On products of quartic polynomials over consecutive indices which are perfect squares

Size: px
Start display at page:

Download "On products of quartic polynomials over consecutive indices which are perfect squares"

Transcription

1 Notes on Number Theory and Discrete Mathematics Print ISSN , Online ISSN Vol. 4, 018, No. 3, DOI: /nntdm On products of quartic polynomials over consecutive indices which are perfect squares Kantaphon Kuhapatanakul, Natnicha Meeboomak and Kanyarat Thongsing Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand s: Received: 31 October 017 Accepted: 17 August 018 Abstract: Let a be a positive integer. We study the Diophantine equation (a k 4 + (a a )k + 1) = y. This Diophantine equation generalizes a result of Gürel [5] for a =. We also prove that the product ( 1)(3 1)... (n 1) is a perfect square only for the values n for which the triangular number T n is a perfect square. Keywords: Diophantine equation, Perfect square, Quartic polynomial, Quadratic polynomial. 010 Mathematics Subject Classification: 11D5, 11D09. 1 Introduction The study of sequences containing infinitely many squares is a common topic in number theory. Let Ω μ (n) = (1 μ + 1)( μ + 1)... (n μ + 1) where μ is an integer. Amdeberhan et al. [1] conjectured that Ω (n) is not a square for any integer n > 3. Cilleruelo [3] confirmed this conjecture. Gürel and Kisisel [6] proved that Ω 3 (n) is not a square. Later, an idea due to Zudilin was applied to Ω p (n) by Zhang and Wang [9] and to Ω p t(n) by Chen et al. [] for any odd prime p. Fang [4] confirmed another similar conjecture posed by Amdeberhan et al. [1] to the 56

2 products of quadratic polynomials n (4k +1) and n (k k+1) are not perfect squares. Yang et al. [8] studied the Diophantine equation n (ak + bk + c) = dy l. Gürel [5] proved that the product n (4k4 + 1) is a perfect square for infinitely many n. In this manuscript, we will extend the result of Gürel [5] on the polynomial 4k to the polynomial P a (k) = a k 4 + (a a )k + 1, where a is a positive integer. Next, we prove the product ( 1)(3 1)... (n 1) is a perfect square only for the values n for which the triangular number T n is a perfect square. Main results Let a be a positive integer and P a (x) = a x 4 + (a a )x + 1. Denote X a (n) is the product of first n consecutive values of the P a (n), i.e., X a (n) = P a (1)P a ()... P a (n). Lemma 1. X a (n) is a square if and only if an + an + 1 is a square. Proof. Let f(x) = ax ax + 1. Then f(x + 1) = ax + ax + 1 and We have P a (x) = a x 4 + (a a )x + 1 = (ax ax + 1)(ax + ax + 1) = f(x)f(x + 1). X a (n) = P a (k) = ( n f(k)f(k + 1) = f(k)) f(1)f(n + 1). Since f(1) = 1, it follows that X a (n) is a square if and only if f(n + 1) is a square. Consider 4n + 4n + 1 = (n + 1), we obtain that k= (16k 4 8k + 1) is a perfect square for all n. d + 1 Theorem 1. Let a, d, n be positive integers with a = d 4. Suppose p =. Then X a (n) p p is not a perfect square for n > d dp + d. Proof. By Lemma 1, the problem is reduced to finding square values of f(n + 1), i.e., finding integer solutions to the following equation, an + an + 1 = m. (1) We see that an + an + 1 = d n + d n + 1 < (dn + p). Assume n > (p p)/(d dp + d). 57

3 If d is even, we get that p = d d 4 and n > 8, so d n + d n + 1 > (dn + p 1). And if d is odd, we have that p = (d + 1)/ and n > (d d 3)/4d, so d n + d n + 1 > (dn + p 1). We obtain that (dn + p 1) < d n + d n + 1 < (dn + p). Since there is no perfect square between two consecutive perfect squares, X a (n) is not a perfect p p square for n > d dp + d and a = d 4. For a not a perfect square, we conjecture that the Diophantine equation (1) has infinitely many solutions. The case a = has been shown in [5]. In the next theorem, we will only show the case 3 a 13. Theorem. Let 3 a 13 be not a perfect square. Then X a (n) is a perfect square for infinitely many n. Proof. It suffices to find the integer solutions of (1). Case a = 3, we consider 3n + 3n + 1 = m. () We see that (7, 13) is a solution of (). For each solution (x, y) of (), the map sends (x, y) to (7x + 4y + 3, 1x + 7y + 6), which gives another solution of (). It can be verified that 3(7x + 4y + 3) + 3(7x + 4y + 3) + 1 = 147x + 48y + 168xy + 147x + 84y + 37 = (3x + 3x + 1) y + (1x + 7y + 6) = (1x + 7y + 6). Therefore, the equation () has infinitely many distinct solutions. (Note: If (n i, m i ) are all solutions of (), the sequence {n i } satisfies n i = 14n i 1 n i +6, where n 0 = 0, n 1 = 7, see A00191 in [7], and the sequence {m i } is A in [7].) Case a = 5, we consider 5n + 5n + 1 = m. (3) Clearly, (8, 19) is a solution of (3). For each solution (x, y) of (3), the map sends (x, y) to (9x + 4y + 4, 0x + 9y + 10), which gives another solution of (3). (Note: If (n i, m i ) are all solutions of (3), then n i = (F 6i+3 )/4 and m i = (F 6n+4 + F 6n+ )/4, where F i is i th Fibonacci number, see A and A04969 in [7].) 58

