ON POLYNOMIAL REPRESENTATION FUNCTIONS FOR MULTILINEAR FORMS. 1. Introduction

Size: px
Start display at page:

Download "ON POLYNOMIAL REPRESENTATION FUNCTIONS FOR MULTILINEAR FORMS. 1. Introduction"

Transcription

1 ON POLYNOMIAL REPRESENTATION FUNCTIONS FOR MULTILINEAR FORMS JUANJO RUÉ In Memoriam of Yahya Ould Hamidoune. Abstract. Given an infinite sequence of positive integers A, we prove that for every nonnegative integer k the number of solutions of the equation n a 1 + +a k, a 1,..., a k A, is not constant for n large enough. This result is a corollary of our main theorem, which partially answers a question of Sárköy and Sós on representation functions for multilinear forms. The main tool used in the argument is an application of the Transfer Theorem for asymptotic enumeration by Flajolet and Odlyko. 1. Introduction Let A be an infinite sequence of positive integers. Denote by rn) the number of solutions of the equation n a 1 + a 2, where a 1, a 2 A. In [3] the authors found, by means of analytic arguments, that rn) cannot be constant for n large enough. As it is shown in [2], and elementary argument also exists: it is obvious that rn) is odd when n 2a, a A, and even otherwise. So it is not possible that rn) is constant for n large enough. This idea can be easily generalied when we consider the number of solutions of the equation n a 1 + +a p, where a 1,..., a p A and p is a prime number: if a A, the number of representations of pa is congruent to 1 modulo p, while the number of representations of pa + 1 is congruent to 0 modulo p. As a can be chosen as big as desired, a contradiction is obtained if we suppose that the representation function is constant for n large enough. However, the argument fails when we consider a composite modulo, and it does not seem that the argument could be extended in the general case using elementary tools. These problems are particular cases of a question posted by Sárköy and Sós [7]: given a multilinear form x x r, consider the number of solutions of the equation n a a r, where a 1,..., a r A. For which multilinear forms the number of solutions could be constant for n large enough? For bilinear forms the problem is completely solved: when we deal with the bilinear form x 1 + kx 2, k > 1, Moser [6] showed that there exists a set A such that the number of solutions of the equation n a 1 + ka 2 where a 1, a 2 A is constant and equal to 1 see also [8] for additional properties of these sequences of numbers). Recently, Cilleruelo and Rué [1] proved that for and k 2 satisfying 1 < < k 2 and gcd, k 2 ) 1 the number of solutions of the equation n a 1 + k 2 a 2 where a 1, a 2 A is not constant for n large enough. In this paper we found an answer to the question posed by Sárköy and Sós for multilinear forms in several cases: let 0 < < k 2 < < be a finite sequence of positive integers and consider the set m {, n 1 ),...,, n r )}. We say that n i is the multiplicity of k i, and that the degree of m is gcdn 1,..., n r ). Given a set m, we consider the associated multilinear form x 1,1 + + x 1,n1 ) + + x r,1 + + x r,nr ). Given a sequence of positive integers A, the representation function of n with respect to m is the number of different solutions of the equation 1.1) n a 1,1 + + a 1,n1 ) + + a r,1 + + a r,nr ) The author is supported by a JAE-DOC grant from the JAE program in CSIC, Spain. 1

