Computational Complexity for Algebraists

Size: px
Start display at page:

Download "Computational Complexity for Algebraists"

Transcription

1 Computational Complexity for Algebraists Ross Willard University of Waterloo, Canada January 20, 2009 Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

2 Outline First hour: Decision problems, Algorithms, and Complexity Classes Second hour: Nondeterminism, Reductions, and Complete problems Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

3 Three themes: problems, algorithms, efficiency A Decision Problem is A YES/NO question parametrized by one or more inputs. Inputs must: range over an infinite class. be finitistically described What we seek: An algorithm which correctly answers the question for all possible inputs. What we ask: Is there an algorithm? Given an algorithm, how efficient is it? Is there a better (more efficient) algorithm? Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

4 Directed Graph Reachability problem (PATH) INPUT: A finite directed graph G = (V, E) Two distinguished vertices v start, v end V. QUESTION: Does there exist in G a directed path from v start to v end? Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

5 An Algorithm for PATH v start = Answer: NO v end = Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

6 Efficiency of this algorithm How long does this algorithm take? I.e., how many steps as a function of the size of the input graph. I ll give three answers to this. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

7 First answer Heuristics Only significant action is changing a vertex s color. Only changes possible are white red red green green blue. So if n = V, then the algorithm requires at most 3n vertex-color changes. I.e., O(n) steps Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

8 Second answer pseudo-code Simplifying assumptions: V = {0, 1,, n 1} E is encoded by the adjacency matrix M E = [e i,j ] where { 1 if (i, j) E, e i,j = 0 else. Auxiliary variables: i, j will range over {0, 1,, n 1}. For i < n, c i will record the color of vertex i. GreenVar will keep track of whether there are green-colored vertices. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

9 Second answer pseudo-code Algorithm: Input n, M E, and start, end {0, 1,, n 1}. For i = 0 to n 1 set c i := white. Set c start = green. Set GreenVar := yes. MAIN LOOP: While GreenVar = yes do: For i = 0 to n 1; for j = 0 to n 1 if e i,j = 1 and c i = green and c j = white then set c j := red. For i = 0 to n 1 If c i = green then set c i := blue Set GreenVar := no For i = 0 to n 1 If c i = red then (set c i := green and set GreenVar := yes) If c end = blue then output YES; else output NO. n + 2 ops n loops n 2 cases O(n 3 ) steps if n = V Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

10 Third answer machine implementation Again assume V = {0, 1,, n 1}. Assume in addition that: v start = 0 and v end = 1. The adjacency matrix is presented as a binary string of length n 2. Implement the algorithm on a Turing machine. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

11 Turing machine Input (ROM): R/W Tape 1: a a c e c a a e c a e e a c a e e a c c c e c e c a a e a a c R/W Tape 2: R/W Tape 3: R/W Tape 4: x o x x o o o o x x o x x o A C H X X OO 1 P L E A S E S E N D H E L P A R G G H H R/W Tape 5: Output bit: state Tape char 1 st? In c 1 x E Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

12 Implementing the algorithm for PATH Input: Tape 1: Tape 2: Tape 3: Tape 4: Tape 5: } {{ } [e i,j ] } {{ } c i }{{} n }{{} i }{{} j = # # # # 1 GreenVar # Main loop: For i, j = 0 to n 1 Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

13 Pseudo-code revisited Point: overhead needed to keep track of i, j, c i, c j. Thus: While GreenVar = yes do: For i = 0 to n 1; for j = 0 to n 1 if e i,j = 1 and c i = green and c j = white then set c j := red. n loops n 2 cases O(n log n) steps SUMMARY: on an input graph G = (V, E) with V = n, our algorithm decides the answer to PATH using: Heuristics Pseudo-code Turing machine O(n) color-change steps O(n 3 ) operations O(n 4 log n) steps (Time) O(n) memory cells (Space) Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

