Data Mining and Analysis: Fundamental Concepts and Algorithms

Size: px
Start display at page:

Download "Data Mining and Analysis: Fundamental Concepts and Algorithms"

Transcription

1 Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki Wagner Meira Jr. Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA Department of Computer Science Universidade Federal de Minas Gerais, Belo Horizonte, Brazil Chapter 6: High-dimensional Data Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data / 9

2 High-dimensional Space Let D be a n d data matrix. In data mining typically the data is very high dimensional. Understanding the nature of high-dimensional space, or hyperspace, is very important, especially because it does not behave like the more familiar geometry in two or three dimensions. Hyper-rectangle: The data space is a d-dimensional hyper-rectangle R d = d [ ] min(x j ), max(x j ) where min(x j ) and max(x j ) specify the range of X j. j= Hypercube: Assume the data is centered, and let m denote the maximum attribute value { } m = max d n x ij j= max i= The data hyperspace can be represented as a hypercube, centered at, with all sides of length l = m, given as { H d (l) = x = (x, x,...,x d ) } T i, xi [ l/, l/] The unit hypercube has all sides of length l =, and is denoted as H d (). Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data / 9

3 Hypersphere Assume that the data has been centered, so that µ =. Let r denote the largest magnitude among all points: { } r = max x i i The data hyperspace can be represented as a d-dimensional hyperball centered at with radius r, defined as B d (r) = { x x r } or B d (r) = x = (x, x,...,x d ) d xj r The surface of the hyperball is called a hypersphere, and it consists of all the points exactly at distance r from the center of the hyperball S d (r) = { x x = r } or S d (r) = x = (x, x,...,x d ) d (x j ) = r j= j= Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 3 / 9

4 Iris Data Hyperspace: Hypercube and Hypersphere l = 4. and r =.9 X: sepal width r X : sepal length Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 4 / 9

5 High-dimensional Volumes Hypercube: The volume of a hypercube with edge length l is given as vol(h d (l)) = l d HypersphereThe volume of a hyperball and its corresponding hypersphere is identical The volume of a hypersphere is given as In dimension: vol(s (r)) = r In dimensions: vol(s (r)) = πr where In 3 dimensions: vol(s 3 (r)) = 4 3 πr 3 ( ) In d-dimensions: vol(s d (r)) = K d r d π d = Γ ( d + ) ( ) d Γ + {( d ) =! if d is even ( π d!! if d is odd (d+)/ ) r d Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 5 / 9

6 Volume of Unit Hypersphere With increasing dimensionality the hypersphere volume first increases up to a point, and then starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere with r =, lim vol(s π d d()) = lim d d Γ( d + ) vol(sd()) d Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 6 / 9

7 Hypersphere Inscribed within Hypercube Consider the space enclosed within the largest hypersphere that can be accommodated within a hypercube (which represents the dataspace). The ratio of the volume of the hypersphere of radius r to the hypercube with side length l = r is given as In dimensions: In 3 dimensions: In d dimensions: vol(s (r)) vol(h (r)) = πr 4r = π 4 = 78.5% 4 vol(s 3 (r)) vol(h 3 (r)) = 3 πr 3 8r 3 = π 6 = 5.4% vol(s d (r)) lim d vol(h d (r)) = lim π d/ d d Γ( d + ) As the dimensionality increases, most of the volume of the hypercube is in the corners, whereas the center is essentially empty. Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 7 / 9

8 Hypersphere Inscribed inside a Hypercube r r r r Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 8 / 9

9 Conceptual View of High-dimensional Space Two, three, four, and higher dimensions All the volume of the hyperspace is in the corners, with the center being essentially empty. High-dimensional space looks like a rolled-up porcupine! (a) D (b) 3D (c) 4D (d) dd Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 9 / 9