2 2 JUANJO RUÉ where a i,j A. We denote this value by r m n, A). Our main theorem deals with representation functions which are polynomials: Theorem 1.1. Let m be a set of degree s. Then r m n, A) is not a polynomial of degree smaller than s 1 for n large enough. As a trivial consequence, Theorem 1.1 solves the problem posted by Sárköy and Sós for multilinear forms associated to sets whose degree is greater than 1. Observe also that Theorem 1.1 gives the best possible exponent for a polynomial: let A N, and consider the multilinear form x 1,1 + + x 1,s. Then, the associated set is {1, s)} and the number of representations of n is equal to n+1 s 1), which is a polynomial of degree s 1. The proof of Theorem 1.1 is based on two steps: firstly we translate the combinatorial problem into equations between generating functions. Later, we apply an analytic study of the coefficients of the counting series, using the powerful machinery arising from analytic combinatorics. Plan of the paper: In Section 2 we introduce the necessary background in order to deal with the problem, namely the use of generating functions in order to codify the problem and the singularity analysis for generating functions. In Section 3 we apply these techniques to prove Theorem Tools In this section we present the background used in order to prove the main theorem of this paper. We introduce the notion of generating function associated to a sequence of integers, and we show the analytic tools needed in order to deal with the singularities of these counting series. Generating functions. We codify all the enumerative information of the problem using generating functions: for every set A of non negative integers we define the formal power series f A ) a A a. This series is called the generating function associated to the sequence A. A generating function defines an analytic function around 0, as its coefficients are bounded. This function is either an entire function or has at least a singularity at 1, depending on whether A is finite or not. In the second case, the Taylor expansion of f A ) around 0 has radius of convergence equals to 1, hence all its singularities have modulo 1. The combinatorial problem can be translated in the language of generating functions in the following way. Let A be a sequence of nonnegative integers and let m {, n 1 ),...,, n r )}. Then, )) n1 )) nr 2.1) a i,j A a 1,1 + +a 1,n1 )+ + a r,1 + +a r,nr ) r m n, A) n. n0 Singularity analysis. As we have shown, the generating function associated to a sequence A defines an analytic function in a neighbourhood of the origin. Hence we can apply complex analytic techniques in order to study the equations defined by these counting series. Denote the nth Taylor coefficient of f) by [ n ]f). The nature [ n ]f) can be studied by considering the counting series f) as a complex analytic function in a neighborhood of the origin. The growth behavior of coefficients is related to the singularities of the generating function with smallest modulo. In our approach we show that we will need to deal with a finite number of these singularities arising from the roots of a polynomial): their location provides the exponential growth of the coefficients, and their behavior provides the subexponential growth of the coefficients.the seminal results in this area are the so-called Transfer Theorems for singularity analysis [4]. These

3 ON POLYNOMIAL REPRESENTATION FUNCTIONS FOR MULTILINEAR FORMS 3 theorems allows us to deduce asymptotic estimates of an analytic function using its asymptotic expansion near their dominant singularities. We call domain dented at a value R a domain of the complex plane C of the form { C : < R and arg R) / [ θ, θ]} for some real number R > R and some positive angle 0 < θ < π/2. An example of a dented domain is shown in Figure 1. 0 R Figure 1. A domain of C dented at R When we have a single dominant singularity, then the growth of the coefficients can be obtained by means of integrals on the complex plane. This result is resumed in the following version of Corollary VI.1 of [5]: Theorem 2.1 Transfer for a single singularity). Let α be an arbitrary complex number in C\N. Let f) be a function analytic in a domain dented at ζ, such that f) C1 /ζ) α 1 + o1)) when ζ in the corresponding dented domain. Then, the coefficients [ n ] f) admit, for large n, an asymptotic expansion of the form where Γx) is the classical Gamma function. [ n ]f) C n α 1 Γ α) ζn 1 + o1)), The extension of Theorem 2.1 to functions that have finitely many by necessity isolated) singularities on their circle of convergence follows along entirely similar lines. As it is quoted in [5], in the case of multiple singularities, the separate contributions from each of the singularities, as given by the basic singularity analysis process, are to be added up. More precisely, we have the following simplified version of Theorem VI.5 from [5]: Theorem 2.2 Transfer theorem for multiple singularities). Let f) be analytic in < ζ and have a finite number of singularities on the circle ζ at points ζ j, for j 1,..., r. Assume that there exists a domain, dented at ζ, such that f) is analytic in the indented disc r D ζ j ), j0 where ζ j is the image of by the mapping ζ. Suppose that the expansion of f) around each of these points is of the form f) f j 1 /ζ j ) α j 1 + o1)),