4 Case a = 6, we consider 6n + 6n + 1 = m. (4) Clearly, (4, 11) is a solution of (4). For each solution (x, y) of (4), the map sends (x, y) to (5x + y +, 1x + 5y + 6), which gives another solution of (4). (Note: If (n i, m i ) are all solutions of (4), then n i = 11n i 1 11n i + n i 3, where n 0 = 0, n 1 = 4 and n = 44, see A in [7] and m i is A05430 in [7].) Case a = 7, we consider 7n + 7n + 1 = m. (5) Clearly, (15, 41) is a solution of (5). For each solution (x, y) of (5), the map sends (x, y) to (17x + 48y + 63, 336x + 17y + 168), which gives another solution of (5). (Note: If (n i, m i ) are all solutions of (5), then n i = 54n i n i , where n 0 = 0, n 1 = 15, n = 111 and n 3 = 3936, see A or A in [7].) Case a = 8, we consider 8n + 8n + 1 = m. (6) Clearly, (, 7) is a solution of (6). For each solution (x, y) of (6), the map sends (x, y) to (3x + y + 1, 8x + 3y + 4), which gives another solution of (6). (Note: If (n i, m i ) are all solutions of (6), the sequences {n i } and {m i } are respectively A and A00315 in [7].) Case a = 10, we consider 10n + 10n + 1 = m. (7) Clearly, (3, 11) is a solution of (7). For each solution (x, y) of (7), the map sends (x, y) to (19x + 6y + 9, 60x + 19y + 30), which gives another solution of (7). (Note: If (n i, m i ) are all solutions of (7), the sequence {n i } is A390 in [7].) Case a = 11, we consider 11n + 11n + 1 = m. (8) Clearly, (39, 131) is a solution of (8). For each solution (x, y) of (8), the map sends (x, y) to (199x + 60y + 99, 660x + 199y + 330), which gives another solution of (8). (Note: If (n i, m i ) are all solutions of (8), the sequences {n i } and {m i } are respectively A and A in [7].) Case a = 1, we consider 1n + 1n + 1 = m. (9) Clearly, (1, 5) is a solution of (9). For each solution (x, y) of (9), the map sends (x, y) to (7x + y + 3, 4x + 7y + 1), which gives another solution of (9). (Note: If (n i, m i ) are all solutions of (9), the sequences {n i } and {m i } are respectively A06178 and A in [7].) 59

5 Case a = 13, we consider 13n + 13n + 1 = m. (10) Clearly, (7, 7) is a solution of (10). For each solution (x, y) of (10), the map sends (x, y) to (649x + 180y + 34, 34x + 649y ), which gives another solution of (10). (Note: If (n i, m i ) are all solutions of (10), the sequence {n i } is A10440 in [7].) Therefore, X a (n) is a perfect square for infinitely many n, where a is not a perfect square. For a > 13 not a perfect square, the authors consider that X a (n) is a perfect square for infinitely many n. We can find the linear map for each solution (n 0, m 0 ) that gives another solution of (1). But the authors will leave this problem to the interested reader. From Theorems 1 and, we give the following examples for a = 1, 3, 5. (1) (k 4 + k + 1) is not a square. () (9k 4 3k + 1) and (5k 4 15k + 1) are perfect squares for infinitely many n. Next, we give analogue of Ω (n) for the product ( 1)(3 1)... (n 1). Theorem 3. The product (k 1) is a perfect square if and only if the triangular number T n k= is a perfect square for n > 1. Proof. The triangular number T n is a number obtained by adding all positive integers less than or n n(n + 1) equal to a given positive integer n, i.e., T n = i =. We have (k 1) = k= = = i=1 (k 1)(k + 1) k= ( n 1 k) n(n + 1) k=3 ( n 1 k) 4T n. k=3 Thus, this product is a square if and only if T n is a square. The triangular number T n is a square (see A in [7]) when the value of n is 1, 8, 49, 88, 1681, 9800, 5711, 3398, , ,.... Acknowledgements The authors would like to thank the anonymous referee for his/her helpful suggestions. This work is supported by Department of Mathematics, Faculty of Science, Kasetsart University, Thailand. 60

