Heterogeneous versus Homogeneous electron transfer reactions at liquid-liquid interfaces: The wrong question?

Size: px
Start display at page:

Download "Heterogeneous versus Homogeneous electron transfer reactions at liquid-liquid interfaces: The wrong question?"

Transcription

1 Supplementary material Hetergeneus versus Hmgeneus electrn transfer reactins at liquid-liquid interfaces: The rng questin? Pekka Pelj*, Evgeny Smirnv, and Hubert. H. Girault Labratire d Electrchimie Physique et Analytique, Écle Plytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'industrie 17, Case Pstale 44, CH-1951 Sin, Sitzerland 1

2 S1. Mdel fr the hetergeneus and hmgeneus electrn transfer The mdel f the electrn transfer acrss the liquid-liquid interface as built in 1D utilizing COMSOL Multiphysics 4.4 and 5.2. Effects f migratin ere assumed negligible, s t Transprt f Diluted Species physics ere utilized fr diffusin f all the species, ne in aqueus phase and the ther in il phase. The ptential ramp as dne using a tringle functin ith 5 mv transitin zne and t cntinuus derivatives. The general diffusin equatin fr a species i is: ci ( Di ci) = Ri t (S1) here c is cncentratin, t is time, D is the diffusin cefficient and R is the reactin term fr the species i. The species in the mdel are Fc, Fc, (present in bth phases) and 3 Fe(CN) 6 and 4 Fe(CN) 6 present nly in the aqueus phase. Additinally, e have the ptassium catin K in bth phases. There are n reactins in the rganic phase. Fc can partitin int the aqueus phase, here it ill react hmgeneusly by the flling reactin: Fc() () k 1 Fc 4 () () k 1 (S2) This reactin is described as a bimlecular reactin R Fc = R Fc = R 4 Fe(CN)6 = R Fe(CN)6 = c Fc t = k 1 Fc k Fc 1 Fe(CN) 4 6 (S3) The equilibrium cnstant K hm = k 1 /k 1 can be evaluated hen the redx ptentials f bth redx cuples are knn. E Fc /Fc =.381 V vs. SHE [1] and the frmal ptential fr ferrferricyanide E 4 Fe(CN)6 /Fe(CN) as evaluated as.467 V vs. SHE in 1 mm LiCl [2] and as V vs. SHE in 1 mm Li 2 SO 4 in this rk. The equilibrium cnstant fr the reactin (S2) can be calculated as K hm = exp ΔG RT = exp F RT E 4 Fe(CN)6 / E Fc /Fc = 3.1 (LiCl) 2

3 r 12.4 (Li 2 SO 4 ) (S4) k 1 as varied t match the simulatins and experimental data The cncentratin bundary cnditins ere used at uter bundaries f the phases (c i = bulk cncentratin). The bundary cnditins at the liquid-liquid interface ere set as inard fluxes (N i ) accrding t the flling reactins: k ET,f Fc() () Fc 4 () () (hetergeneus ET) (S5) k ET,b k P,f Fc() Fc() (partitin f ferrcene) (S6) k P,b k IT,f Fc () Fc () (IT f ferrcenium) (S7) k IT,b k IT2,f K (aq) K () (IT f K catin) (S8) k IT2,b In the aqueus phase, the inard fluxes are N, 4 Fe(CN)6 = N, Fe(CN)6 = k ET,f Fc() Fe(CN) 6 () k ET,b Fc () Fe(CN) 4 () 6 (S9) N, Fc = k IT,f Fc () k Fc () IT,b N, K = k IT2,f K () k K () IT2,b (S1) (S11) N, Fc = k P,f Fc() k P,b Fc() (S12) In the TFT phase, the inard fluxes include bth cntributins frm reactins (S5) and (S6) r (S7): N, Fc = k ET,f Fc() Fe(CN) 6 () k Fc () ET,b Fe(CN) 4 () 6 (S13) k P,f Fc() k P,b Fc() 3