14 Turing machine complexity Let f : N N be given. Definition A decision problem D (with a specified encoding of its inputs) is: 1 in TIME(f ) if there exists a Turing machine which: Solves D on all inputs, and Runs in at most O(f (N)) steps on inputs of length N. 2 in SPACE(f ) if there exists a Turing machine which: Solves D on all inputs, and uses at most O(f (N)) memory cells (not including the input tape) on inputs of length N. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

15 Complexity of PATH Recall that our Turing machine solves PATH on graphs with n vertices in Time: O(n 4 log n) steps Space: O(n) memory cells. Since length N of input = n 2 (when n = V ), this at least proves Theorem PATH TIME(N 2+ɛ ) SPACE( N). (This algorithm is essentially optimal w.r.t. TIME, but not w.r.t. SPACE.) Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

16 Another problem: Boolean Formula Value (FVAL) INPUT: A boolean formula ϕ in propositional variables x 1,, x k. A sequence c = (c 1,, c k ) {0, 1} k. QUESTION: Is ϕ(c) = 1? Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

17 An algorithm for FVAL ϕ = ((((x 2 x 4 ) ( (x 3 ))) ((x 1 x 4 ) (x 3 x 2 ))) ( (x 3 (x 1 x 3 )))), c = (1,0,1,1) x x 2 x 4 x 3 x 1 x 4 x 3 x 2 x 1 x 3 Seems to use TIME(N) and SPACE(N). But space can be re-used. In this example, 3 memory bits suffice. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

18 Complexity of FVAL In general, a bottom-up computation, always computing a larger subtree first, can be organized to need only O(log ϕ ) intermediate values. A careful implementation on a Turing machine yields: Theorem (Nancy Lynch, 1977) FVAL TIME(N 2+ɛ ) SPACE(log N). Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

19 A 3rd problem: Polynomial satisfaction in S 26 (PolSat(S 26 )) INPUT: a word w(x) in variables x 1, x 2, and parameters from S 26. QUESTION: Does the equation w(x) = 1 have a solution in S 26? Naive algorithm: For each assign. x i a i S 26, Calculate w(a). Check if w(a) = 1. Overhead needed to enumerate cases: SPACE(N) 26 k cases, if k variables TIME(N 2+ɛ ) SPACE(log N) constant time, zero space Since k can be as much as N 1 δ, this algorithm in the worst case requires 26 N1 δ O(N 2+ɛ ) = 2 O(N1 δ) steps (though only O(N) space). Hence PolSat(S 26 ) TIME(2 O(N) ) SPACE(N) Question: is there a better algorithim? Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

20 A fourth problem: Graph 3-Colorability (3COL) INPUT: a finite graph G = (V, E). QUESTION: Is it possible to color the vertices red, green or blue, so that no two adjacent vertices have the same color? Equivalently: does there exist a homomorphism χ :? G K 3 Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

21 An algorithm for 3COL Naive algorithm: For each function χ : V K 3 : Test if χ works. 3 V = 2 O( N) cases O(N 2+ɛ ) time, O( N) space Theorem The naive algorithm proves: 3COL TIME(2 O( N) ) SPACE( N) Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

22 Some important complexity classes Definition 1 P = PTIME = k=1 TIME(Nk ) = TIME(N O(1) ). 2 PSPACE = k=1 SPACE(Nk ) = SPACE(N O(1) ). Problems known to be in P are said to be feasible or tractable. Definition 3 EXPTIME = k=1 TIME(2Nk ) = TIME(2 NO(1) ). 4 L = LOGSPACE = SPACE(log(N)). L P PSPACE PATH FVAL 3COL, PolSat(S 26 ) EXPTIME Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

23 After the break L P PSPACE EXPTIME PATH FVAL 3COL, PolSat(S 26 ) In the second hour I will: Introduce nondeterministic versions of these 4 classes. Discuss problems which are hardest for each class. Ross Willard (Waterloo) Complexity for Algebraists January 20, / 23

Universal Algebra and Computational Complexity Lecture 1

Universal Algebra and Computational Complexity Lecture 1 Universal Algebra and Computational Complexity Lecture 1 Ross Willard University of Waterloo, Canada Třešt, September 2008 Ross Willard (Waterloo) Algebra and Complexity Třešt, September 2008 1 / 23 Outline

More information

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018 Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 3. Logarithmic Space Reinhard Pichler Institute of Logic and Computation DBAI Group TU Wien 3. Logarithmic Space 3.1 Computational

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Complexity Theory 112. Space Complexity

Complexity Theory 112. Space Complexity Complexity Theory 112 Space Complexity We ve already seen the definition SPACE(f(n)): the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length n. Counting only work space NSPACE(f(n))

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates.