4 4 JUANJO RUÉ as ζ j in the region where f is analytic, where α j C \ N for j 1,..., r. Then the Taylor coefficients of f) satisfies the asymptotic estimate [ n ]f) r j1 where Γx) is the classical Gamma function. f j n αj 1 Γ α j ) ζn j 1 + o1)), 3. Proof of the main theorem Without loss of generaliation, we may assume that 0 A. We suppose that such a sequence A exists, and we argue by contradiction. The case s 1 is trivial, so we may assume that s > 1. We assume that r m n, A) is equal to a polynomial of degree at most s 2, namely Qn) d i0 n i, with d < s 1. Using the generating function terminology, 3.1) r m n, A) n T ) + n0 Qn) n T ) + n>n i0 n>n n i n T 0 ) + i0 n0 n i n, where T ), T 0 ) are polynomials with degree N. Each term of the form n0 ni n can be Q written as i) 1 ), where Q i+1 i ) is a polynomial in such that Q i 1) 0. Hence, we can write Expression 3.1) in the form T 0 ) + i0 Q i ) 1 ) i+1 Q) 1 ) d+1, where Q) is a polynomial which satisfies that Q1) 0. generating function f A ) satisfies the relation Using now Equation 1.1), the 3.2) )) n1... )) nr Q) 1 ) d+1. Observe that Q0) T 0) r m 0, A) 1. As the degree of m is equal to s, Equation 3.2) can be written in the form 3.3) )) n1/s... )) nr/s Q) 1/s 1 ) d+1)/s, where each quotient n i /s is a nonnegative integer. Let us study the location and the type of the singularities of the rightmost term in Equation 3.3). Firstly, observe that if ζ is a ero of Q) such that ζ < 1, then its order is multiple of s: consider the factoriation over C of Q) 1 /ζ) r Q ζ ), where Q ζ ζ) 0. If r 0 s), then 1 /ζ) r/s is not analytic at ζ. But ζ < 1 and the leftmost term in Equation 3.3) is analytic for < 1, so we get a contradiction. Q) 1/s 1 ) d+1)/s Hence, we need to study singularities with modulo greater or equal to 1. As has a singularity at 1, the main contribution to the asymptotic of the coefficients of )) n1/s )) nr/s will arise from singularities in the circle { C : 1}. Denote by ζ 1..., ζ r the eros of Q) with modulo 1, and let α j be the order of the ero ζ j. We may assume that α j is not divisible by s: if this is the case, Q) 1/s is analytic at ζ j, and it does not contribute to the asymptotic of the coefficients. For small ϵ, θ > 0, let { C : < 1 + ϵ and arg R) / [ θ, θ]} be a domain dented at 1. As the function under study is a root of a rational function, it is analytic in the indented domain D r j0 ζ j ). Hence, in order to study the singularities of the rightmost term in Equation 3.3) we just need to study the behaviour of the eros of Q) with modulo 1 and the singularity at 1, respectively.

5 ON POLYNOMIAL REPRESENTATION FUNCTIONS FOR MULTILINEAR FORMS 5 Under these assumptions Theorem 2.2 asserts that, for certain constants C, C 1,..., C r [ n ] f A )) n1/s )) nr/s r C nd+1)/s 1 Γ n ) αj/s o1)) + C d+1 j Γ α ) 1 + o1)) j s j1 s O n 1/s), because the orders α j are positive and d + 1)/s 1 < s 1)/s 1 1/s. Hence, there exists a nonnegative integer M and a constant c such that, for all n > M [ n ] f A )) n1 /s )) nr /s c < < 1, n1/s but this is impossible because A is infinite and consequently infinitely many Taylor coefficients of f A ) and also of )) f A k n1 1 /s )) k nr r /s ) are 1. Acknowlegments: Javier Cilleruelo is greatly thanked for inspiring discussions and useful comments in order to improve the presentation of this paper. References [1] Cilleruelo, J., and Rué, J. On a question of sárköy and sós on bilinear forms. Bulletin of the London Mathematical Society 4, ), [2] Dirac, G. Note on a problem in additive number theory. Journal of the London Mathematical Society ), [3] Erdös, P., and Turán, P. On a problem of sidon in additive number theory, and on some related problems. Journal of the London Mathematical Society ), [4] Flajolet, P., and Odlyko, A. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3, ), [5] Flajolet, P., and Sedgewick, R. Analytic Combinatorics. Cambridge Univ. Press, [6] Moser, L. An application of generating series. Mathematics Magaine 1, ), [7] Sárköy, A., and Sós, V. On additive representation functions, in The mathematics of Paul Erdös I. Springer-Verlag, [8] Shevelev, V. On unique additive representations of positive integers and some close problems. Available on-line at arxiv: Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM), Madrid, Spain address: juanjo.rue@icmat.es