4 N, Fc = k ET,f Fc() Fe(CN) 6 () k ET,b k IT,f Fc () k Fc () IT,b N, K = k IT2,f K () k M () IT2,b Fc () Fe(CN) 4 () 6 (S14) (S15) Here the bimlecular rate cnstants ket,f and ket,band unimlecular rate cnstants fr in transfer reactins (k IT and k IT2 ) are Butler-Vlmer type rate cnstants depending n the Galvani ptential difference Δ φ ith the expressins: k ET,b = k ET exp α 1 ( f ( Δ φ Δ φ ET )) ( ) f ( Δ φ Δ φ Fc ) f ( Δ φ Δ φ K ) k ET,f = k ET exp α f Δ φ Δ φ ET k IT,b = k IT exp α 1 k IT,f = k IT exp α f Δ φ Δ φ Fc k IT2,b = k IT2 k IT2,f = k IT2 exp α 1 exp α f Δ φ Δ φ K (S16) here f = F/RT. The α fr all the in transfer reactins as set t.5, and as varied beteen and 1 fr electrn transfer reactins. The unimlecular standard rate cnstants fr in transfer ( kit and k IT2 ) ere set t.1 cm s 1, as the in transfer acrss the liquid-liquid interface is fast and reversible. Similar values fr nrmal in transfer reactins have been reprted in the literature, [3], and the bimlecular standard rate cefficient fr the ET reactin k ET as varied in the simulatins. The kinetics fr partitin f neutral ferrcene ere emplyed by calculating the partitin cefficient f Fc, K p, setting k P,b as.1 cm s 1 and calculating the frard rate cnstant k P,f = K k. Partitin cefficient f Fc beteen TFT and ater as calculated frm the p P,b thermdynamic cycle as described by Fermin and Lahtinen [4]. Standard ptential f a redx cuple in rganic slvent can be expressed ith the help as the redx ptential in ater and the Gibbs energies f transfer f reduced and xidized species frm ater t il: 4

5 E x/red = E x/red ΔG,, ΔG x red F (S17) Hence, the redx ptential f Fc in TFT can be expressed as E Fc /Fc = E Fc /Fc Δ φ Fc ΔG, Fc F (S18) This equatin can be used t calculate the transfer energy and als partitin cefficient f Fc frm ater t TFT (standard redx ptentials f Fc in ater ( E Fc /Fc =.381 V vs. SHE [1]) and TFT ( E Fc /Fc =.736 V vs. SHE as btained in this rk) are knn, and Δ φ Fc as taken as the half-ave ptential f Δ φ =.115 V 1/2, Fc [2]) as, ΔG Fc K p,fc = exp = (S19) RT The standard electrn transfer ptential as evaluated by Δ φ ET = E Fc /Fc E 4 Fe(CN)6 / (S2) S2. Mdel fr the NP catalyzed interfacial electrn transfer Anther apprach as used t cnsider the metal particle as a biplar electrde in beteen the t phases. In this case, the mdel as cnstructed ith t Transprt f Dilluted Species physics and Electric Currents physics t accunt fr the current thrugh the biplar electrde. Fr simplicity, nly electrn transfer as cnsidered (Reactin S5). N, the xidatin f Fc as cnsidered t take place at the il side f AuNP, and reductin f Fe(III) in the aqueus phase. k,x Fc() Fc () e (S21) k,red 5