10 Volume of a Thin Shell The volume of a thin hypershell of width ǫ is given as ol(s d (r,ǫ)) = vol(s d (r)) vol(s d (r ǫ)) = K d r d K d (r ǫ) d. The ratio of volume of the thin shell to the volume of the outer sphere: vol(s d (r,ǫ)) vol(s d (r)) = K dr d K d (r ǫ) d K d r d ( = ǫ ) d r r r ǫ ǫ s d increases, we have lim vol(s d (r,ǫ)) vol(s d (r)) ( = lim ǫ d d r) Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data / 9

11 Diagonals in Hyperspace Consider a d-dimensional hypercube, with origin d = (,,..., d ), and bounded in each dimension in the range [, ]. Each corner of the hyperspace is a d-dimensional vector of the form (±,±,...,± d ) T. Let e i = (,..., i,..., d ) T denote the d-dimensional canonical unit vector in dimension i, and let denote the d-dimensional diagonal vector (,,..., d ) T. Consider the angle θ d between the diagonal vector and the first axis e, in d dimensions: As d increases, we have which implies that cosθ d = et e = e T = e T e T lim cosθ d = lim d d d lim d θ d π = 9 d = d Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data / 9

12 Angle between Diagonal Vector and e θ e θ e (a) In D (b) In 3D In high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all the coordinates axes! Each of the d new axes connecting pairs of d corners are essentially orthogonal to all of the d principal coordinate axes! Thus, in effect, high-dimensional space has an exponential number of orthogonal axes. Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data / 9

13 Density of the Multivariate Normal Consider the standard multivariate normal distribution with µ =, and Σ = I { } f(x) = ( π) exp xt x d The peak of the density is at the mean. Consider the set of points x with density at least α fraction of the density at the mean f(x) f() α { } exp xt x α x T x ln(α) d (x i ) ln(α) i= The sum of squared IID random variables follows a chi-squared distributionχ d. Thus, ( ) f(x) P f() α = F χ ( ln(α)) d where F χ q is the CDF. Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 3 / 9

14 Density Contour for α Fraction of the Density at the Mean: One Dimension Let α =.5, then ln(.5) =.386 and F χ (.386) =.76. Thus, 4% of the density is in the tail regions α = Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 4 / 9

15 Density Contour for α Fraction of the Density at the Mean: Two Dimensions Let α =.5, then ln(.5) =.386 and F χ (.386) =.5. Thus, 5% of the density is in the tail regions. f(x).5..5 α = X 4 3 X Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 5 / 9

16 Chi-Squared Distribution: P(f(x)/f() α) This probability decreases rapidly with dimensionality. For D, it is.5. For 3D it is.9, ie., 7% of the density is in the tails. By d =, it decreases to.75%, that is, 99.95% of the points lie in the extreme or tail regions. f(x) f(x).5 F =.5.5 F = x 5 5 x Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 6 / 9

17 Hypersphere Volume: Polar Coordinates in D X r θ (x, x ) X The point x = (x, x ) in polar coordinates x = r cosθ = rc x = r sinθ = rs where r = x, and cosθ = c and sinθ = s. The Jacobian matrix for this transformation is given as J(θ ) = ( x r x r x θ x θ ) ( ) c rs = s rc Hypersphere volume is obtained by integration over r and θ (with r >, and θ π): vol(s (r)) = = r θ r π det(j(θ )) dr dθ r dr dθ = r Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter π 6: High-dimensional Data 7 / 9 r r dr π dθ

18 Hypersphere Volume: Polar Coordinates in 3D x = (x, x, x ) in polar coordinates X 3 x = r cosθ cosθ = rc c x = r cosθ sinθ = rc s r θ (x, x, x 3 ) x 3 = r sinθ = rs The Jacobian matrix is given as c c rs c rc s X J(θ,θ ) = c s rs s rc c s rc θ X The volume of the hypersphere for d = 3 is obtained via a triple integral with r >, π/ θ π/, and θ π vol(s 3 (r)) = r θ = 4 3 πr 3 det(j(θ,θ )) dr dθ dθ θ Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 8 / 9