arxiv: v2 [math.nt] 15 May 2013

arxiv: v2 [math.nt] 15 May 2013 INFINITE SIDON SEQUENCES JAVIER CILLERUELO arxiv:09036v [mathnt] 5 May 03 Abstract We present a method to construct dense infinite Sidon sequences based on the discrete logarithm We give an explicit construction

More information

On the Fractional Parts of a n /n

On the Fractional Parts of a n /n On the Fractional Parts of a n /n Javier Cilleruelo Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Universidad Autónoma de Madrid 28049-Madrid, Spain franciscojavier.cilleruelo@uam.es Angel Kumchev

More information

AN ADDITIVE PROBLEM IN FINITE FIELDS WITH POWERS OF ELEMENTS OF LARGE MULTIPLICATIVE ORDER

AN ADDITIVE PROBLEM IN FINITE FIELDS WITH POWERS OF ELEMENTS OF LARGE MULTIPLICATIVE ORDER AN ADDITIVE PROBLEM IN FINITE FIELDS WITH POWERS OF ELEMENTS OF LARGE MULTIPLICATIVE ORDER JAVIER CILLERUELO AND ANA ZUMALACÁRREGUI Abstract. For a given finite field F q, we study sufficient conditions

More information

arxiv: v1 [math.co] 24 Jul 2013

arxiv: v1 [math.co] 24 Jul 2013 ANALYTIC COMBINATORICS OF CHORD AND HYPERCHORD DIAGRAMS WITH k CROSSINGS VINCENT PILAUD AND JUANJO RUÉ arxiv:307.6440v [math.co] 4 Jul 03 Abstract. Using methods from Analytic Combinatorics, we study the

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime J. Cilleruelo and M. Z. Garaev Abstract We obtain a sharp upper bound estimate of the form Hp o(1)

More information

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

7 Asymptotics for Meromorphic Functions

7 Asymptotics for Meromorphic Functions Lecture G jacques@ucsd.edu 7 Asymptotics for Meromorphic Functions Hadamard s Theorem gives a broad description of the exponential growth of coefficients in power series, but the notion of exponential

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Analytic combinatorics of chord and hyperchord diagrams with k crossings

Analytic combinatorics of chord and hyperchord diagrams with k crossings Analytic combinatorics of chord and hyperchord diagrams with k crossings Vincent Pilaud, Juanjo Rué To cite this version: Vincent Pilaud, Juanjo Rué. Analytic combinatorics of chord and hyperchord diagrams

More information

9. Integral Ring Extensions

9. Integral Ring Extensions 80 Andreas Gathmann 9. Integral ing Extensions In this chapter we want to discuss a concept in commutative algebra that has its original motivation in algebra, but turns out to have surprisingly many applications

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013 5.1 The field of p-adic numbers Definition 5.1. The field of p-adic numbers Q p is the fraction field of Z p. As a fraction field,

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Jonathan Sondow 209 West 97th Street Apt 6F New York, NY USA

Jonathan Sondow 209 West 97th Street Apt 6F New York, NY USA Which Partial Sums of the Taylor Series for e Are Convergents to e? (and a Link to the Primes 2, 5, 13, 37, 463,...) arxiv:0709.0671v1 [math.nt] 5 Sep 2007 Jonathan Sondow 209 West 97th Street Apt 6F New

More information

The Impossibility of Certain Types of Carmichael Numbers

The Impossibility of Certain Types of Carmichael Numbers The Impossibility of Certain Types of Carmichael Numbers Thomas Wright Abstract This paper proves that if a Carmichael number is composed of primes p i, then the LCM of the p i 1 s can never be of the