6 k,x 4 Fe(CN) 6 () () e (S22) k, red N, the inard fluxes at the aqueus and il side are N, 4 Fe(CN)6 = N, Fe(CN)6 = k,x Fe(CN) 4 6 () k Fe(CN),red 6 () (S23) N, Fc = N, Fc = k,x Fc() k,red Fc () (S24) here the rate cnstants fr xidatin and reductin are expressed as k,red = k aq exp α 1 f E NP E 4 FeCN6 /FeCN 6 Δ φ k,x = k aq exp α f E NP E 4 FeCN6 Δ /FeCN 6 φ k,red = k exp α 1 ( f ( E NP E Fc /Fc )) ( ( )) k,x = k exp α f E NP E Fc /Fc (S25) Nte that in Eq. (S23) the directin f flux is reversed, as in reactins (S21-22) the electrns are fling frm il t metal t aqueus phase, and current is fling the ppsite ay (xidative current is psitive as defined by IUPAC). The effect f the Galvani ptential difference included in the expnents f the rate cnstants f the aqueus phase. k as set as.4 cm s 1 [5], and all values f α ere set t.5. experimental CVs. k as varied t btain satisfactry crrespndence ith the The gverning equatins f the Electric Currents physics in the metal phase are: J= σe = σ (S26) E NP here J and E are current density and electric field (bth are vectr variables), σ is cnductivity and E NP is the nanparticle ptential. This equatin is Ohm s la fr the current and the ptential. The bundary cnditins ere set utilizing the inard current density: J = FN, Fe(CN)6 4 (S27) 6

7 J = FN, Fc (S28) When slving the system, the NP ptential E NP is flating s that bth J and J have the same magnitude. In this case, simulatins ere perfrmed in cnditins here aqueus redx cuple as alays in hundred-fld excess. Hence the Fermi level f the NP as fixed by the ferrferricyanide redx cuple ( E NP E 4 FeCN6 /FeCN 6 φ ), and the ver ptential as mstly n the il side. Fr example, the ver-ptential ith the Fe(II)/Fe(III) rati f 1/1 in the aqueus phase as nly.4 mv at the psitive ptential limit f the scan. S3. Cyclic vltammetry f ferr/ferricyanide cuple Figure S-1 shs the cncentratin nrmalized CVs btained ith Pt and Gc disk electrdes, shing decreased reversibility fr 1/1 mm Fe 2 /Fe 3 cncentratin in 1 mm Li 2 SO 4 electrlyte. 7

8 Figure S-1. CVs f the ferr/ferricyanide cuple btained ith Pt and Gc disk electrdes. The current density as nrmalized by the ttal irn cncentratin, 1 mm Li 2 SO 4 electrlyte, scan rate 1 mv s 1. S4. Reactin layer thickness in the pre-partitining mechanims Figure S-2 shs the reactin rate f xidatin f Fc ( R Fc = k 1 Fc k Fc 1 Fe(CN) 4 6 frm Eq. S3, xidatin reactin shn as psitive) in the aqueus side f the interface, nrmalized by the initial cncentratin f ttal irn in the aqueus phase, as a functin f distance frm the liquid-liquid interface, fr different amunt f ttal irn at the scan rates f 1 (S-2a) and 1 mv s 1 (S-2b) at different Galvani ptential differences. The results shn that the reactin layer thickness increases frm 1 t 1 nm ith decreasing initial ttal irn cncentratin in the aqueus phase. 8

9 Figure S-2. Reactin layer thicknesses ith different ferr/ferricyanide cncentratins. The nrmalized hmgeneus reactin rate in the aqueus phase as a functin f distance frm the interface, scan rate 1 mv s 1 (a) and 1 mv s 1. Fe(II)/Fe(III) rati f 1:1. Simulatins dne as in Figure 3 a-c). Supplementary References [1] S. Daniele, M.A. Bald, C. Bragat, A steady-state vltammetric investigatin n the xidatin f ferrcene in ethanl ater mixtures, Electrchem. Cmmun. 1 (1999) di:1.116/s (98)11-3. [2] E. Smirnv, P. Pelj, M.D. Scanln, H.H. Girault, Interfacial Redx Catalysis n Gld Nanfilms at Sft Interfaces, ACS Nan 9 (215) di:1.121/acsnan.5b2547. [3] Z. Samec, Dynamic electrchemistry at the interface beteen t immiscible electrlytes, Electrchim. Acta. 84 (212) di:1.116/j.electacta [4] D.J. Fermin, R. Lahtinen, Dynamic Aspects f Hetergeneus Electrn-Transfer Reactins at Liquid Liquid Interfaces, in: A.G. Vlkv (Ed.), Liquid Interfaces in Chemical, Bilgical, and Pharmaceutical Applicatins, Marcel Dekker Inc., Ne Yrk, 21: pp [5] V. Mareček, Z. Samec, J. Weber, The dependence f the electrchemical charge-transfer cefficient n the electrde ptential, J. Electranal. Chem. Interfacial Electrchem. 94 (1978) di:1.116/s22-728(78)8312-x. 9