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates. 1 2 Topics in Logic and Complexity Handout 2 Anuj Dawar MPhil Advanced Computer Science, Lent 2010 Polynomial Time Computation P = TIME(n k ) k=1 The class of languages decidable in polynomial time. The

More information

CMPT 710/407 - Complexity Theory Lecture 4: Complexity Classes, Completeness, Linear Speedup, and Hierarchy Theorems

CMPT 710/407 - Complexity Theory Lecture 4: Complexity Classes, Completeness, Linear Speedup, and Hierarchy Theorems CMPT 710/407 - Complexity Theory Lecture 4: Complexity Classes, Completeness, Linear Speedup, and Hierarchy Theorems Valentine Kabanets September 13, 2007 1 Complexity Classes Unless explicitly stated,

More information

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2.

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. De Morgan s a Laws De Morgan s laws say that (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. Here is a proof for the first law: φ 1 φ 2 (φ 1 φ 2 ) φ 1 φ 2 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 a Augustus DeMorgan

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

Spring Lecture 21 NP-Complete Problems

Spring Lecture 21 NP-Complete Problems CISC 320 Introduction to Algorithms Spring 2014 Lecture 21 NP-Complete Problems 1 We discuss some hard problems: how hard? (computational complexity) what makes them hard? any solutions? Definitions Decision

More information

Lecture 21: Space Complexity (The Final Exam Frontier?)

Lecture 21: Space Complexity (The Final Exam Frontier?) 6.045 Lecture 21: Space Complexity (The Final Exam Frontier?) 1 conp NP MIN-FORMULA conp P NP FIRST-SAT TAUT P FACTORING SAT NP NP NP 2 VOTE VOTE VOTE For your favorite course on automata and complexity

More information

CSE200: Computability and complexity Space Complexity

CSE200: Computability and complexity Space Complexity CSE200: Computability and complexity Space Complexity Shachar Lovett January 29, 2018 1 Space complexity We would like to discuss languages that may be determined in sub-linear space. Lets first recall

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Space Complexity John E. Savage Brown University February 11, 2008 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February 11,

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Computational complexity

Computational complexity COMS11700 Computational complexity Department of Computer Science, University of Bristol Bristol, UK 2 May 2014 COMS11700: Computational complexity Slide 1/23 Introduction If we can prove that a language

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

CSCE 551 Final Exam, April 28, 2016 Answer Key

CSCE 551 Final Exam, April 28, 2016 Answer Key CSCE 551 Final Exam, April 28, 2016 Answer Key 1. (15 points) Fix any alphabet Σ containing the symbol a. For any language L Σ, define the language a\l := {w Σ wa L}. Show that if L is regular, then a\l

More information

Apropos of an errata in ÜB 10 exercise 3

Apropos of an errata in ÜB 10 exercise 3 Apropos of an errata in ÜB 10 exercise 3 Komplexität von Algorithmen SS13 The last exercise of the last exercise sheet was incorrectly formulated and could not be properly solved. Since no one spotted

More information

Logarithmic space. Evgenij Thorstensen V18. Evgenij Thorstensen Logarithmic space V18 1 / 18

Logarithmic space. Evgenij Thorstensen V18. Evgenij Thorstensen Logarithmic space V18 1 / 18 Logarithmic space Evgenij Thorstensen V18 Evgenij Thorstensen Logarithmic space V18 1 / 18 Journey below Unlike for time, it makes sense to talk about sublinear space. This models computations on input

More information

Undirected ST-Connectivity in Log-Space. Omer Reingold. Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010

Undirected ST-Connectivity in Log-Space. Omer Reingold. Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010 Undirected ST-Connectivity in Log-Space Omer Reingold Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010 Undirected s-t connectivity(ustcon) Is t reachable from s in a undirected graph

More information

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size.