More information

Cyclic groups Z Z Theorem Proof

Cyclic groups Z Z Theorem Proof Cyclic groups Examples: Z = 1 = 1 under +. Z n = 1 = 1 under + mod n; in fact, there may be other generators of Z n besides ±1. U(n) is sometimes cyclic, e.g., n = 2, 3, 4, 6, 7, 9,. Theorem If a G has

More information

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Dirichlet s Theorem Martin Orr August 1, 009 1 Introduction The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Theorem 1.1. If m, a N are coprime, then there

More information

4. Complex Analysis, Rational and Meromorphic Asymptotics

4. Complex Analysis, Rational and Meromorphic Asymptotics ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic Asymptotics http://ac.cs.princeton.edu ANALYTIC COMBINATORICS P A R T T W O Analytic Combinatorics Philippe Flajolet and

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

KUMMER S LEMMA KEITH CONRAD

KUMMER S LEMMA KEITH CONRAD KUMMER S LEMMA KEITH CONRAD Let p be an odd prime and ζ ζ p be a primitive pth root of unity In the ring Z[ζ], the pth power of every element is congruent to a rational integer mod p, since (c 0 + c 1

More information

MATH 402 : 2017 page 1 of 6

MATH 402 : 2017 page 1 of 6 ADMINISTRATION What? Math 40: Enumerative Combinatorics Who? Me: Professor Greg Smith You: students interested in combinatorics When and Where? lectures: slot 00 office hours: Tuesdays at :30 6:30 and

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

On a Balanced Property of Compositions

On a Balanced Property of Compositions On a Balanced Property of Compositions Miklós Bóna Department of Mathematics University of Florida Gainesville FL 32611-8105 USA Submitted: October 2, 2006; Accepted: January 24, 2007; Published: March

More information

Application of Logic to Generating Functions. Holonomic (P-recursive) Sequences

Application of Logic to Generating Functions. Holonomic (P-recursive) Sequences Application of Logic to Generating Functions Holonomic (P-recursive) Sequences Johann A. Makowsky Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel http://www.cs.technion.ac.il/

More information

Asymptotic Counting Theorems for Primitive. Juggling Patterns

Asymptotic Counting Theorems for Primitive. Juggling Patterns Asymptotic Counting Theorems for Primitive Juggling Patterns Erik R. Tou January 11, 2018 1 Introduction Juggling patterns are typically described using siteswap notation, which is based on the regular

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 1 Dirichlet series The Riemann zeta function ζ is a special example of a type of series we will

More information

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Math. J. Okayama Univ. 45 (2003), 29 36 ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Dedicated to emeritus professor Kazuo Kishimoto on his seventieth birthday Kaoru MOTOSE In this paper, using properties of

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

p-cycles, S 2 -sets and Curves with Many Points

p-cycles, S 2 -sets and Curves with Many Points Facultad de Ciencias Naturales y Exactas Universidad del Valle p-cycles, S 2 -sets and Curves with Many Points Álvaro Garzón R. Universidad del Valle Received: December 16, 2016 Accepted: June 13, 2017

More information

Proofs of the infinitude of primes

Proofs of the infinitude of primes Proofs of the infinitude of primes Tomohiro Yamada Abstract In this document, I would like to give several proofs that there exist infinitely many primes. 0 Introduction It is well known that the number

More information

Elements with Square Roots in Finite Groups

Elements with Square Roots in Finite Groups Elements with Square Roots in Finite Groups M. S. Lucido, M. R. Pournaki * Abstract In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular

More information

Zero sum partition of Abelian groups into sets of the same order and its applications

Zero sum partition of Abelian groups into sets of the same order and its applications Zero sum partition of Abelian groups into sets of the same order and its applications Sylwia Cichacz Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków,

More information

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS CARRIE E. FINCH AND LENNY JONES Abstract. Let G be a finite group and let x G. Define the order subset of G determined by x to be the set of all elements in