Electronic Supplementary Information. Low-cost industrially available molybdenum boride and carbide as platinum-like catalysts

Electronic Supplementary Information. Low-cost industrially available molybdenum boride and carbide as platinum-like catalysts Electrnic Supplementary Infrmatin Lw-cst industrially available mlybdenum bride and carbide as platinum-like catalysts fr the hydrgen evlutin reactin in biphasic liquid systems Micheál D. Scanln, a Xiajun

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

19 Applications of Standard Electrode Potentials

19 Applications of Standard Electrode Potentials 9 Applicatins f Standard lectrde Ptentials ( Calculating thermdynamic cell ptentials ( Calculating equilibrium cnstants fr redx reactins ( Cnstructing redx titratin curves 9A Calculating Ptentials f lectrchemical

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Chemistry 132 NT. Electrochemistry. Review

Chemistry 132 NT. Electrochemistry. Review Chemistry 132 NT If yu g flying back thrugh time, and yu see smebdy else flying frward int the future, it s prbably best t avid eye cntact. Jack Handey 1 Chem 132 NT Electrchemistry Mdule 3 Vltaic Cells

More information

Electrochemistry for analytical purposes. Examples for water analysis Dr Riikka Lahtinen

Electrochemistry for analytical purposes. Examples for water analysis Dr Riikka Lahtinen Electrchemistry fr analytical purpses Examples fr water analysis Dr Riikka Lahtinen Electrchemistry Based n RedOx-reactins: Reductin: receive electrn(s) Oxidatin: give away electrn(s) Electrchemistry is

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS CHPTER 6 / HRVEY. CHEMICL B. THERMODYNMICS ND C. MNUPULTING CONSTNTS D. CONSTNTS FOR CHEMICL RECTIONS 1. Precipitatin Reactins 2. cid-base Reactins 3. Cmplexatin Reactins 4. Oxidatin-Reductin Reactins

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

Strategy Write the two half-cell reactions and identify the oxidation and reduction reactions. Pt H2 (g) H + (aq)

Strategy Write the two half-cell reactions and identify the oxidation and reduction reactions. Pt H2 (g) H + (aq) Slutins manual fr Burrws et.al. Chemistry 3 Third editin 16 Electrchemistry Answers t wrked examples WE 16.1 Drawing a cell diagram (n p. 739 in Chemistry 3 ) Draw a cell diagram fr an electrchemical cell

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHEM 2400/2480. Lecture 19

CHEM 2400/2480. Lecture 19 Lecture 19 Metal In Indicatr - a cmpund whse clur changes when it binds t a metal in - t be useful, it must bind the metal less strngly than EDTA e.g. titratin f Mg 2+ with EDTA using erichrme black T

More information

CHAPTER 21 ELECTROCHEMISTRY: CHEMICAL CHANGE AND ELECTRICAL WORK

CHAPTER 21 ELECTROCHEMISTRY: CHEMICAL CHANGE AND ELECTRICAL WORK CHAPTR 1 LCTROCHMISTRY: CHMICAL CHANG AND LCTRICAL WORK 1.1 Oxidatin is the lss f electrns (resulting in a higher xidatin number), while reductin is the gain f electrns (resulting in a lwer xidatin number).

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES CHEMICAL REACTION RATES Dr M. BROUARD Trinity Term 2003 A. Bimlecular Reactins 5 Lectures 1. Intrductin Simple cllisin thery. Ptential energy curves and surfaces. The reactin crdinate and barriers t reactin.

