Particle Transport and Edge Dynamo in the MST RFP

Size: px
Start display at page:

Download "Particle Transport and Edge Dynamo in the MST RFP"

Transcription

1 Particle Transport and Edge Dynamo in the ST RFP International RFP Workshop 28 February 2000, adison, WI D. J. Den Hartog Department of Physics University of Wisconsin adison In collaboration with J. K. Anderson, D. L. Brower, D. Craig, G. Fiksel, P. W. Fontana, Y. Jiang, N. E. Lanier, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin adison

2 Velocity fluctuations play a critical role in particle and current transport in the RFP Particle flux: Γ = nv r = γ n v r cosδnv must simultaneously measure density fluctuations, radial velocity fluctuations, and relative phase density fluctuations result from core tearing modes and can cause substantial particle transport in the core, but cannot explain particle transport in the edge Dynamo emf: E = d v B must measure all components of velocity and magnetic fluctuations, and relative phase edge dynamo results from m = 0 fluctuations and balances Ohm's law for >0.85a

3 Outline I. Particle transport character of density fluctuations phenomenology of ñ and ṽ r particle transport during standard and PPCD discharges summary II. First direct measurement of v H B in the edge of an RFP the sawtooth cycle in ST ( dynamo events ) v, B, and v H B peak during a sawtooth crash HD dynamo balances Ohm's law in the edge summary

4 Character of density fluctuations Advective or compressional? n Continuity equation: + nv t = S assume S 0, v0 0, but v 0, and nv, f ( re ) i kr ω t then n = advection non-radial compression i ( ) n0 ( ) ( ) v n kv r r rv n r r + r 0 k v 0 ω 0 ( ω kv0 ) radial compression +nonlinear Causes transport? Γ= nv r = γ n v r cosδnv π δ = nv no transport, but δ 2 = 0 π nv, transport ( )

5 9 Chord H Array α The Far-Infrared Interferometer * and H α array Waveguides Signal Beam CO 2 Pumping Laser 125W Continuous λ =10.6µm Reference Beam Wire esh BeamSplitters Twin Far Infrared Lasers 25mW Each λ 432µm Plasma Vacuum Duct Signal Channels Reference Channel Schottky Detectors * Developed with UCLA Plasma Diagnostics Group Volts Reference Signal Φ Time 750 khz The 11 Chords are split into 2 arrays, 5 o P28 P43 N02 P13 N32 N17 N24 N09 P06 = 1.5 m separated by 5 degrees. R o P21 P36 = a.52m

6 Core-Resonant Tearing odes Drive Density Fluctuations Fluctuation Power (a.u.) Fluctuation Power (a.u.) Fluctuation Power (a.u.) Density Fluctuation Power r/a = 0.11 Total Coherent Incoherent Frequency (khz) Density Fluctuation Power r/a = 0.54 Total Coherent Incoherent Frequency (khz) Density Fluctuation Power r/a = 0.83 Total Coherent Incoherent Frequency (khz) Correlation between core-resonant magnetic fluctuations and density fluctuations indicate: Core: density fluctuations are poorly coherent with the m = 1 magnetic fluctuations. At larger impact parameters: virtually all the power between 10 and 20 khz is coherent with the n = 5 to 15 modes. Edge: density fluctuations are less coherent with the core-resonant tearing modes relative contribution from smaller scale, higher frequency, fluctuations increase.

7 Density Fluctuations Display Both m=0 and m=1 Like Behavior Power (au) Power (au) agnetic Fluctuation Spectrum n = Frequency Density Fluctuation Spectrum r/a = r/a = Frequency Phase Between Inboard and Outboard Chords agnetic fluctuation power shows a large peak between khz dominated by m =1, n = 6 10 modes Density fluctuation power displays similar 15 khz peak in all but center chords. low frequency peak appears in all chords Density fluctuation m character Phase (π rad) m = 0 m = Frequency low frequency peak has m=0 character ~15 khz peak has m=1 character.