More information

GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS

GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS SCOTT T. CHAPMAN Abstract. Let K be a field and S be the numerical semigroup generated by the positive integers n 1,..., n k. We discuss

More information

arxiv: v2 [math.nt] 13 Dec 2013

arxiv: v2 [math.nt] 13 Dec 2013 THE LEAST COMMON MULTIPLE OF RANDOM SETS OF POSITIVE INTEGERS JAVIER CILLERUELO, JUANJO RUÉ, PAULIUS ŠARKA, AND ANA ZUMALACÁRREGUI arxiv:1112.3013v2 [math.nt] 13 Dec 2013 Abstract. We study the typical

More information

ABSOLUTE VALUES AND VALUATIONS

ABSOLUTE VALUES AND VALUATIONS ABSOLUTE VALUES AND VALUATIONS YIFAN WU, wuyifan@umich.edu Abstract. We introduce the basis notions, properties and results of absolute values, valuations, discrete valuation rings and higher unit groups.

More information

Roots of Unity, Cyclotomic Polynomials and Applications

Roots of Unity, Cyclotomic Polynomials and Applications Swiss Mathematical Olympiad smo osm Roots of Unity, Cyclotomic Polynomials and Applications The task to be done here is to give an introduction to the topics in the title. This paper is neither complete

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA

GENERALIZATIONS OF SOME ZERO-SUM THEOREMS. Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad , INDIA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A52 GENERALIZATIONS OF SOME ZERO-SUM THEOREMS Sukumar Das Adhikari Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

Mahler s Polynomials and the Roots of Unity

Mahler s Polynomials and the Roots of Unity Mahler s Polynomials and the Roots of Unity James Pedersen 1 Introduction In their paper [4] "Mahler Polynomials and the Roots of Unity", Karl Dilcher and Larry Ericksen introduce the reader to the relationships

More information

Collatz cycles with few descents

Collatz cycles with few descents ACTA ARITHMETICA XCII.2 (2000) Collatz cycles with few descents by T. Brox (Stuttgart) 1. Introduction. Let T : Z Z be the function defined by T (x) = x/2 if x is even, T (x) = (3x + 1)/2 if x is odd.

More information

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS

PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS GEORGE E. ANDREWS, MATTHIAS BECK, AND NEVILLE ROBBINS Abstract. We study the number p(n, t) of partitions of n with difference t between

More information

Jeong-Hyun Kang Department of Mathematics, University of West Georgia, Carrollton, GA

Jeong-Hyun Kang Department of Mathematics, University of West Georgia, Carrollton, GA #A33 INTEGERS 10 (2010), 379-392 DISTANCE GRAPHS FROM P -ADIC NORMS Jeong-Hyun Kang Department of Mathematics, University of West Georgia, Carrollton, GA 30118 jkang@westga.edu Hiren Maharaj Department

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

More information

4. Noether normalisation

4. Noether normalisation 4. Noether normalisation We shall say that a ring R is an affine ring (or affine k-algebra) if R is isomorphic to a polynomial ring over a field k with finitely many indeterminates modulo an ideal, i.e.,

More information

DAVID ELLIS AND BHARGAV NARAYANAN

DAVID ELLIS AND BHARGAV NARAYANAN ON SYMMETRIC 3-WISE INTERSECTING FAMILIES DAVID ELLIS AND BHARGAV NARAYANAN Abstract. A family of sets is said to be symmetric if its automorphism group is transitive, and 3-wise intersecting if any three

More information

Asymptotics of generating the symmetric and alternating groups

Asymptotics of generating the symmetric and alternating groups Asymptotics of generating the symmetric and alternating groups John D. Dixon School of Mathematics and Statistics Carleton University, Ottawa, Ontario K2G 0E2 Canada jdixon@math.carleton.ca October 20,

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 000 Chapter 1 Arithmetic in 1.1 The Division Algorithm Revisited 1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = 3. 2. (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 3. (a) q = 6, r =