19 Hypersphere Volume in d Dimensions The determinant of the d-dimensional Jacobian matrix is det(j(θ,θ,...,θ d )) = ( ) d r d c d c d 3...c d The volume of the hypersphere is given by the d-dimensional integral with r >, π/ θ i π/ for all i =,...,d, and θ d π: vol(s d (r)) =... det(j(θ,θ,...,θ d )) dr dθ dθ...dθ d r θ = r = r d d θ r d dr Γ ( d θ d π/ π/ ) Γ ( ) Γ ( ) d = πγ( ) d/ r d ) = ( d Γ( d π d/ Γ ( d + ) ) r d c d dθ... π/ π/ c d dθ d π Γ ( ) ( d Γ ) Γ ( )... Γ()Γ( ) d Γ ( ) π 3 dθ d Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 9 / 9

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA Department

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1)

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Math 20C Multivariable Calculus Lecture 1 1 Coordinates in space Slide 1 Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Vector calculus studies derivatives and

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Chapter XII: Data Pre and Post Processing

Chapter XII: Data Pre and Post Processing Chapter XII: Data Pre and Post Processing Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2013/14 XII.1 4-1 Chapter XII: Data Pre and Post Processing 1. Data

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ) M48M Final Exam Solutions, December 9, 5 ) A polar curve Let C be the portion of the cloverleaf curve r = sin(θ) that lies in the first quadrant a) Draw a rough sketch of C This looks like one quarter

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Log1 Contest Round 2 Theta Geometry

Log1 Contest Round 2 Theta Geometry 008 009 Log Contest Round Theta Geometry Name: Leave answers in terms of π. Non-integer rational numbers should be given as a reduced fraction. Units are not needed. 4 points each What is the perimeter

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 2: Multivariate distributions and inference Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2016/2017 Master in Mathematical

More information

Elliptically Contoured Distributions

Elliptically Contoured Distributions Elliptically Contoured Distributions Recall: if X N p µ, Σ), then { 1 f X x) = exp 1 } det πσ x µ) Σ 1 x µ) So f X x) depends on x only through x µ) Σ 1 x µ), and is therefore constant on the ellipsoidal

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = Q1. If (1, 2) lies on the circle x 2 + y 2 + 2gx + 2fy + c = 0 which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = a) 11 b) -13 c) 24 d) 100 Solution: Any circle concentric with x 2 +

More information

2. The CDF Technique. 1. Introduction. f X ( ).

2. The CDF Technique. 1. Introduction. f X ( ). Week 5: Distributions of Function of Random Variables. Introduction Suppose X,X 2,..., X n are n random variables. In this chapter, we develop techniques that may be used to find the distribution of functions

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

ES.182A Topic 44 Notes Jeremy Orloff

ES.182A Topic 44 Notes Jeremy Orloff E.182A Topic 44 Notes Jeremy Orloff 44 urface integrals and flux Note: Much of these notes are taken directly from the upplementary Notes V8, V9 by Arthur Mattuck. urface integrals are another natural

More information

Infinite Series. 1 Introduction. 2 General discussion on convergence

Infinite Series. 1 Introduction. 2 General discussion on convergence Infinite Series 1 Introduction I will only cover a few topics in this lecture, choosing to discuss those which I have used over the years. The text covers substantially more material and is available for

More information

HIGH DIMENSIONAL FEATURE REDUCTION VIA PROJECTION PURSUIT

HIGH DIMENSIONAL FEATURE REDUCTION VIA PROJECTION PURSUIT HIGH DIMENSIONAL FEATURE REDUCTION VIA PROJECTION PURSUIT Luis O. Jimenez David Landgrebe TR-ECE 96-5 April 1995 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING PURDUE UNIVERSITY WEST LAFAYETTE IN 47907-185

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

APPENDIX 2.1 LINE AND SURFACE INTEGRALS 2 APPENDIX 2. LINE AND URFACE INTEGRAL Consider a path connecting points (a) and (b) as shown in Fig. A.2.. Assume that a vector field A(r) exists in the space in which the path is situated. Then the line