In complexity theory, algorithms and problems are classified by the growth order of computation time as a function of instance size. 10 2.2. CLASSES OF COMPUTATIONAL COMPLEXITY An optimization problem is defined as a class of similar problems with different input parameters. Each individual case with fixed parameter values is called

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

6.045 Final Exam Solutions

6.045 Final Exam Solutions 6.045J/18.400J: Automata, Computability and Complexity Prof. Nancy Lynch, Nati Srebro 6.045 Final Exam Solutions May 18, 2004 Susan Hohenberger Name: Please write your name on each page. This exam is open

More information

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes Complexity Theory 1 Complexity Theory 2 Complexity Theory Lecture 3 Complexity For any function f : IN IN, we say that a language L is in TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that: L

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

MTAT Complexity Theory October 13th-14th, Lecture 6

MTAT Complexity Theory October 13th-14th, Lecture 6 MTAT.07.004 Complexity Theory October 13th-14th, 2011 Lecturer: Peeter Laud Lecture 6 Scribe(s): Riivo Talviste 1 Logarithmic memory Turing machines working in logarithmic space become interesting when

More information

Computational Complexity Theory

Computational Complexity Theory Computational Complexity Theory Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Assumed Background Preliminaries Turing Machine (TM) Deterministic Turing Machine (DTM) NonDeterministic

More information

Introduction to Complexity Classes. Marcin Sydow

Introduction to Complexity Classes. Marcin Sydow Denition TIME(f(n)) TIME(f(n)) denotes the set of languages decided by deterministic TM of TIME complexity f(n) Denition SPACE(f(n)) denotes the set of languages decided by deterministic TM of SPACE complexity

More information

Complexity of domain-independent planning. José Luis Ambite

Complexity of domain-independent planning. José Luis Ambite Complexity of domain-independent planning José Luis Ambite 1 Decidability Decision problem: a problem with a yes/no answer e.g. is N prime? Decidable: if there is a program (i.e. a Turing Machine) that

More information

Space Complexity. The space complexity of a program is how much memory it uses.

Space Complexity. The space complexity of a program is how much memory it uses. Space Complexity The space complexity of a program is how much memory it uses. Measuring Space When we compute the space used by a TM, we do not count the input (think of input as readonly). We say that

More information

Complexity: moving from qualitative to quantitative considerations

Complexity: moving from qualitative to quantitative considerations Complexity: moving from qualitative to quantitative considerations Textbook chapter 7 Complexity Theory: study of what is computationally feasible (or tractable) with limited resources: running time (main

More information

Database Theory VU , SS Complexity of Query Evaluation. Reinhard Pichler

Database Theory VU , SS Complexity of Query Evaluation. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2018 5. Complexity of Query Evaluation Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 17 April, 2018 Pichler

More information

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK Artificial Intelligence 3 Problem Complexity Prof. Dr. Jana Koehler Fall 2016 Agenda Computability and Turing Machines Tractable and Intractable Problems P vs. NP Decision Problems Optimization problems

More information

CMSC 441: Algorithms. NP Completeness

CMSC 441: Algorithms. NP Completeness CMSC 441: Algorithms NP Completeness Intractable & Tractable Problems Intractable problems: As they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 59 Intro to Computational Complexity Overview of the Course John E. Savage Brown University January 2, 29 John E. Savage (Brown University) CSCI 59 Intro to Computational Complexity January 2, 29

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 400 George Voutsadakis (LSSU) Computational Complexity September

More information

CS151 Complexity Theory. Lecture 4 April 12, 2017

CS151 Complexity Theory. Lecture 4 April 12, 2017 CS151 Complexity Theory Lecture 4 A puzzle A puzzle: two kinds of trees depth n...... cover up nodes with c colors promise: never color arrow same as blank determine which kind of tree in poly(n, c) steps?

