Ferroelectric Thin Films Consisted of (Na 0.5 Bi 0.5 )TiO 3 and Bi 4 Ti 3 O 12

Characteristics of Lead Free Ferroelectric Thin Films Consisted of (Na 0.5 Bi 0.5 )TiO 3 and Bi 4 Ti 3 O 12 Advanced Materials Research Online: 2013-04-24 ISSN: 1662-8985, Vol. 684, pp 307-311 doi:10.4028/www.scientific.net/amr.684.307 2013 Trans Tech Publications, Switzerland Characteristics of Lead Free Ferroelectric

More information

A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core

A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core Commun. Theor. Phys. 56 774 778 Vol. 56, No. 4, October 5, A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core JIANG

More information

Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals

Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals Jae-Hyeon Ko 1 *, Do Han Kim 2, Seiji Kojima 2, D. C. Feng 3 1 Department of Physics, Hallym University,

More information

Modifying the Electrical Properties of Ba 0 85 Ca 0 15 Zr 0 1 Ti 0 9 O 3 Ceramics by the Nanocrystals-Induced Method

Modifying the Electrical Properties of Ba 0 85 Ca 0 15 Zr 0 1 Ti 0 9 O 3 Ceramics by the Nanocrystals-Induced Method Copyright 2016 American Scientific Publishers All rights reserved Printed in the United States of America Article Journal of Nanoscience and Nanotechnology Vol. 16, 1 6, 2016 www.aspbs.com/jnn Modifying

More information

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data GOGA CVETKOVSKI LIDIJA PETKOVSKA Faculty of Electrical Engineering Ss. Cyril and Methodius University Karpos II b.b. P.O. Box

More information

Toughening due to domain switching in single crystal ferroelectric materials

Toughening due to domain switching in single crystal ferroelectric materials Int J Fract DOI 1.17/s174-7-956-7 ORIGINAL PAPER Toughening due to domain switching in single crystal ferroelectric materials Jianshun Sheng Chad M. Landis Received: 14 July 26/ Accepted: 6 February 27

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

Principles of Active Vibration Control: Piezoelectric materials

Principles of Active Vibration Control: Piezoelectric materials Principles of Active Vibration Control: Piezoelectric materials Introduction: Piezoelectric materials are materials that produce a voltage when stress is applied. Since, this effect also applies in the

More information

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 63 69 c 2008 NCC Publisher Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Michael P. Krasilnikov

More information

Monoclinic phases arising across thermal inter-ferroelectric phase transitions

Monoclinic phases arising across thermal inter-ferroelectric phase transitions PHYSICAL REVIEW B 90, 010 01) Monoclinic phases arising across thermal inter-ferroelectric phase transitions Yijia Gu, Fei Xue, Shiming Lei, Tom T. A. Lummen, Jianjun Wang, Venkatraman Gopalan, and Long-Qing

More information

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A.

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. Ab Initio Studies On Phase Behavior of Barium Titanate Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. 1 Physics Department,

More information

Influence of Ceramic Particle Sizes on Electrical Properties of Lead Zirconate Titanate (PZT)/Nylon57 Composites

Influence of Ceramic Particle Sizes on Electrical Properties of Lead Zirconate Titanate (PZT)/Nylon57 Composites Journal of Metals, Materials and Minerals. Vol.1 No.17-151, Influence of Ceramic Particle Sizes on Electrical Properties of Lead Zirconate Titanate ()/Nylon57 Composites Wilairat SUPMAK, Atitsa PETCHSUK

More information

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5.1 New candidates for nanoelectronics: ferroelectric nanotubes In this chapter, one of the core elements for a complex building

More information

PIEZOELECTRIC COEFFICIENT PROPERTIES OF A FLEXIBLE PZT/UPE/C COMPOSITE

PIEZOELECTRIC COEFFICIENT PROPERTIES OF A FLEXIBLE PZT/UPE/C COMPOSITE PIEZOELECTRIC COEFFICIENT PROPERTIES OF A FLEXIBLE PZT/UPE/C COMPOSITE Z. T. Mohammed Noori * and F. Mohammed Noori ** * Department of Optics technology, Dijllah University Collage. ** Department of Physics,

More information

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE Bruce Hajek* University of Illinois at Champaign-Urbana A Monte Carlo optimization technique called "simulated

More information

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 132-136 Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Dushyant Pradeep, U C Naithani

More information

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDFCATO Publishers, D-79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.

More information

Lead-Free Ceramic-Polymer Composites for Embedded Capacitor and Piezoelectric Applications P. Kumar *

Lead-Free Ceramic-Polymer Composites for Embedded Capacitor and Piezoelectric Applications P. Kumar * Lead-Free Ceramic-Polymer Composites for Embedded Capacitor and Piezoelectric Applications P. Kumar * Department of Physics, National Institute of Technology, Rourkela, Odisha, India, 769008 Correspondence

More information

Smart elastomers a touch of robotics

Smart elastomers a touch of robotics Smart elastomers a touch of robotics Chris Bowen, Vince Coveney, Hamideh Khanbareh, Mengying Xie Department of Mechanical Engineering, University of Bath 30 June 2017 BRL Introduction 1. Fundamentals of

More information

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS HIDEAKI ABURATANI Kitakyushu National College of Technology, Kokura-minami, Kitakyushu, Fukuoka, Japan Abstract Ferroelectric materials