6 References [1] Amdeberhan, T., Medina, L. A., & Moll, V. H. (008) Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory, 18(6), [] Chen, Y. G., Gong, M. L., & Ren, X. Z. (013) On the products (1 l + 1)( l + 1)... (n l + 1), J. Number Theory, 133(8), [3] Cilleruelo, J. (008) Squares in (1 +1)... (n +1), J. Number Theory, 18(8), [4] Fang, J. H. (009) Neither n (4k + 1) nor n (k(k 1) + 1) is a perfect square, Integers, 9, [5] Gürel, E. (016) On the occurrence of perfect squares among values of certain polynomial products, Amer. Math. Monthly, 13(6), [6] Gürel, E. & Kisisel, A. U. O. (010) A note on the products (1 μ + 1)... (n μ + 1), J. Number Theory, 130(1), [7] Sloane, N. J. A. (011) The On-Line Encyclopedia of Integer Sequences. Published electronically at [8] Yang, S., Togbé, A. & He, B. (011) Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory, 131(5), [9] Zhang, W. & Wang, T. (01) Powerful numbers in (1 k + 1)( k + 1)... (n k + 1), J. Number Theory, 13(11),

arxiv: v1 [math.nt] 11 Jun 2017

arxiv: v1 [math.nt] 11 Jun 2017 Powerful numbers in (1 l +q l )( l +q l ) (n l +q l ) arxiv:1706.03350v1 [math.nt] 11 Jun 017 Quan-Hui Yang 1 Qing-Qing Zhao 1. School of Mathematics and Statistics, Nanjing University of Information Science

More information

Erhan Gürel 1, Received October 14, 2015; accepted November 24, 2015

Erhan Gürel 1, Received October 14, 2015; accepted November 24, 2015 MATHEMATICAL COMMUNICATIONS 109 Math Commun 21(2016), 109 114 A note on the products ((m+1) 2 +1)((m+2) 2 +1)(n 2 +1) and ((m+1) +1)((m+2) +1)(n +1) Erhan Gürel 1, 1 Middle East Technical University, Northern

More information

Sums of arctangents and some formulas of Ramanujan

Sums of arctangents and some formulas of Ramanujan SCIENTIA Series A: Mathematical Sciences, Vol. 11 (2005), 13 24 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 c Universidad Técnica Federico Santa María 2005 Sums of arctangents

More information

On the Equation =<#>(«+ k)

On the Equation =<#>(«+ k) MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 11, APRIL 1972 On the Equation =(«+ k) By M. Lai and P. Gillard Abstract. The number of solutions of the equation (n) = >(n + k), for k ä 30, at intervals

More information

On Dris conjecture about odd perfect numbers

On Dris conjecture about odd perfect numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 513, Online ISSN 367 875 Vol. 4, 018, No. 1, 5 9 DOI: 10.7546/nntdm.018.4.1.5-9 On Dris conjecture about odd perfect numbers Paolo Starni

More information

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS International Journal of Pure and Applied Mathematics Volume 90 No. 014, 5-44 ISSN: 111-8080 (printed version); ISSN: 114-95 (on-line version) url: http://www.ipam.eu doi: http://dx.doi.org/10.17/ipam.v90i.7

More information

Some new families of positive-rank elliptic curves arising from Pythagorean triples

Some new families of positive-rank elliptic curves arising from Pythagorean triples Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 27 36 DOI: 10.7546/nntdm.2018.24.3.27-36 Some new families of positive-rank elliptic curves

More information

On a class of quartic Diophantine equations of at least five variables

On a class of quartic Diophantine equations of at least five variables Notes on Number Theory and Discrete Mathematics Print ISSN 110 512, Online ISSN 27 8275 Vol. 24, 2018, No., 1 9 DOI: 10.754/nntdm.2018.24..1-9 On a class of quartic Diophantine equations of at least five

More information

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS #A3 INTEGERS 14 (014) THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS Kantaphon Kuhapatanakul 1 Dept. of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand fscikpkk@ku.ac.th

More information

Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS 2, 5, 8, 11, 14,..., 101

Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS 2, 5, 8, 11, 14,..., 101 Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS A finite sequence such as 2, 5, 8, 11, 14,..., 101 in which each succeeding term is obtained by adding a fixed number to the preceding term is called an