More information

Q = Set of states, IE661: Scheduling Theory (Fall 2003) Primer to Complexity Theory Satyaki Ghosh Dastidar

Q = Set of states, IE661: Scheduling Theory (Fall 2003) Primer to Complexity Theory Satyaki Ghosh Dastidar IE661: Scheduling Theory (Fall 2003) Primer to Complexity Theory Satyaki Ghosh Dastidar Turing Machine A Turing machine is an abstract representation of a computing device. It consists of a read/write

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

NP, polynomial-time mapping reductions, and NP-completeness

NP, polynomial-time mapping reductions, and NP-completeness NP, polynomial-time mapping reductions, and NP-completeness In the previous lecture we discussed deterministic time complexity, along with the time-hierarchy theorem, and introduced two complexity classes:

More information

The Complexity of Optimization Problems

The Complexity of Optimization Problems The Complexity of Optimization Problems Summary Lecture 1 - Complexity of algorithms and problems - Complexity classes: P and NP - Reducibility - Karp reducibility - Turing reducibility Uniform and logarithmic

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

Computational complexity and some Graph Theory

Computational complexity and some Graph Theory Graph Theory Lars Hellström January 22, 2014 Contents of todays lecture An important concern when choosing the algorithm to use for something (after basic requirements such as correctness and stability)

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Analysis of Algorithms Professor Eric Aaron Lecture T Th 9:00am Lecture Meeting Location: OLB 205 Business Grading updates: HW5 back today HW7 due Dec. 10 Reading: Ch. 22.1-22.3, Ch. 25.1-2, Ch.

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

Computability and Complexity CISC462, Fall 2018, Space complexity 1

Computability and Complexity CISC462, Fall 2018, Space complexity 1 Computability and Complexity CISC462, Fall 2018, Space complexity 1 SPACE COMPLEXITY This material is covered in Chapter 8 of the textbook. For simplicity, we define the space used by a Turing machine

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

Theory of Computation Lecture Notes. Problems and Algorithms. Class Information

Theory of Computation Lecture Notes. Problems and Algorithms. Class Information Theory of Computation Lecture Notes Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University Problems and Algorithms c 2004 Prof. Yuh-Dauh

More information

Notes on Space-Bounded Complexity

Notes on Space-Bounded Complexity U.C. Berkeley CS172: Automata, Computability and Complexity Handout 6 Professor Luca Trevisan 4/13/2004 Notes on Space-Bounded Complexity These are notes for CS278, Computational Complexity, scribed by

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II , Max 80, Time 2 hr. Name Entry No. Group

COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II , Max 80, Time 2 hr. Name Entry No. Group COL 352 Introduction to Automata and Theory of Computation Major Exam, Sem II 2015-16, Max 80, Time 2 hr Name Entry No. Group Note (i) Write your answers neatly and precisely in the space provided with

More information

Theory of Computation Space Complexity. (NTU EE) Space Complexity Fall / 1

Theory of Computation Space Complexity. (NTU EE) Space Complexity Fall / 1 Theory of Computation Space Complexity (NTU EE) Space Complexity Fall 2016 1 / 1 Space Complexity Definition 1 Let M be a TM that halts on all inputs. The space complexity of M is f : N N where f (n) is

More information

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff Decidability Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff 1 A property P of strings is said to be decidable if the set of all strings having property P is a recursive set; that

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #6 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 39 Lecture 6: Overview Prove the equivalence of enumerators and TMs. Dovetailing

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 10 More examples of problems in P Closure properties of the class P The class NP given by Jiri Srba Lecture 10 Computability and Complexity 1/12 Example: Relatively

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved!

