SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS

Size: px
Start display at page:

Download "SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS"

Transcription

1 i SYLLABUS osmania university UNIT - I CHAPTER - 1 : TRANSIENT RESPONSE Initial Conditions in Zero-Input Response of RC, RL and RLC Networks, Definitions of Unit Impulse, Unit Step and Ramp Functions, Zero State Response with Impulse and Step Inputs. Complete Response of Circuits with Initial Conditions and Forcing Functions such as Step, Exponential and Sinusoidal Functions. UNIT - II CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS Laplace Transform Pair, Evaluation of Laplace Transforms of Common Time Functions in Particular Delta, Unit Step, Ramp, Sinusoids and Exponential Functions and Building of Laplace Transform Tables, Laplace Transform Theorems Relating Time Shifting Differentiation, Integration and Convolution of Time Functions, Initial and Final Value Theorems, Waveform Synthesis, Partial Fraction Expansion Method of Obtaining Inverse Transforms. UNIT - III CHAPTER - 3 : APPLICATION OF LAPLACE TRANSFORM FOR CIRCUIT ANALYSIS Application of Laplace Transform for Circuit Analysis, Concept of Transfer Function, Pole, Zero Plots. UNIT - IV CHAPTER - 4 : FOURIER SERIES Fourier Series Representation of Periodic Functions using both Trigonometric and Exponential Functions, Symmetry Conditions.

2 iii electrical circuits ii ii FOR b.e. (o.u) Ii year ii semester (ELECTRICAL AND ELECTRONICS ENGINEERING) CONTENTS UNIT - I [CH. H. - 1] ] [TRANSIENT RESPONSE] INTRODUCTION... METHODS OF TRANSIENT ANALYSIS YSIS....1 Finding the Solution of Differential Equations Solution for a First Order System with DC Input.... Solution for a First Order System with AC Input Solution for a Second Order System with AC (or) DC Input INITIAL CONDITIONS Initial Conditions in Elements Final Steady State Conditions Procedure for Finding the Initial Conditions Solved Problems DC TRANSIENTS Transient Response of Series RL Circuit for DC Excitation Transient Response of Driven Series RL Circuit Transient Response of Undriven Series RL Circuit Solved Problems

3 v Rectangular Pulse Unit Area Triangular Function Exponential Function Sinusoidal Signals Exponential Damped Sinusoidal Signal Signum Function Relation Between u(t) and sgn(t) Sinc Function ZERO STATE TE RESPONSE WITH IMPULSE FUNCTION RL Circuit RC Circuit RLC Circuit COMPLETE RESPONSE OF CIRCUITS WITH INITIAL CONDITIONS AND STEP FORCING FUNCTION COMPLETE RESPONSE OF CIRCUITS WITH INITIAL CONDITIONS AND EXPONENTIAL FORCING FUNCTION COMPLETE RESPONSE OF CIRCUIT WITH CONDITIONS AND SINUSOIDAL FORCING FUNCTIONS Short Questions and Answers Expected University Questions with Answers UNIT - II [CH. - 2] ] [LAPLACE TRANSFORM OF SIGNALS] INTRODUCTION DEFINITION OF LAPLACE TRANSFORM Existence of Laplace Transform Concept of Region of Convergence (ROC) for Laplace Transforms Properties of ROC Advantages of Laplace Transform Disadvantages of Laplace Transform

4 vii Periodicity Property roperty First Shifting Theorem Second Shifting Theorem Solved Problems using Properties of Laplace Transform ransform LAPLACE TRANSFORM TABLE WAVEFORM SYNTHESIS PARTIAL FRACTION EXPANSION METHOD OF OBTAINING INVERSE LAPLACE TRANSFORM Simple and Real Roots Multiple Roots Complex Roots Solved Problems Short Questions and Answers Expected University Questions with Answers UNIT - III [CH.. - 3] ] [APPLICA APPLICATION OF LAPLACE TRANSFORM FOR CIRCUIT ANALYSIS YSIS] INTRODUCTION CONCEPT OF COMPLEX FREQUENCY APPLICATION OF LAPLACE CE TRANSFORM TO O ELECTRIC NETWORKS Transforms of Basic R, L and C Components Transforms of RL,, RC and RLC Networks RL Circuit RC Circuit RLC Circuit Solved Problems