8 The Ion Dynamics Spectrometer (IDS) Radial Port Lens To Doppler Spectrometer R o a 20 Fiber optic coupling The IDS Radial View The IDS: custom designed Doppler Spectrometer fast time resolution 10 µs measures impurity ion flow fluctuations v Doppler Shift ~ i Radial View high light throughput impurity choice can enhance localization

9 easurements Indicate That ~ v r Flips Phase in the Core. Coherence Amplitude State Density (au) Computed Profiles for C V and He II Filtered He II C V r/a n e v r HeII Amplitude He II measures significant coherence amplitude. Baseline Frequency (khz) The edge peaked profile of He II weights the edge more heavily. The broad C V profile provides a more even weighting over the plasma radius. easurements with helium establish the existence radial velocity fluctuations in the plasma edge. Coherence Amplitude Filtered n e v r CV Amplitude No significant coherence amplitude observed with C V. Baseline Frequency (khz) easurements of C V ions show no significant coherence - implying a phase flip in the radial velocity fluctuations.

10 Phase Flip in ~ v r is Consistent With Tearing ode Picture q=m/n Tearing mode topology suggests that v should reverse across rational surface. ~ r ~ v r Since passive doppler spectroscopy measures Z Chord I () r ṽ r ()dr, r a π phase shift would explain how Radial Velocity (a.u.) + 0 ~ v (r) r - 0 rs Radius a Z Chord ṽ r () r finite but I () r ṽ r ()dr r 0.

11 Density Fluctuations in the Edge are Primarily Advective While in the Core are Compressional 1.0 Coherence Phase between ~ n and ~ v. r Edge: phase is ~ π/2 which is consistent with advection or radial compression Phase (π rad) 0.5 δ nvedge in edge the advection term dominates x (cm) easurements show: Core: phase is ~ 0,π and can only be explained by the non-radial compression term In the edge, density and velocity fluctuations are π/2 out of phase. Density fluctuation phase in the core is shifted by π/2 from that in the edge. Velocity fluctuation phase in the core is shifted by π from that in the edge. Therefore: we deduce that the density and velocity fluctuations are in phase in the plasma core.

12 Fluctuation-Induced Transport is Small at Edge, Large in Core Phase (π rad) δ nvedge Phase of ñṽ redge Standard Density and Radial Velocity Fluctuations Out of phase at the edge In phase in the core Radial Position (cm) Standard Discharges Fluctuation-Induced Transport small in the edge. Fluctuation-Induced Transport large in the core.

13 Local Fluctuation Amplitudes Decrease During PPCD Local Fluctuation Profiles for m=1, n=6-9 Perturbations. Standard n=6 0.5 PPCD 17-3 (10 m ) Electron Density Standard n=7 Standard n=8 PPCD PPCD Profile peaks farther out as n increases Fluctuation amplitudes are ~ 1.0 % Standard ~ 0.1 % PPCD Standard n=9 0.5 PPCD ra

14 PPCD Reduces Fluctuation-Induced Transport in the Core Phase (π rad) δ nvedge Phase of ñṽ redge PPCD Phase shift in density vanishes during PPCD Radial Position (cm) PPCD Discharges Density and velocity fluctuations remain out of phase deeper into the plasma. Fluctuation-Induced Transport reduced in the core.

15 Fluctuation Reduction During PPCD is Accompanied by Similar Reductions in Equilibrium Radial Electron Flux Electron Density (10 19 m -3 ) Electron Source (m -3 s -1 ) Particle Flux (m -2 s -1 ) Standard PPCD Standard Standard PPCD PPCD r a In standard discharges: Density profiles are flat in the core with a steep edge gradient. Electron source is dominated by ionization of neutral hydrogen and is quite broad with substantial sourcing in the core. Radial Particle flux ranges from ~2E+20 to about 3E+21 at the edge. During PPCD discharges: Density profile hollows slightly in the core and gradient at the edge steepens. Electron source drops over an order of magnitude. Radial particle flux also decreases with the most dramatic reduction seen in the core.

16 Density fluctuation and particle transport summary Density fluctuations result mainly from the core-resonant tearing modes (m = 1, n = 6 10), and are advective in the edge and compressional in the core. Although large in the outer region of the plasma, the density fluctuations from core modes do not cause transport there. During PPCD, the measured radial particle flux decreases dramatically concurrent with similar reductions in density fluctuations. Phase measurements of density and radial velocity fluctuations indicate, that during PPCD, the region of vanishing fluctuation-induced transport extends deeper into the core.