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! N P NP Announcements Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! Now in cabinets in the Gates open area near the drop-off box. The Complexity Class

More information

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3

6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3 6.841/18.405J: Advanced Complexity Wednesday, February 12, 2003 Lecture Lecture 3 Instructor: Madhu Sudan Scribe: Bobby Kleinberg 1 The language MinDNF At the end of the last lecture, we introduced the

More information

Space is a computation resource. Unlike time it can be reused. Computational Complexity, by Fu Yuxi Space Complexity 1 / 44

Space is a computation resource. Unlike time it can be reused. Computational Complexity, by Fu Yuxi Space Complexity 1 / 44 Space Complexity Space is a computation resource. Unlike time it can be reused. Computational Complexity, by Fu Yuxi Space Complexity 1 / 44 Synopsis 1. Space Bounded Computation 2. Logspace Reduction

More information

Notes on Space-Bounded Complexity

Notes on Space-Bounded Complexity U.C. Berkeley CS172: Automata, Computability and Complexity Handout 7 Professor Luca Trevisan April 14, 2015 Notes on Space-Bounded Complexity These are notes for CS278, Computational Complexity, scribed

More information

Theory of Computation Time Complexity

Theory of Computation Time Complexity Theory of Computation Time Complexity Bow-Yaw Wang Academia Sinica Spring 2012 Bow-Yaw Wang (Academia Sinica) Time Complexity Spring 2012 1 / 59 Time for Deciding a Language Let us consider A = {0 n 1

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 9/6/2004. Notes for Lecture 3

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 9/6/2004. Notes for Lecture 3 U.C. Berkeley CS278: Computational Complexity Handout N3 Professor Luca Trevisan 9/6/2004 Notes for Lecture 3 Revised 10/6/04 1 Space-Bounded Complexity Classes A machine solves a problem using space s(

More information

Space and Nondeterminism

Space and Nondeterminism CS 221 Computational Complexity, Lecture 5 Feb 6, 2018 Space and Nondeterminism Instructor: Madhu Sudan 1 Scribe: Yong Wook Kwon Topic Overview Today we ll talk about space and non-determinism. For some

More information

CS278: Computational Complexity Spring Luca Trevisan

CS278: Computational Complexity Spring Luca Trevisan CS278: Computational Complexity Spring 2001 Luca Trevisan These are scribed notes from a graduate course on Computational Complexity offered at the University of California at Berkeley in the Spring of

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

Computational Complexity

Computational Complexity CS311 Computational Structures Computational Complexity Lecture 16 Andrew P. Black Andrew Tolmach 1 So, itʼs computable! But at what cost? Some things that are computable in principle are in practice intractable

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Complement Classes and the Polynomial Time Hierarchy John E. Savage Brown University February 9, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational

More information

Computational Complexity

Computational Complexity Computational Complexity Problems, instances and algorithms Running time vs. computational complexity General description of the theory of NP-completeness Problem samples 1 Computational Complexity What

More information

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Complexity Theory Final Exam Please note : If not stated

More information

6-1 Computational Complexity

6-1 Computational Complexity 6-1 Computational Complexity 6. Computational Complexity Computational models Turing Machines Time complexity Non-determinism, witnesses, and short proofs. Complexity classes: P, NP, conp Polynomial-time

More information

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement CS 710: Complexity Theory 9/29/2011 Lecture 7: The Polynomial-Time Hierarchy Instructor: Dieter van Melkebeek Scribe: Xi Wu In this lecture we first finish the discussion of space-bounded nondeterminism

More information

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x).

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x). CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 4 February 3, 2010 Scribe: Jonathan Pines 1 Agenda P-/NP- Completeness NP-intermediate problems NP vs. co-np L, NL 2 Recap Last time, we

More information

Hierarchy theorems. Evgenij Thorstensen V18. Evgenij Thorstensen Hierarchy theorems V18 1 / 18

Hierarchy theorems. Evgenij Thorstensen V18. Evgenij Thorstensen Hierarchy theorems V18 1 / 18 Hierarchy theorems Evgenij Thorstensen V18 Evgenij Thorstensen Hierarchy theorems V18 1 / 18 Comparing functions To prove results like TIME(f(n)) TIME(g(n)), we need a stronger notion of one function growing