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero.

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero. 1 Hmerk 1 AERE355 Fall 217 Due 9/1(F) Name NOE: If yur slutin des nt adhere t the frmat described in the syllabus, it ill be grade as zer. Prblem 1(25pts) In the altitude regin h 1km, e have the flling

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM 14 CHAPTER CHEMICAL EQUILIBRIUM 14.1 The Nature f Chemical Equilibrium 14. The Empirical Law f Mass Actin 14.3 Thermdynamic Descriptin f the Equilibrium State 14.4 The Law f Mass Actin fr Related and Simultaneus

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

2-July-2016 Chemsheets A Page 1

2-July-2016 Chemsheets A Page 1 www.chemsheets.c.uk 2-July-2016 Chemsheets A2 1076 Page 1 SECTION 1 AS REDOX REVISION 1) Oxidatin states When using xidatin states, we effectively imagine everything t be an in the xidatin state is the

More information

What factors influence how far a reaction goes and how fast it gets there?

What factors influence how far a reaction goes and how fast it gets there? . What s in a slutin? Hw far des a reactin g? 2. What factrs influence hw far a reactin ges and hw fast it gets there? 3. Hw d atmic and mlecular structure influence bserved prperties f substances? Big

More information

SECTION I (Multiple Choice Questions)

SECTION I (Multiple Choice Questions) ANDHERI / BORIVALI / DADAR / CHEMBUR / THANE / MULUND/ NERUL / POWAI IIT JEE - 09 CRASH COURSE (MAIN) MARKS:90 TIME: 5 MIN. TOPIC: CHEMICAL & IONIC EQUILIBRIUM DATE:9//8 SECTION I (Multiple Chice Questins)

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information

lecture 5: Nucleophilic Substitution Reactions

lecture 5: Nucleophilic Substitution Reactions lecture 5: Nuclephilic Substitutin Reactins Substitutin unimlecular (SN1): substitutin nuclephilic, unimlecular. It is first rder. The rate is dependent upn ne mlecule, that is the substrate, t frm the

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion .54 Neutrn Interactins and Applicatins (Spring 004) Chapter (3//04) Neutrn Diffusin References -- J. R. Lamarsh, Intrductin t Nuclear Reactr Thery (Addisn-Wesley, Reading, 966) T study neutrn diffusin

More information

Electrochemistry. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Electrochemistry. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Electrchemistry Half-Reactins 1. Balancing Oxidatin Reductin Reactins in Acidic and Basic Slutins Vltaic Cells 2. Cnstructin f Vltaic Cells 3. Ntatin fr Vltaic Cells 4. Cell Ptential 5. Standard Cell Ptentials

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Electrochemistry. Learning Objectives. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Electrochemistry. Learning Objectives. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Electrchemistry 1 Learning Objectives Electrchemistry Balancing Oxidatin Reductin Reactins in Acidic and Basic Slutins a. Learn the steps fr balancing xidatin reductin reactins using the half-reactin methd.

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Solute permeation through lipid membrane: Statistical Rate Theory approach

Solute permeation through lipid membrane: Statistical Rate Theory approach 10.2478/v10063-011-0014-x ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN POLONIA VOL. LXVI, 1, 2 SECTIO AA 2011 Slute permeatin thrugh lipid membrane: Statistical Rate Thery apprach W. Piasecki 1,*

More information

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 (Nte: questins 1 t 14 are meant t be dne WITHOUT calculatrs!) 1.Which f the fllwing is prbably true fr a slid slute with a highly endthermic heat

More information

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f 1.0 Review f Electrmagnetic Field Thery Selected aspects f electrmagnetic thery are reviewed in this sectin, with emphasis n cncepts which are useful in understanding magnet design. Detailed, rigrus treatments

More information

ELECTROSTATIC FIELDS IN MATERIAL MEDIA

ELECTROSTATIC FIELDS IN MATERIAL MEDIA MF LCTROSTATIC FILDS IN MATRIAL MDIA 3/4/07 LCTURS Materials media may be classified in terms f their cnductivity σ (S/m) as: Cnductrs The cnductivity usually depends n temperature and frequency A material