17 Ohm s law requires the RFP to have a dynamo E 2 Ö η J 2 both in the core and edge current over-driven emf (arb) E 2 ηj current under-driven r/a need noninductive current drive to balance Ohm s law: 2 + v H B 2 = η J 2

18 The Ion Dynamics Spectroscopy Probe Support frame View dump 2.5 cm V y Vx Vz Vx α = 45.0 Prism Fiber bundle Vacuum Break BN housing Shaft

19 IDSP proof-of-existence

20 RFP dynamo events Regular discrete bursts of dynamo activity occur in ST

21 The HD dynamo balances Ohm's law Ohm's law balance is good at >0.85a - deteriorates for 0.85a

22 Velocity fluctuation spectra are dominated by n = 1 and 2, implying m = 0 dynamo in edge Numerical values represent the correlation (from 0 to 1) of the fluctuation with each mode resolved by the B t array

23 Summary of edge dynamo measurements The HD dynamo term balances mean-field Ohm's law in the edge of ST The edge dynamo is driven by m = 0 fluctuations which resonate at the reversal (q = 0) surface - dynamo in ST is a superposition of relatively localized reconnection events ay be a different current drive mechanism active inside 0.85a

CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT

CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT G. Fiksel, 1 A.F. Almagri, 1 J.K. Anderson, 1 T.M. Biewer, 1 D.L. Brower, 2 C-S. Chiang, 1 B.E. Chapman, 1 J.T. Chapman,

More information

Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport

Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport Liang Lin University of California, Los Angeles, California, USA in collaboration with W. X. Ding,

More information

Measurement of core velocity fluctuations and the

Measurement of core velocity fluctuations and the Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch D. J. Den Hartog 1, J. T. Chapman 2, D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics,

More information

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch Title Abs. TS over. MStFIt j 2kA Te ne Zeff 4kA Te ne Zeff Pohm, W, TauE,beta Xe,D Mot. FIR pola. Monte Carlo Un. An.

More information

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch W.X.Ding, L. Lin, D.L. Brower, A. Almagri, B. Chapman, G. Fiksel, D.J. Den Hartog, J. Reusch,

More information

Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch

Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch C.B. Forest 1), J.K. Anderson 1), T.M. Biewer 1), D. Brower 2), B.E. Chapman 1), P.K. Chattopadhyay

More information

Reduction of fluctuations and edge current during PPCD in MST. B. E. Chapman and the MST group

Reduction of fluctuations and edge current during PPCD in MST. B. E. Chapman and the MST group Reduction of fluctuations and edge current during PPCD in MST B. E. Chapman and the MST group Outline -- The key to sustained fluctuation reduction during PPCD -- Magnetic fluctuations (including single

More information

Current Profile Control by ac Helicity Injection

Current Profile Control by ac Helicity Injection Current Profile Control by ac Helicity Injection Fatima Ebrahimi and S. C. Prager University of Wisconsin- Madison APS 2003 Motivations Helicity injection is a method to drive current in plasmas in which

More information

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques J.S. Sarff, A.F. Almagri, J.K. Anderson, B.E. Chapman, D. Craig, C-S. Chiang, N.A. Crocker, D.J. Den Hartog,

More information

Impurity expulsion in an RFP plasma and the role of temperature screening

Impurity expulsion in an RFP plasma and the role of temperature screening Impurity expulsion in an RFP plasma and the role of temperature screening S. T. A. Kumar, D. J. Den Hartog, R. M. Magee, G. Fiksel, D. Craig Department of Physics, University of Wisconsin-Madison, Madison,Wisconsin,

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Abstract. Department of Physics. University of Wisconsin UCLA UCLA

Abstract. Department of Physics. University of Wisconsin UCLA UCLA Abstract Internal magnetic field fluctuations and equilibrium poloidal magnetic field have been measured in the MST reversal field pinch by a 11 chord far-infrared polarimeterinterferometer system with

More information

Oscillating Field Current Drive on MST

Oscillating Field Current Drive on MST Oscillating Field Current Drive on MST John Sarff A. Blair, K. McCollam, P. Nonn, J. Anderson, D. Brower 1, D. Craig, B. Deng 1, D. Den Hartog, W. Ding 1, F. Ebrahimi, D. Ennis, G. Fiksel, S. Gangadhara,