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

arxiv: v5 [math.nt] 23 May 2017

arxiv: v5 [math.nt] 23 May 2017 TWO ANALOGS OF THUE-MORSE SEQUENCE arxiv:1603.04434v5 [math.nt] 23 May 2017 VLADIMIR SHEVELEV Abstract. We introduce and study two analogs of one of the best known sequence in Mathematics : Thue-Morse

More information

Hardy spaces of Dirichlet series and function theory on polydiscs

Hardy spaces of Dirichlet series and function theory on polydiscs Hardy spaces of Dirichlet series and function theory on polydiscs Kristian Seip Norwegian University of Science and Technology (NTNU) Steinkjer, September 11 12, 2009 Summary Lecture One Theorem (H. Bohr)

More information

THESIS. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

THESIS. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University The Hasse-Minkowski Theorem in Two and Three Variables THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By

More information

Squares in products with terms in an arithmetic progression

Squares in products with terms in an arithmetic progression ACTA ARITHMETICA LXXXVI. (998) Squares in products with terms in an arithmetic progression by N. Saradha (Mumbai). Introduction. Let d, k 2, l 2, n, y be integers with gcd(n, d) =. Erdős [4] and Rigge

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

1: Introduction to Lattices

1: Introduction to Lattices CSE 206A: Lattice Algorithms and Applications Winter 2012 Instructor: Daniele Micciancio 1: Introduction to Lattices UCSD CSE Lattices are regular arrangements of points in Euclidean space. The simplest

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Numbers and their divisors

Numbers and their divisors Chapter 1 Numbers and their divisors 1.1 Some number theoretic functions Theorem 1.1 (Fundamental Theorem of Arithmetic). Every positive integer > 1 is uniquely the product of distinct prime powers: n

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS YIFEI ZHAO Contents. The Weierstrass factorization theorem 2. The Weierstrass preparation theorem 6 3. The Weierstrass division theorem 8 References

More information

Polynomials over finite fields. Algorithms and Randomness

Polynomials over finite fields. Algorithms and Randomness Polynomials over Finite Fields: Algorithms and Randomness School of Mathematics and Statistics Carleton University daniel@math.carleton.ca AofA 10, July 2010 Introduction Let q be a prime power. In this

More information

of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 1996 Many mathematical constants are expressed as slowly convergent sums

of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 1996 Many mathematical constants are expressed as slowly convergent sums Zeta Function Expansions of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 996 Many mathematical constants are expressed as slowly convergent sums of the form C = f( ) () n n2a for some

More information

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.4 2.6 of Rosen Introduction I When talking

More information

New Multiple Harmonic Sum Identities

New Multiple Harmonic Sum Identities New Multiple Harmonic Sum Identities Helmut Prodinger Department of Mathematics University of Stellenbosch 760 Stellenbosch, South Africa hproding@sun.ac.za Roberto Tauraso Dipartimento di Matematica Università

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Asymptotics of Integrals of. Hermite Polynomials

Asymptotics of Integrals of. Hermite Polynomials Applied Mathematical Sciences, Vol. 4, 010, no. 61, 04-056 Asymptotics of Integrals of Hermite Polynomials R. B. Paris Division of Complex Systems University of Abertay Dundee Dundee DD1 1HG, UK R.Paris@abertay.ac.uk

More information

arxiv: v2 [math.co] 20 Jun 2018

arxiv: v2 [math.co] 20 Jun 2018 ON ORDERED RAMSEY NUMBERS OF BOUNDED-DEGREE GRAPHS MARTIN BALKO, VÍT JELÍNEK, AND PAVEL VALTR arxiv:1606.0568v [math.co] 0 Jun 018 Abstract. An ordered graph is a pair G = G, ) where G is a graph and is

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

Representing numbers as the sum of squares and powers in the ring Z n

Representing numbers as the sum of squares and powers in the ring Z n Representing numbers as the sum of squares powers in the ring Z n Rob Burns arxiv:708.03930v2 [math.nt] 23 Sep 207 26th September 207 Abstract We examine the representation of numbers as the sum of two

More information

Asymptotic Rational Approximation To Pi: Solution of an Unsolved Problem Posed By Herbert Wilf

Asymptotic Rational Approximation To Pi: Solution of an Unsolved Problem Posed By Herbert Wilf AofA 0 DMTCS proc AM, 00, 59 60 Asymptotic Rational Approximation To Pi: Solution of an Unsolved Problem Posed By Herbert Wilf Mark Daniel Ward Department of Statistics, Purdue University, 50 North University

More information

Primes in arithmetic progressions

Primes in arithmetic progressions (September 26, 205) Primes in arithmetic progressions Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 205-6/06 Dirichlet.pdf].