More information

CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea. 1. The anti-cancer drug cis-platin is the complex: cis-[pt(nh ) (Cl) ]. In this complex, the

CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea. 1. The anti-cancer drug cis-platin is the complex: cis-[pt(nh ) (Cl) ]. In this complex, the CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea Sme useful cnstants: ln(10) = 2.303, R = 8.314 J/ml@K, F = 96,00 cul/ml, 2.303RT/F = 0.0916 V at 2EC. Assume a temperature f 2EC unless tld therwise.

More information

ELECTROCHEMICAL STUDY OF EUROPIUM TRICHLORIDE IN MOLTEN EUTECTIC LICL-KCL

ELECTROCHEMICAL STUDY OF EUROPIUM TRICHLORIDE IN MOLTEN EUTECTIC LICL-KCL ELECTROCHEMICAL STUDY OF EUROPIUM TRICHLORIDE IN MOLTEN EUTECTIC LICL-KCL Cncha Caravaca, Guadalupe Córdba, María Jesús Tmás CIEMAT, Nuclear Fissin Department Avda. Cmplutense,, Madrid 8040, España Abstract

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Light-Driven Electron Donor Peiyu Ge, [a] Astrid

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

[ ] CEE October 2010 FIRST EXAM. Closed book, one page of notes allowed.

[ ] CEE October 2010 FIRST EXAM. Closed book, one page of notes allowed. CEE 680 19 Octber 0 IRST EXAM Clsed bk, ne page f ntes alled. Anser all questins. Please state any additinal assumptins yu made, and sh all rk. Yu are elcme t use a graphical methd f slutin if it is apprpriate.

More information

Draft for Review June 2017

Draft for Review June 2017 CHEMISTRY 12 Big Ideas Reactin Kinetics Reactants must cllide t react, and the reactin rate is dependent n the surrunding cnditins. Elabratins Sample pprtunities t supprt inquiry with students: What factrs

More information

INVESTIGATION OF REVERSE ELECTRODIALYSIS UNITS BY MULTIPHYSICAL MODELLING

INVESTIGATION OF REVERSE ELECTRODIALYSIS UNITS BY MULTIPHYSICAL MODELLING INVESTIGATION OF REVERSE ELECTRODIALYSIS UNITS BY MULTIPHYSICAL MODELLING G. Battaglia, L. Gurreri, F. Santr, A. Cipllina, A. Tamburini, G. Micale, M. Cifal giuseppe.battaglia91@gmail.cm Scula Plitecnica

More information

[ ] [ ] [ ] [ ] [ ] [ J] dt x x hard to solve in general solve it numerically. If there is no convection. is in the absence of reaction n

[ ] [ ] [ ] [ ] [ ] [ J] dt x x hard to solve in general solve it numerically. If there is no convection. is in the absence of reaction n .3 The material balance equatin Net change f [J] due t diffusin, cnvectin, and reactin [ ] [ ] [ ] d J J J n = D v k [ J ] fr n - th reactin dt x x hard t slve in general slve it numerically If there is

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points +2 pints Befre yu begin, make sure that yur exam has all 7 pages. There are 14 required prblems (7 pints each) and tw extra credit prblems (5 pints each). Stay fcused, stay calm. Wrk steadily thrugh yur

More information

The calculation method of small-scale water injection multiple in water drive reservoirs

The calculation method of small-scale water injection multiple in water drive reservoirs Available nline.jcpr.cm Jurnal f Chemical and Pharmaceutical Research, 04, 6(5):04-09 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 The calculatin methd f small-scale ater injectin multiple in

More information

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here)

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here) Making xperimenting with Vltaic Cells I. Basic Cncepts Definitins (sme ideas discussed in class are mitted here) A. Directin f electrn flw psitiveness f electrdes. If ne electrde is mre psitive than anther,