More information

Electron Thermal Transport Within Magnetic Islands in the RFP

Electron Thermal Transport Within Magnetic Islands in the RFP Electron Thermal Transport Within Magnetic Islands in the RFP Hillary Stephens University of Wisconsin Madison APS-DPP Meeting November 3, 2009 J.R. Amubel, M.T. Borchardt, D.J. Den Hartog, C.C. Hegna,

More information

Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus

Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus Measured Energy Transport in the MST Reversed-Field Pinch T.M. Biewer,, J.K. Anderson, B.E. Chapman, S.D. Terry 1, J.C. Reardon,, N.E. Lanier, G.Fiksel Fiksel,, D.J. Den Hartog,, S.C. Prager,, and C.B.

More information

channel system which covers both sides of the laser line. Coverage on both sides of the spectrum allows for

channel system which covers both sides of the laser line. Coverage on both sides of the spectrum allows for Large-Area Avalanche Photodiode Detector Array Upgrade for a Ruby-Laser Thomson Scattering System T.M. Biewer, D.J. Den Hartog, D.J. Holly Department of Physics, University of Wisconsin-Madison M.R. Stoneking

More information

Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch*

Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch* PHYSICS OF PLASMAS VOLUME 6, NUMBER 5 MAY 1999 Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch* D. J. Den Hartog,,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana,

More information

Oscillating-Field Current-Drive Experiment on MST

Oscillating-Field Current-Drive Experiment on MST Oscillating-Field Current-Drive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of Wisconsin-Madison D.

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

AC loop voltages and MHD stability in RFP plasmas

AC loop voltages and MHD stability in RFP plasmas AC loop voltages and MHD stability in RFP plasmas K. J. McCollam, D. J. Holly, V. V. Mirnov, J. S. Sar, D. R. Stone UW-Madison 54rd Annual Meeting of the APS-DPP October 29th - November 2nd, 2012 Providence,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained

More information

Ion Temperature Measurements in the

Ion Temperature Measurements in the Ion Temperature Measurements in the PEGASUS Toroidal Experiment M.G. Burke, M.W. Bongard, R.J. Fonck, D.J. Schlossberg, A.J. Redd 52 nd Annual APS-DPP University of Wisconsin-Madison Chicago, IL November

More information

Current Drive Experiments in the HIT-II Spherical Tokamak

Current Drive Experiments in the HIT-II Spherical Tokamak Current Drive Experiments in the HIT-II Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics

More information

Nicholas E. Lanier. Doctor of Philosophy. (Physics) University of Wisconsin Madison

Nicholas E. Lanier. Doctor of Philosophy. (Physics) University of Wisconsin Madison ELECTRON DENSITY FLUCTUATIONS AND FLUCTUATION-INDUCED TRANSPORT IN THE REVERSED-FIELD PINCH by Nicholas E. Lanier A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Equilibrium Evolution in the ZaP Flow Z-Pinch

Equilibrium Evolution in the ZaP Flow Z-Pinch Equilibrium Evolution in the ZaP Flow Z-Pinch U. Shumlak, B.A. Nelson, C.S. Adams, D.J. Den Hartog, R.P. Golingo, S. L. Jackson, S.D. Knecht, J. Pasko, and D.T. Schmuland University of Washington, Seattle

More information

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Fast Ion Confinement in the MST Reversed Field Pinch

Fast Ion Confinement in the MST Reversed Field Pinch Fast Ion Connement in the MST Reversed Field Pinch Gennady Fiksel B. Hudson, D.J. Den Hartog, R.M. Magee, R. O'Connell, S.C. Prager MST Team - University of Wisconsin - Madison Center for Magnetic Self-Organization

More information

The Sheared Flow Stabilized Z-Pinch

The Sheared Flow Stabilized Z-Pinch The Sheared Flow Stabilized Z-Pinch U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, B.A. Nelson, W. Lowrie, R.J. Oberto, M.P. Ross, J.L. Rohrbach, and G.V. Vogman Aerospace

More information

Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD

Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD William F. Bergerson 1 Coauthors: P. Xu 2, J. H. Irby 2, D. L. Brower 1, W. X. Ding 1, E. S. Marmar 2 1 University of California

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015 Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics 16th International Toki Conference Advanced Imaging and Plasma Diagnostics Ceratopia Toki, Gifu, JAPAN December 5-8, 2006 Development of Polarization Interferometer Based on Fourier Transform Spectroscopy