5 ix 4.5 RELATION BETWEEN TRIGONOMETRIC AND EXPONENTIAL FOURIER SERIES SYMMETRY CONDITIONS Even Symmetry Odd Symmetry Half-Wave ave Symmetry Quarter-Wave ave Symmetry Summary of Waveform Symmetry PROPERTIES OF CONTINUOUS TIME FOURIER SERIES Linearity Time Shifting Frequency Shifting Time Scaling Time Reversal Time-Differentiation Time-Integration Multiplication in Time-Domain Conjugation and Conjugate Symmetry Parseval s Theorem COMPLETE RESPONSE TO O PERIODIC FORCING FUNCTIONS Solved Problems Short Questions and Answers Expected University Questions with Answers UNIT - IV [CH. - 5] ] [FOURIER TRANSFORM] INTRODUCTION DERIVING FOURIER TRANSFORM FROM FOURIER SERIES Definition of Fourier Transform Existence of Fourier Transform

6 xi 5.5 FOURIER TRANSFORM REPRESENTATION TION OF PERIODIC SIGNAL SPECTRAL CONTENT OF A SIGNAL AMPLITUDE AND PHASE SPECTRA ENERGY DENSITY SPECTRUM Parseval s Theorem for Energy Signals Energy Spectral Density (ESD) Energy Spectral Densities of Input and Output Properties of Energy Spectral Density BANDWIDTH OF A SIGNAL POWER DENSITY SPECTRUM Parseval s Theorem for Power Signals Power Spectral Density (PSD) Properties of PSD SYSTEM FUNCTION AND ITS APPLICATION IN DETERMINING STEADY-ST STATE TE RESPONSE Solved Problem Short Questions and Answers Expected University Questions with Answers UNIT - V [CH. - 6] ] [NETWORK SYNTHESIS] INTRODUCTION HURWITZ POLYNOMIAL Properties of Hurwitz Polynomial olynomial Routh-Hurwitz Method (or) Routh outh s Criterion Solved Problems POSITIVE REAL FUNCTIONS Proof for Z(s) to be Positive Real Function unction Properties of Positive Real Functions

7 xiii 6.7 SYNTHESIS OF DRIVING POINT IMMITTANCE FUNCTION OF RL NETWORK Properties of RL Driving Point Immittance Function unction Realization of Immittance Functions of RL Networks Foster I Form Foster II Form Cauer I Form Cauer II Form Solved Problems Short Questions and Answers Expected University Questions with Answers LATEST UNIVERSITY QUESTION PAPER WITH ANSWERS [April/May ] [New] [Main]... QP.1 - QP.8

SIGNALS AND SYSTEMS I. RAVI KUMAR

SIGNALS AND SYSTEMS I. RAVI KUMAR Signals and Systems SIGNALS AND SYSTEMS I. RAVI KUMAR Head Department of Electronics and Communication Engineering Sree Visvesvaraya Institute of Technology and Science Mahabubnagar, Andhra Pradesh New

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

Total No. of Questions :09] [Total No. of Pages : 03

Total No. of Questions :09] [Total No. of Pages : 03 EE 4 (RR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 016 Second Semester ELECTRICAL & ELECTRONICS NETWORK ANALYSIS Time: Three Hours Answer Question

More information

1. SINGULARITY FUNCTIONS

1. SINGULARITY FUNCTIONS 1. SINGULARITY FUNCTIONS 1.0 INTRODUCTION Singularity functions are discontinuous functions or their derivatives are discontinuous. A singularity is a point at which a function does not possess a derivative.

More information

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation. LAPLACE TRANSFORMATION AND APPLICATIONS Laplace transformation It s a transformation method used for solving differential equation. Advantages The solution of differential equation using LT, progresses

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB Simon Fraser University School of Engineering Science ENSC 380-3 Linear Systems Spring 2000 This course covers the modeling and analysis of continuous and discrete signals and systems using linear techniques.