More information

Ferroelectric perovskites such as lead titanate (PbTiO3 or

Ferroelectric perovskites such as lead titanate (PbTiO3 or Domain switching in polycrystalline ferroelectric ceramics J. Y. LI 1,R.C.ROGAN 2,3,E.ÜSTÜNDAG 3 AND K. BHATTACHARYA 2 * 1 Department of Engineering Mechanics, University of Nebraska, Lincoln, Nebraska

More information

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films Ferroelectric oxides with perovskite structure has gained lot of interest from research as well

More information

Mesoscale constitutive behavior of ferroelectrics

Mesoscale constitutive behavior of ferroelectrics Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 009 Mesoscale constitutive behavior of ferroelectrics Mesut Varlioglu Iowa State University Follow this and additional

More information

EXPERIMENTAL AND FINITE ELEMENT MODAL ANALYSIS OF VARIABLE STIFFNESS COMPOSITE LAMINATED PLATES

EXPERIMENTAL AND FINITE ELEMENT MODAL ANALYSIS OF VARIABLE STIFFNESS COMPOSITE LAMINATED PLATES 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-12 September 2013 EXPERIMENTAL AND FINITE ELEMENT MODAL ANALYSIS OF VARIABLE STIFFNESS COMPOSITE LAMINATED

More information

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek

Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description. Igor Dobovšek Exploring Piezoelectric Properties of Wood and Related Issues in Mathematical Description Igor Dobovšek University of Ljubljana Faculty of Mathematics and Physics Institute of Mathematics Physics and Mechanics

More information

Thermodynamics Study on the Decay Properties of Reversed Domains in LiNbO 3. Single Crystals

Thermodynamics Study on the Decay Properties of Reversed Domains in LiNbO 3. Single Crystals DOI: 1.4172/221-6212.1178 Thermodynamics Study on the Decay Properties of Reversed Domains in LiNbO Single rystals Li LB 1,2*, Li GL 1, Kan Y 2, Lu XM 2 and Zhu JS 2 1 School of Physics and Engineering,

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Simulated Annealing. Local Search. Cost function. Solution space

Simulated Annealing. Local Search. Cost function. Solution space Simulated Annealing Hill climbing Simulated Annealing Local Search Cost function? Solution space Annealing Annealing is a thermal process for obtaining low energy states of a solid in a heat bath. The

More information

Ferroelectric materials contain one or more polar axes along which a spontaneous

Ferroelectric materials contain one or more polar axes along which a spontaneous Chapter 3 Ferroelectrics 3.1 Definition and properties Ferroelectric materials contain one or more polar axes along which a spontaneous polarization can be developed below the material s Curie temperature.

More information

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field *Sang-Yun Park 1) and Ohseop Song 2) 1), 2) Department of Mechanical Engineering, Chungnam National University,

More information

Contrast Mechanism for Visualization of Ferroelectric Domains with Scanning Force Microscopy

Contrast Mechanism for Visualization of Ferroelectric Domains with Scanning Force Microscopy Ferroelectrics, 334:29 34, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150190600689654 Contrast Mechanism for Visualization of Ferroelectric Domains

More information

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT Ing. Gergely TAKÁCS, PhD.* * Institute of Automation, Measurement and Applied Informatics Faculty of Mechanical Engineering Slovak

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

PIEZOELECTRIC ceramics for advanced actuator applications often

PIEZOELECTRIC ceramics for advanced actuator applications often journal J. Am. Ceram. Soc., 85 [4] 844 50 (2002) Effect of a Transverse Tensile Stress on the Electric-Field-Induced Domain Reorientation in Soft PZT: In Situ XRD Study Xiaoping Li,*, Wan Y. Shih,*, James

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Energy storage: high performance material engineering

Energy storage: high performance material engineering Energy storage: high performance material engineering Teranishi Group Faculty of Engineering Research activities 1) Polarization assisted ultrahigh rate lithium ion batteries 1) Lithium ion conductor-dielectrics

More information

Giant enhancement in effective piezoelectric sensitivity by pyroelectric coupling

Giant enhancement in effective piezoelectric sensitivity by pyroelectric coupling 1 Giant enhancement in effective piezoelectric sensitivity by pyroelectric coupling RODERIC LAKES Department of Engineering Physics, Engineering Mechanics Program, Department of Materials Science University

More information

High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film

High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film Journal of Applied Physics, 2010, Volume 108, Issue 4, paper number 044107 High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film T. M. Correia and Q. Zhang*

More information

Liquid crystal in confined environment

Liquid crystal in confined environment Liquid crystal in confined environment Adviser: Prof. Rudi Podgornik Supervisor: Prof. Igor Muševič By Maryam Nikkhou September 2011 Contents Abstract.................................................................

More information

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission.

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission. Course MP3 Lecture 4 13/11/2006 Monte Carlo method I An introduction to the use of the Monte Carlo method in materials modelling Dr James Elliott 4.1 Why Monte Carlo? The name derives from the association

More information

SIMU L TED ATED ANNEA L NG ING

SIMU L TED ATED ANNEA L NG ING SIMULATED ANNEALING Fundamental Concept Motivation by an analogy to the statistical mechanics of annealing in solids. => to coerce a solid (i.e., in a poor, unordered state) into a low energy thermodynamic

More information