More information

Sheared Flow Stabilization in the Z-Pinch

Sheared Flow Stabilization in the Z-Pinch 1 IF/P7-28 Sheared Flow Stabilization in the Z-Pinch U. Shumlak, C.S. Adams, J.M. Blakely, B.J. Chan, R.P. Golingo, S.D. Knecht, B.A. Nelson, R.J. Oberto, M.R. Sybouts, and G.V. Vogman Aerospace & Energetics

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

Understanding Turbulence is a Grand Challenge

Understanding Turbulence is a Grand Challenge The Turbulent Structure of a Plasma Confined by a Magnetic Dipole B. A. Grierson M.W. Worstell, M.E. Mauel ICC 28 Reno, NV 1 Understanding Turbulence is a Grand Challenge Ubiquitous in natural and laboratory

More information

Magnetic Self-Organization in the RFP

Magnetic Self-Organization in the RFP Magnetic Self-Organization in the RFP Prof. John Sarff University of Wisconsin-Madison Joint ICTP-IAEA College on Plasma Physics ICTP, Trieste, Italy Nov 7-18, 2016 The RFP plasma exhibits a fascinating

More information

Large Plasma Device (LAPD)

Large Plasma Device (LAPD) Large Plasma Device (LAPD) Over 450 Access ports Computer Controlled Data Acquisition Microwave Interferometers Laser Induced Fluorescence DC Magnetic Field: 0.05-4 kg, variable on axis Highly Ionized

More information

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 5.2.2 Dynamo and Reconnection Research: Overview: Spheromaks undergo a relaxation

More information

Stabilization of a low-frequency instability inadipoleplasma

Stabilization of a low-frequency instability inadipoleplasma J. Plasma Physics: page 1 of 8. c 2008 Cambridge University Press doi:10.1017/s0022377808007071 1 Stabilization of a low-frequency instability inadipoleplasma D.T. GARNIER 1,A.C.BOXER 2, J.L. ELLSWORTH

More information

The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation

The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation P. W. Terry 1), R. Gatto 1), R. Fitzpatrick 2), C.C. Hegna 3), and G. Fiksel 1) 1) Department of Physics, University

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053505 2005 Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device K. Ida, a

More information

Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM

Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM by R. Nazikian In collaboration with G.Y. Fu, R.V. Budny, G.J. Kramer, PPPL G.R. McKee, U. Wisconsin T. Rhodes, L. Schmidt,

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP

Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP Plasma Phys. Control. Fusion 38 (1996) A213 A225. Printed in the UK Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP G Fiksel, Roger D Bengtson, M Cekic, D Den Hartog, S C

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX 1 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1), D.L. Brower 2), C. Deng 2), D.T. Anderson 1), F.S.B. Anderson 1), A.F.

More information

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-1 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev and T-1 team

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

Density Collapse in Improved Confinement Mode on Tohoku University Heliac

Density Collapse in Improved Confinement Mode on Tohoku University Heliac 1 EX/P5-12 Density Collapse in Improved Confinement Mode on Tohoku University Heliac S. Kitajima 1), Y. Tanaka 2), H. Utoh 1), H. Umetsu 1), J. Sato 1), K. Ishii 1), T. Kobuchi 1), A. Okamoto 1), M. Sasao

More information

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod S. Baek, R. Parker, S. Shiraiwa, A. Dominguez, E. Marmar, G. Wallace, G. J. Kramer* Plasma Science and Fusion Center,

More information

LONG, STABLE PLASMA GENERATION IN THE ZAP FLOW Z-PINCH

LONG, STABLE PLASMA GENERATION IN THE ZAP FLOW Z-PINCH LONG, STABLE PLASMA GENERATION IN THE ZAP FLOW Z-PINCH B.A. Nelson, U. Shumlak, C. Bowers, S. Doty, R.P. Golingo, M.C. Hughes, S.D. Knecht, K. Lambert, W. Lowrie, N. Murakami, M.C. Paliwoda, E. Ransom,

More information

Control of Neo-classical tearing mode (NTM) in advanced scenarios

Control of Neo-classical tearing mode (NTM) in advanced scenarios FIRST CHENGDU THEORY FESTIVAL Control of Neo-classical tearing mode (NTM) in advanced scenarios Zheng-Xiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Progress of Confinement Physics Study in Compact Helical System