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD. Determine the following value: 7 August 6 Solutions π + π. Solution: Since π

More information

1. Find the real solutions, if any, of a. x 2 + 3x + 9 = 0 Discriminant: b 2 4ac = = 24 > 0, so 2 real solutions. Use the quadratic formula,

1. Find the real solutions, if any, of a. x 2 + 3x + 9 = 0 Discriminant: b 2 4ac = = 24 > 0, so 2 real solutions. Use the quadratic formula, Math 110, Winter 008, Sec, Instructor Whitehead P. 1 of 8 1. Find the real solutions, if any, of a. x + 3x + 9 = 0 Discriminant: b 4ac = 3 3 4 1 9 = 7 < 0, so NO real solutions b. x 4x = 0 Discriminant:

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001 Math D Calculus Exam Practice Problems Fall This is not a comprehensive set of problems, but I ve added some more problems since Monday in class.. Find the derivatives of the following functions a) y =

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

EM Algorithm & High Dimensional Data

EM Algorithm & High Dimensional Data EM Algorithm & High Dimensional Data Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Gaussian EM Algorithm For the Gaussian mixture model, we have Expectation Step (E-Step): Maximization Step (M-Step): 2 EM

More information

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par-

A different parametric curve ( t, t 2 ) traces the same curve, but this time the par- Parametric Curves: Suppose a particle is moving around in a circle or any curve that fails the vertical line test, then we cannot describe the path of this particle using an equation of the form y fx)

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

The Volume of a Hypersphere

The Volume of a Hypersphere The hypersphere has the equation The Volume of a Hypersphere x 2 y 2 x 2 w 2 = 2 if centered at the origin (,,,) and has a radius of in four dimensional space. We approach the project of determining its

More information

LINEAR ALGEBRA - CHAPTER 1: VECTORS

LINEAR ALGEBRA - CHAPTER 1: VECTORS LINEAR ALGEBRA - CHAPTER 1: VECTORS A game to introduce Linear Algebra In measurement, there are many quantities whose description entirely rely on magnitude, i.e., length, area, volume, mass and temperature.

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Overlake School Summer Math Packet AP Calculus AB

Overlake School Summer Math Packet AP Calculus AB Overlake School Summer Math Packet AP Calculus AB Name: Instructions 1. This is the packet you should be doing if you re entering AP Calculus AB in the Fall. 2. You may (and should) use your notes, textbook,

More information

False. 1 is a number, the other expressions are invalid.

False. 1 is a number, the other expressions are invalid. Ma1023 Calculus III A Term, 2013 Pseudo-Final Exam Print Name: Pancho Bosphorus 1. Mark the following T and F for false, and if it cannot be determined from the given information. 1 = 0 0 = 1. False. 1

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

1 Integration in many variables.

1 Integration in many variables. MA2 athaye Notes on Integration. Integration in many variables.. Basic efinition. The integration in one variable was developed along these lines:. I f(x) dx, where I is any interval on the real line was

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

The Radii of Hyper Circumsphere and Insphere through Equidistant Points

The Radii of Hyper Circumsphere and Insphere through Equidistant Points Parabola Volume 54, Issue (08) The Radii of Hyper ircumsphere and Insphere through Equidistant Points Sin Keong Tong Three points,, and of equal distance from each other form an equilateral triangle in

More information

Math156 Review for Exam 4

Math156 Review for Exam 4 Math56 Review for Eam 4. What will be covered in this eam: Representing functions as power series, Taylor and Maclaurin series, calculus with parametric curves, calculus with polar coordinates.. Eam Rules:

More information

Zero Variance Markov Chain Monte Carlo for Bayesian Estimators

Zero Variance Markov Chain Monte Carlo for Bayesian Estimators Noname manuscript No. will be inserted by the editor Zero Variance Markov Chain Monte Carlo for Bayesian Estimators Supplementary material Antonietta Mira Reza Solgi Daniele Imparato Received: date / Accepted:

More information

Slides 5: Random Number Extensions

Slides 5: Random Number Extensions Slides 5: Random Number Extensions We previously considered a few examples of simulating real processes. In order to mimic real randomness of events such as arrival times we considered the use of random

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

1. Vectors and Matrices

1. Vectors and Matrices E. 8.02 Exercises. Vectors and Matrices A. Vectors Definition. A direction is just a unit vector. The direction of A is defined by dir A = A, (A 0); A it is the unit vector lying along A and pointed like

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Before you begin read these instructions carefully:

Before you begin read these instructions carefully: NATURAL SCIENCES TRIPOS Part IB & II (General Friday, 30 May, 2014 9:00 am to 12:00 pm MATHEMATICS (2 Before you begin read these instructions carefully: You may submit answers to no more than six questions.

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts Space Guidance Analysis Memo #9 To: From: SGA Distribution James E. Potter Date: November 0, 96 Subject: Error

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES We have seen how to represent curves by parametric equations. Now, we apply the methods of calculus to these parametric

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Booklet Number: 2016 TEST CODE: DST. Objective type: 30 Questions Time: 2 hours

Booklet Number: 2016 TEST CODE: DST. Objective type: 30 Questions Time: 2 hours Booklet Number: 016 TEST CODE: DST Forenoon Objective type: 30 Questions Time: hours You are being given a separate Answer Sheet for answering all the questions. Write your Name, Registration Number, Test

More information

PHY752, Fall 2016, Assigned Problems

PHY752, Fall 2016, Assigned Problems PHY752, Fall 26, Assigned Problems For clarification or to point out a typo (or worse! please send email to curtright@miami.edu [] Find the URL for the course webpage and email it to curtright@miami.edu

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 989. ISBN: 978032490207. Please use the following citation

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

MA 519 Probability: Review

MA 519 Probability: Review MA 519 : Review Yingwei Wang Department of Mathematics, Purdue University, West Lafayette, IN, USA Contents 1 How to compute the expectation? 1.1 Tail........................................... 1. Index..........................................

More information

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A Time : 3 hours 0 Mathematics July 006 Marks : 00 Pg Instructions :. Answer all questions.. Write your answers according to the instructions given below with the questions. 3. Begin each section on a new

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000

EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 EXAM 2 ANSWERS AND SOLUTIONS, MATH 233 WEDNESDAY, OCTOBER 18, 2000 This examination has 30 multiple choice questions. Problems are worth one point apiece, for a total of 30 points for the whole examination.

More information

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1996 HIGH SCHOOL MATHEMATICS CONTEST March 4, f(x, y) = (max(x, y)) min(x,y)

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1996 HIGH SCHOOL MATHEMATICS CONTEST March 4, f(x, y) = (max(x, y)) min(x,y) UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1996 HIGH SCHOOL MATHEMATICS CONTEST March 4, 1996 1. If and then f(x, y) (max(x, y)) min(x,y) g(x, y) max(x, y) min(x, y), f(g( 1, 3 ), g( 4, 1.75)) (A) 0.5 (B)

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

AP Calculus Free-Response Questions 1969-present AB

AP Calculus Free-Response Questions 1969-present AB AP Calculus Free-Response Questions 1969-present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x - x. Answer the following questions

More information

component risk analysis

component risk analysis 273: Urban Systems Modeling Lec. 3 component risk analysis instructor: Matteo Pozzi 273: Urban Systems Modeling Lec. 3 component reliability outline risk analysis for components uncertain demand and uncertain

More information

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3 Math (Calculus II) Final Eam Form A Fall 22 RED KEY Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.. Which of the following series converge absolutely? ) ( ) n 2) n 2 n (

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

18 Bivariate normal distribution I

18 Bivariate normal distribution I 8 Bivariate normal distribution I 8 Example Imagine firing arrows at a target Hopefully they will fall close to the target centre As we fire more arrows we find a high density near the centre and fewer

More information