More information

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL Miroslav D. Lutovac The University of Belgrade Belgrade, Yugoslavia Dejan V. Tosic The University of Belgrade Belgrade, Yugoslavia Brian

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Signals and Systems Laboratory with MATLAB

Signals and Systems Laboratory with MATLAB Signals and Systems Laboratory with MATLAB Alex Palamides Anastasia Veloni @ CRC Press Taylor &. Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa

More information

Continuous and Discrete Time Signals and Systems

Continuous and Discrete Time Signals and Systems Continuous and Discrete Time Signals and Systems Mrinal Mandal University of Alberta, Edmonton, Canada and Amir Asif York University, Toronto, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface Parti Introduction

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL BANK Name : SIGNALS AND SYSTEMS Code : A30406 Class : II B. Tech I Semester

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach Dynamic Systems Modeling and Analysis Hung V. Vu California State University, Long Beach Ramin S. Esfandiari California State University, Long Beach THE McGRAW-HILL COMPANIES, INC. New York St. Louis San

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE)

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE) MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.Tech I YEAR II SEMESTER-ECAS(EEE) QUESTION BANK (OBJECTIVE) MODULE-III 1. Which among the following represents the precise condition of reciprocity for transmission

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series Fourier series Electrical Circuits Lecture - Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform - Fourier

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10)

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) What we have seen in the previous lectures, is first

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

Network Synthesis. References :

Network Synthesis. References : References : Network ynthesis Gabor C. Temes & Jack W. Lapatra, Introduction to Circuit ynthesis and Design, McGraw-Hill Book Company. M.E. Van Valkenburg, Introduction to Modern Network ynthesis, John

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Signals and Systems

Signals and Systems 204181 Signals and Systems Examination Scheme: Teaching Scheme: Theory Online : 50 Marks Lectures: 4 Hrs/ Week Theory Paper : 50 Marks Tutorial : 1 Hr/Week Term work: 25 Course Objectives and Outcomes:

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Fourier transform. XE31EO2 - Pavel Máša. EO2 Lecture 2. XE31EO2 - Pavel Máša - Fourier Transform

Fourier transform. XE31EO2 - Pavel Máša. EO2 Lecture 2. XE31EO2 - Pavel Máša - Fourier Transform Fourier transform EO2 Lecture 2 Pavel Máša - Fourier Transform INTRODUCTION We already know complex form of Fourier series f(t) = 1X k= 1 A k e jk! t A k = 1 T Series frequency spectra is discrete Circuits

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

Hilbert Transforms in Signal Processing

Hilbert Transforms in Signal Processing Hilbert Transforms in Signal Processing Stefan L. Hahn Artech House Boston London Contents Preface xiii Introduction 1 Chapter 1 Theory of the One-Dimensional Hilbert Transformation 3 1.1 The Concepts

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Generalizing the Fourier Transform The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

Signals and Systems with MATLAB Applications

Signals and Systems with MATLAB Applications Signals and Systems with MATLAB Applications Second Edition Steven T. Karris www.orchardpublications.com Signals and Systems with MATLAB Applications, Second Edition Copyright 2003. All rights reserved.

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes Chapter 5.1 Fourier Representation for four Signal Classes 5.1.1Mathematical Development of Fourier Transform If the period is stretched without limit, the periodic signal no longer remains periodic but

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Poles, Zeros and System Response

Poles, Zeros and System Response Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

More information

vtusolution.in Initial conditions Necessity and advantages: Initial conditions assist

vtusolution.in Initial conditions Necessity and advantages: Initial conditions assist Necessity and advantages: Initial conditions assist Initial conditions To evaluate the arbitrary constants of differential equations Knowledge of the behavior of the elements at the time of switching Knowledge

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Solving a RLC Circuit using Convolution with DERIVE for Windows

Solving a RLC Circuit using Convolution with DERIVE for Windows Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca - Introduction

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

(i) Understanding the characteristics and properties of DTFT

(i) Understanding the characteristics and properties of DTFT Discrete-Time Fourier Transform (DTFT) Chapter Intended Learning Outcomes: (i) Understanding the characteristics and properties of DTFT (ii) Ability to perform discrete-time signal conversion between the

More information

Ch 6.4: Differential Equations with Discontinuous Forcing Functions

Ch 6.4: Differential Equations with Discontinuous Forcing Functions Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