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES CONSISTING OF LONG PARALLEL CONDUCTORS B. de Halleux, O. Lesage, C. Mertes and A. Ptchelintsev Mechanical Engineering Department Cathlic University

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

CARBONATED WATER INJECTION FOR EOR IN ONE DIMENSIONAL FLOW WITH CONSTANT PRESSURE BOUNDARIES

CARBONATED WATER INJECTION FOR EOR IN ONE DIMENSIONAL FLOW WITH CONSTANT PRESSURE BOUNDARIES SCA013-090 1/6 CARBONATED WATER INJECTION FOR EOR IN ONE DIMENSIONAL FLOW WITH CONSTANT PRESSURE BOUNDARIES H. Yang, L.A. Jaes, T.E. Jhansen Merial University f Nefundland, St. Jhn s, NL, Canada This paper

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Unit 3. Electrochemistry

Unit 3. Electrochemistry Unit 3 Electrcheistry One ark questins 1. What is an electrlyte? An electrlyte is a cpund which cnducts electricity either in its aqueus slutin r in its lten state. e.g Acids HCl, CH 3 COOH, HNO 3 Bases

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

On Boussinesq's problem

On Boussinesq's problem Internatinal Jurnal f Engineering Science 39 (2001) 317±322 www.elsevier.cm/lcate/ijengsci On Bussinesq's prblem A.P.S. Selvadurai * Department f Civil Engineering and Applied Mechanics, McGill University,

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

Supporting Information

Supporting Information Supporting Information Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces Evgeny Smirnov, a Pekka Peljo, a Micheál D. Scanlon, a,b and Hubert H. Girault a *. a Laboratoire d Electrochimie

More information

Reverse Scan as a Source of Information in Square Wave Voltammetry*

Reverse Scan as a Source of Information in Square Wave Voltammetry* CROATICA CHEMICA ACTA CCACAA 79 (1) 49 55 (6) ISSN-11-1643 CCA-364 Original Scientific Paper Reverse Scan as a Surce f Infrmatin in Square Wave Vltammetry* Marina Zeli} Divisin fr Marine and Envirnmental

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

Journal of Applicable Chemistry 2015, 4 (6): (International Peer Reviewed Journal)

Journal of Applicable Chemistry 2015, 4 (6): (International Peer Reviewed Journal) Available nline at www.jac.inf ISS: 2278-1862 Jurnal f Applicable Chemistry 215, 4 (6):1579-1583 (Internatinal Peer Reviewed Jurnal) Chemical Educatin Article fr Graduate Students Demnstratin f n-linear

More information

1.0 Fundamentals. Fig Schematic diagram of an electrochemical cell.

1.0 Fundamentals. Fig Schematic diagram of an electrochemical cell. 1 1.0 Fundamentals This chapter intrduces the electrchemical cell, its cmpnents, basic definitins, and the prcesses that take place during electrlysis. The difference between thermdynamics and kinetics

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer

Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer Mass transprt with varying diffusin- and slubility cefficient thrugh a catalytic membrane layer Prceedings f Eurpean Cngress f Chemical Engineering (ECCE-6) Cpenhagen, 6-0 September 007 Mass transprt with

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Downloaded from

Downloaded from ELECTROCHEMISTRY ONE Mark Each 1. The difference between the electrde ptentials f tw electrdes when n current is drawn thrugh the cell is called.. Under what cnditin an electrchemical cell can behave like

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters EEE 7 La # Laratry #: Intrductin t Micrstripline Transmissin Lines, Reflectin and Transmissin Cefficients, and -Parameters I. OBJECTIVE A micrstrip transmissin line is designed fr nminally 50Ω. The reflectin

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

Material Balance Equations

Material Balance Equations TG450 Reservir Recvery Techniques 07 T illustrate the simlest ssible mdel e can have f analysis f reservir behavi, e ill start ith derivatin f s-called. This tye f mdel excludes fluid fl inside the reservir,

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information