Progress of Confinement Physics Study in Compact Helical System 1st IAEA Fusion Energy Conference Chengdu, China, 16-1 October, 6 IAEA-CN-149/ EX/5-5Rb Progress of Confinement Physics Study in Compact Helical System S. Okamura et al. NIFS-839 Oct. 6 1 EX/5-5Rb Progress

More information

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas 1 EX/P5-4 Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas J.E. Rice 1), A.C. Ince-Cushman 1), P.T. Bonoli 1), M.J. Greenwald 1), J.W. Hughes 1), R.R. Parker 1), M.L. Reinke

More information

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,

More information

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch*

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch* INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (23) 1684 1692 PII: S29-5515(3)7949-1 Tokamak-like confinement at a high beta and low toroidal field

More information

3-D Random Reconnection Model of the Sawtooth Crash

3-D Random Reconnection Model of the Sawtooth Crash 3-D Random Reconnection Model of the Sawtooth Crash Hyeon K. Park Princeton Plasma PhysicsN Laboratory Princeton University at IPELS, 2007 Cairns, Australia August 5-9, 2007 Collaboration with N.C. Luhmann,

More information

Continuous, Localized Ion Heating due to Magnetic Reconnection in a Low Aspect Ratio Tokamak

Continuous, Localized Ion Heating due to Magnetic Reconnection in a Low Aspect Ratio Tokamak Continuous, Localized Ion Heating due to Magnetic Reconnection in a Low Aspect Ratio Tokamak M. G. Burke, J.L. Barr, M.W. Bongard, R.J. Fonck, E.T. Hinson, J.M. Perry, J.A. Reusch, D.J. Schlossberg EPR

More information

MST and the Reversed Field Pinch. John Sarff

MST and the Reversed Field Pinch. John Sarff MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutorial-level review of tearing stability, magnetic relaxation, and transport in the RFP Ion-related physics topics

More information

Current-driven instabilities

Current-driven instabilities Current-driven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last

More information

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* by K.H. BURRELL Presented at the Transport Task Force Meeting Annapolis, Maryland April 3 6, 22 *Work supported by U.S. Department of Energy

More information

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4,

More information

Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak

Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak P6-29 Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak H.Tojo, A.Ejiri, Y.Takase, Y.Torii, T.Osako, M.Sasaki (1), T.Masuda, Y.Shimada N.Sumitomo (1), J.Tsujimura,

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and

More information

Active MHD Control Needs in Helical Configurations

Active MHD Control Needs in Helical Configurations Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7-AS Team and NBI-Group. 1 Princeton Plasma

More information

Sheared flow stabilization experiments in the ZaP flow Z pinch a

Sheared flow stabilization experiments in the ZaP flow Z pinch a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 Sheared flow stabilization experiments in the ZaP flow Z pinch a U. Shumlak, b) B. A. Nelson, R. P. Golingo, S. L. Jackson, and E. A. Crawford University

More information

Issues in Neoclassical Tearing Mode Theory

Issues in Neoclassical Tearing Mode Theory Issues in Neoclassical Tearing Mode Theory Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX Tearing Mode Stability in Tokamaks According to standard (single-fluid)

More information

EX/4-6Rb Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

EX/4-6Rb Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak T. Ido 1), Y. Miura 2), K. Hoshino 2), Y. Hamada 1), Y. Nagashima 1),

More information

A novel helicon plasma source for negative ion beams for fusion

A novel helicon plasma source for negative ion beams for fusion A novel helicon plasma source for negative ion beams for fusion Ivo Furno 1 R. Agnello 1, B. P. Duval 1, C. Marini 1, A. A. Howling 1, R. Jacquier 1, Ph. Guittienne 2, U. Fantz 3, D. Wünderlich 3, A. Simonin

More information

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator Presented by Mark Hogan for the E-162 Collaboration K. Baird, F.-J. Decker, M. J. Hogan*, R.H. Iverson, P. Raimondi, R.H. Siemann,

More information

L Aquila, Maggio 2002

L Aquila, Maggio 2002 Nonlinear saturation of Shear Alfvén Modes and energetic ion transports in Tokamak equilibria with hollow-q profiles G. Vlad, S. Briguglio, F. Zonca, G. Fogaccia Associazione Euratom-ENEA sulla Fusione,