DEPARTMENT OF ELECTRONIC ENGINEERING

DEPARTMENT OF ELECTRONIC ENGINEERING DEPARTMENT OF ELECTRONIC ENGINEERING STUDY GUIDE CONTROL SYSTEMS 2 CSYS202 Latest Revision: Jul 2016 Page 1 SUBJECT: Control Systems 2 SUBJECT CODE: CSYS202 SAPSE CODE: 0808253220 PURPOSE: This subject

More information

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Chapter 7. Digital Control Systems

Chapter 7. Digital Control Systems Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform David Hilbert 1 ABSTRACT: In this presentation, the basic theoretical background of the Hilbert Transform is introduced. Using this transform, normal real-valued time domain functions

More information

Source-Free RC Circuit

Source-Free RC Circuit First Order Circuits Source-Free RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order

More information

(i) Represent continuous-time periodic signals using Fourier series

(i) Represent continuous-time periodic signals using Fourier series Fourier Series Chapter Intended Learning Outcomes: (i) Represent continuous-time periodic signals using Fourier series (ii) (iii) Understand the properties of Fourier series Understand the relationship

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

State will have dimension 5. One possible choice is given by y and its derivatives up to y (4)

State will have dimension 5. One possible choice is given by y and its derivatives up to y (4) A Exercise State will have dimension 5. One possible choice is given by y and its derivatives up to y (4 x T (t [ y(t y ( (t y (2 (t y (3 (t y (4 (t ] T With this choice we obtain A B C [ ] D 2 3 4 To

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures.

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures. In this second lecture, I will be considering signals from the frequency perspective. This is a complementary view of signals, that in the frequency domain, and is fundamental to the subject of signal

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

Tyler Anderson 1, Murat Tanyel 2

Tyler Anderson 1, Murat Tanyel 2 VENTURING INTO THE WALSH DOMAIN WITH A LABVIEW BASED COMMUNICATION SYSTEMS TOOLKIT Tyler Anderson 1, Murat Tanyel 2 1 Geneva College, Beaver Falls, Pennsylvania: Email: tbanders@geneva.edu 2 Geneva College,

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

Line Spectra and their Applications

Line Spectra and their Applications In [ ]: cd matlab pwd Line Spectra and their Applications Scope and Background Reading This session concludes our introduction to Fourier Series. Last time (http://nbviewer.jupyter.org/github/cpjobling/eg-47-

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Electrical Circuit & Network

Electrical Circuit & Network Electrical Circuit & Network January 1 2017 Website: www.electricaledu.com Electrical Engg.(MCQ) Question and Answer for the students of SSC(JE), PSC(JE), BSNL(JE), WBSEDCL, WBSETCL, WBPDCL, CPWD and State

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

Signals and Systems Lecture Notes

Signals and Systems Lecture Notes Dr. Mahmoud M. Al-Husari Signals and Systems Lecture Notes This set of lecture notes are never to be considered as a substitute to the textbook recommended by the lecturer. ii Contents Preface v 1 Introduction

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

EEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:

EEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel: EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to first-order circuit From the last lecture, we have learnt

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

More information

Module 7 : Antenna. Lecture 52 : Array Synthesis. Objectives. In this course you will learn the following. Array specified by only its nulls.

Module 7 : Antenna. Lecture 52 : Array Synthesis. Objectives. In this course you will learn the following. Array specified by only its nulls. Objectives In this course you will learn the following Array specified by only its nulls. Radiation pattern of a general array. Array synthesis. Criterion for choosing number of elements in synthesized

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Routh-Hurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Linear Systems. ! Textbook: Strum, Contemporary Linear Systems using MATLAB.

Linear Systems. ! Textbook: Strum, Contemporary Linear Systems using MATLAB. Linear Systems LS 1! Textbook: Strum, Contemporary Linear Systems using MATLAB.! Contents 1. Basic Concepts 2. Continuous Systems a. Laplace Transforms and Applications b. Frequency Response of Continuous

More information

Network Synthesis Part I

Network Synthesis Part I Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n2.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE References Definition Network Functions

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies

Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies Session 3220 Modification of a Sophomore Linear Systems Course to Reflect Modern Computing Strategies Raymond G. Jacquot, Jerry C. Hamann, John E. McInroy Electrical Engineering Department, University

More information