More information

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1 Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1 R.A. Mollin Abstract We look at the simple continued

More information

Excluded permutation matrices and the Stanley Wilf conjecture

Excluded permutation matrices and the Stanley Wilf conjecture Excluded permutation matrices and the Stanley Wilf conjecture Adam Marcus Gábor Tardos November 2003 Abstract This paper examines the extremal problem of how many 1-entries an n n 0 1 matrix can have that

More information

NEW UPPER BOUNDS FOR FINITE B h. Javier Cilleruelo

NEW UPPER BOUNDS FOR FINITE B h. Javier Cilleruelo NEW UPPER BOUNDS FOR FINITE B h SEQUENCES Javier Cilleruelo Abstract. Let F h N) be the maximum number of elements that can be selected from the set {,..., N} such that all the sums a + + a h, a a h are

More information

5. Analytic Combinatorics

5. Analytic Combinatorics ANALYTIC COMBINATORICS P A R T O N E 5. Analytic Combinatorics http://aofa.cs.princeton.edu Analytic combinatorics is a calculus for the quantitative study of large combinatorial structures. Features:

More information

Prime Divisors of Palindromes

Prime Divisors of Palindromes Prime Divisors of Palindromes William D. Banks Department of Mathematics, University of Missouri Columbia, MO 6511 USA bbanks@math.missouri.edu Igor E. Shparlinski Department of Computing, Macquarie University

More information

ZERO-SUM ANALOGUES OF VAN DER WAERDEN S THEOREM ON ARITHMETIC PROGRESSIONS

ZERO-SUM ANALOGUES OF VAN DER WAERDEN S THEOREM ON ARITHMETIC PROGRESSIONS ZERO-SUM ANALOGUES OF VAN DER WAERDEN S THEOREM ON ARITHMETIC PROGRESSIONS Aaron Robertson Department of Mathematics, Colgate University, Hamilton, New York arobertson@colgate.edu Abstract Let r and k

More information

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES #A69 INTEGERS 3 (203) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri bankswd@missouri.edu Greg Martin Department of

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

A REMARK ON THE BOROS-MOLL SEQUENCE

A REMARK ON THE BOROS-MOLL SEQUENCE #A49 INTEGERS 11 (2011) A REMARK ON THE BOROS-MOLL SEQUENCE J.-P. Allouche CNRS, Institut de Math., Équipe Combinatoire et Optimisation Université Pierre et Marie Curie, Paris, France allouche@math.jussieu.fr

More information

EXAMPLES OF MORDELL S EQUATION

EXAMPLES OF MORDELL S EQUATION EXAMPLES OF MORDELL S EQUATION KEITH CONRAD 1. Introduction The equation y 2 = x 3 +k, for k Z, is called Mordell s equation 1 on account of Mordell s long interest in it throughout his life. A natural

More information

arxiv: v2 [math.ho] 31 Dec 2018

arxiv: v2 [math.ho] 31 Dec 2018 Solutions to Diophantine equation of Erdős Straus Conjecture arxiv:82.0568v2 [math.ho] 3 Dec 208 Abstract Dagnachew Jenber Negash Addis Ababa Science and Technology University Addis Ababa, Ethiopia Email:

More information

Radial balanced metrics on the unit disk

Radial balanced metrics on the unit disk Radial balanced metrics on the unit disk Antonio Greco and Andrea Loi Dipartimento di Matematica e Informatica Università di Cagliari Via Ospedale 7, 0914 Cagliari Italy e-mail : greco@unica.it, loi@unica.it

More information

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998 CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

More information