More information

Universality for Nondeterministic Logspace

Universality for Nondeterministic Logspace Universality for Nondeterministic Logspace Vinay Chaudhary, Anand Kumar Sinha, and Somenath Biswas Department of Computer Science and Engineering IIT Kanpur September 2004 1 Introduction The notion of

More information

Lecture 5: The Landscape of Complexity Classes

Lecture 5: The Landscape of Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 5: The Landscape of Complexity Classes David Mix Barrington and Alexis Maciel July 21,

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Could we potentially place A in a smaller complexity class if we consider other computational models?

Could we potentially place A in a smaller complexity class if we consider other computational models? Introduction to Complexity Theory Big O Notation Review Linear function: r(n) =O(n). Polynomial function: r(n) =2 O(1) Exponential function: r(n) =2 no(1) Logarithmic function: r(n) = O(log n) Poly-log

More information

COMPLEXITY THEORY. Lecture 17: The Polynomial Hierarchy. TU Dresden, 19th Dec Markus Krötzsch Knowledge-Based Systems

COMPLEXITY THEORY. Lecture 17: The Polynomial Hierarchy. TU Dresden, 19th Dec Markus Krötzsch Knowledge-Based Systems COMPLEXITY THEORY Lecture 17: The Polynomial Hierarchy Markus Krötzsch Knowledge-Based Systems TU Dresden, 19th Dec 2017 Review: ATM vs. DTM Markus Krötzsch, 19th Dec 2017 Complexity Theory slide 2 of

More information

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness 15-455 COMPLEXITY THEORY Space Complexity: Savitch's Theorem and PSPACE- Completeness October 30,2012 MEASURING SPACE COMPLEXITY FINITE STATE CONTROL I N P U T 1 2 3 4 5 6 7 8 9 10 We measure space complexity

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

Polynomial-time Reductions

Polynomial-time Reductions Polynomial-time Reductions Disclaimer: Many denitions in these slides should be taken as the intuitive meaning, as the precise meaning of some of the terms are hard to pin down without introducing the

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Computer Systems on the CERN LHC: How do we measure how well they re doing?

Computer Systems on the CERN LHC: How do we measure how well they re doing? Computer Systems on the CERN LHC: How do we measure how well they re doing? Joshua Dawes PhD Student affiliated with CERN & Manchester My research pages: http://cern.ch/go/ggh8 Purpose of this talk Principally

More information

CSCI3390-Lecture 14: The class NP

CSCI3390-Lecture 14: The class NP CSCI3390-Lecture 14: The class NP 1 Problems and Witnesses All of the decision problems described below have the form: Is there a solution to X? where X is the given problem instance. If the instance is

More information

Complexity (Pre Lecture)

Complexity (Pre Lecture) Complexity (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Complexity (Pre Lecture) Fall 2018 1 / 70 Why? What can we always compute efficiently? What

More information

On the Space Complexity of Parameterized Problems

On the Space Complexity of Parameterized Problems On the Space Complexity of Parameterized Problems Michael Elberfeld Christoph Stockhusen Till Tantau Institute for Theoretical Computer Science Universität zu Lübeck D-23538 Lübeck, Germany {elberfeld,stockhus,tantau}@tcs.uni-luebeck.de

More information

CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms

CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity overhead Dynamic

More information

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all Definition 8.1 Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N N, where f(n) is the maximum number of tape cells that M scans on

More information

Lecture 8: Complete Problems for Other Complexity Classes

Lecture 8: Complete Problems for Other Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 8: Complete Problems for Other Complexity Classes David Mix Barrington and Alexis Maciel

More information

CS151 Complexity Theory

CS151 Complexity Theory Introduction CS151 Complexity Theory Lecture 5 April 13, 2004 Power from an unexpected source? we know PEXP, which implies no polytime algorithm for Succinct CVAL poly-size Boolean circuits for Succinct

More information