More information

Study of local reconnection physics in a laboratory plasma

Study of local reconnection physics in a laboratory plasma Earth Planets Space, 53, 539 545, 2001 Study of local reconnection physics in a laboratory plasma Hantao Ji, Troy Carter, Scott Hsu, and Masaaki Yamada Princeton Plasma Physics Laboratory, Princeton University,

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

Hydrogen and Helium Edge-Plasmas

Hydrogen and Helium Edge-Plasmas Hydrogen and Helium Edge-Plasmas Comparison of high and low recycling T.D. Rognlien and M.E. Rensink Lawrence Livermore National Lab Presented at the ALPS/APEX Meeting Argonne National Lab May 8-12, 2

More information

Two-electron systems

Two-electron systems Two-electron systems Laboratory exercise for FYSC11 Instructor: Hampus Nilsson hampus.nilsson@astro.lu.se Lund Observatory Lund University September 12, 2016 Goal In this laboration we will make use of

More information

Advanced Interferometry Techniques for Burning Plasmas

Advanced Interferometry Techniques for Burning Plasmas Advanced Interferometry Techniques for Burning Plasmas D.L. Brower, W.X. Ding Department of Physics University of California at Los Angeles Los Angeles, California 995-1547 USA V.V. Mirnov Department of

More information

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Cosmic Rays in CMSO Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Galaxies are Pervaded by Magnetic Fields & Relativistic Particles Synchrotron radiation from M51 (MPIfR/NRAO) Galactic molecular

More information

Data analysis and effect corrections of Phase Contrast Imaging diagnostic on HL-2A tokamak

Data analysis and effect corrections of Phase Contrast Imaging diagnostic on HL-2A tokamak SWIP 核工业西南物理研究院 Southwestern Institute of Physics, China Data analysis and effect corrections of Phase Contrast Imaging diagnostic on HL-2A tokamak Y.Yu 1,S.B.Gong 1,2, M.Xu 2,C.J.Xiao 3, W.Jiang 1,W.L.Zhong

More information

Tangential SX imaging for visualization of fluctuations in toroidal plasmas

Tangential SX imaging for visualization of fluctuations in toroidal plasmas Tangential SX imaging for visualization of fluctuations in toroidal plasmas S. Ohdachi,, K. Toi, G. Fuchs and the LHD Experimental Group National Institute for Fusion Science Outline of my talk 1. Merit

More information

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak István Cziegler UCSD, Center for Energy Research Center for Momentum Transport and Flow Organization Columbia Seminar Feb

More information

Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations

Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations A.E. White,a) L. Schmitz,a) G.R. McKee,b) C. Holland,c) W.A. Peebles,a)

More information

Mo#va#on J B = P. Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r):

Mo#va#on J B = P. Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r): Mo#va#on Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r): J B = P Measurements of δβ and δj associated with instabili&es (MHD, fast par&cle modes, turbulence,

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

Plasma Spectroscopy in ISTTOK

Plasma Spectroscopy in ISTTOK Plasma Spectroscopy in ISTTOK J. Figueiredo 1, R. B. Gomes 1, T. Pereira 1, H. Fernandes 1, A. Sharakovski 2 1 Associação EURATOM/IST, Centro de Fusão Nuclear, IST, 1049-001 Lisboa, Portugal 2 Association

More information

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. Uzun-Kaymak, G. Wang6,

More information

A novel helicon plasma source for negative ion beams for fusion

A novel helicon plasma source for negative ion beams for fusion A novel helicon plasma source for negative ion beams for fusion Ivo Furno 1 R. Agnello 1, B. P. Duval 1, C. Marini 1, A. A. Howling 1, R. Jacquier 1, Ph. Guittienne 2, U. Fantz 3, D. Wünderlich 3, A. Simonin

More information

Magnetic reconnection, merging flux ropes, 3D effects in RSX

Magnetic reconnection, merging flux ropes, 3D effects in RSX Magnetic reconnection, merging flux ropes, 3D effects in RSX T. Intrator P-24 I. Furno, E. Hemsing, S. Hsu, + many students G.Lapenta, P.Ricci T-15 Plasma Theory Second Workshop on Thin Current Sheets

More information