More information

RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS

RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS GOPAL KRISHNA PANDA, TAKAO KOMATSU and RAVI KUMAR DAVALA Communicated by Alexandru Zaharescu Many authors studied bounds for

More information

arxiv: v2 [math.nt] 29 Jul 2017

arxiv: v2 [math.nt] 29 Jul 2017 Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation arxiv:1509.07898v2 [math.nt] 29 Jul 2017 Prapanpong Pongsriiam Department of Mathematics, Faculty of Science Silpakorn University

More information

Integer Sequences Avoiding Prime Pairwise Sums

Integer Sequences Avoiding Prime Pairwise Sums 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 11 (008), Article 08.5.6 Integer Sequences Avoiding Prime Pairwise Sums Yong-Gao Chen 1 Department of Mathematics Nanjing Normal University Nanjing 10097

More information

ON `-TH ORDER GAP BALANCING NUMBERS

ON `-TH ORDER GAP BALANCING NUMBERS #A56 INTEGERS 18 (018) ON `-TH ORDER GAP BALANCING NUMBERS S. S. Rout Institute of Mathematics and Applications, Bhubaneswar, Odisha, India lbs.sudhansu@gmail.com; sudhansu@iomaorissa.ac.in R. Thangadurai

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

The Abundancy index of divisors of odd perfect numbers Part III

The Abundancy index of divisors of odd perfect numbers Part III Notes on Number Theory Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol 23, 2017, No 3, 53 59 The Abundancy index of divisors of odd perfect numbers Part III Jose Arnaldo B Dris Department

More information

The Collatz Problem and Analogues

The Collatz Problem and Analogues 2 3 47 6 23 Journal of Integer Sequences, Vol. (2008), Article 08.4.7 The Collatz roblem and Analogues Bart Snapp and Matt Tracy Department of Mathematics and Statistics Coastal Carolina University Conway,

More information

A proof of strong Goldbach conjecture and twin prime conjecture

A proof of strong Goldbach conjecture and twin prime conjecture A proof of strong Goldbach conjecture and twin prime conjecture Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract In this paper we give a proof of the strong Goldbach conjecture by studying limit

More information

On repdigits as product of consecutive Lucas numbers

On repdigits as product of consecutive Lucas numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 5 102 DOI: 10.7546/nntdm.2018.24.3.5-102 On repdigits as product of consecutive Lucas numbers

More information

Intermediate Math Circles March 11, 2009 Sequences and Series

Intermediate Math Circles March 11, 2009 Sequences and Series 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles March 11, 009 Sequences and Series Tower of Hanoi The Tower of Hanoi is a game

More information

On Polynomial Pairs of Integers

On Polynomial Pairs of Integers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5 On Polynomial Pairs of Integers Martianus Frederic Ezerman Division of Mathematical Sciences School of Physical and Mathematical

More information

MATH CSE20 Homework 5 Due Monday November 4

MATH CSE20 Homework 5 Due Monday November 4 MATH CSE20 Homework 5 Due Monday November 4 Assigned reading: NT Section 1 (1) Prove the statement if true, otherwise find a counterexample. (a) For all natural numbers x and y, x + y is odd if one of

More information

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 8180, Morelia, Michoacán, México e-mail: fluca@matmor.unam.mx Laszlo Szalay Department of Mathematics and Statistics,

More information

A Pellian equation with primes and applications to D( 1)-quadruples

A Pellian equation with primes and applications to D( 1)-quadruples A Pellian equation with primes and applications to D( 1)-quadruples Andrej Dujella 1, Mirela Jukić Bokun 2 and Ivan Soldo 2, 1 Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička

More information

On a Diophantine Equation 1

On a Diophantine Equation 1 International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 2, 73-81 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.728 On a Diophantine Equation 1 Xin Zhang Department

More information

Sums of Consecutive Perfect Powers is Seldom a Perfect Power

Sums of Consecutive Perfect Powers is Seldom a Perfect Power Sums of Consecutive Perfect Powers is Seldom a Perfect Power Journées Algophantiennes Bordelaises 2017, Université de Bordeaux June 7, 2017 A Diophantine Equation Question x k + (x + 1) k + + (x + d 1)

More information

ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS

ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS #A43 INTEGERS 12 (2012) ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS Kenneth A. Brown Dept. of Mathematics, University of South Carolina, Columbia, South Carolina brownka5@mailbox.sc.edu Scott M. Dunn

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

Sieving 2m-prime pairs

Sieving 2m-prime pairs Notes on Number Theory and Discrete Mathematics ISSN 1310 5132 Vol. 20, 2014, No. 3, 54 60 Sieving 2m-prime pairs Srečko Lampret Pohorska cesta 110, 2367 Vuzenica, Slovenia e-mail: lampretsrecko@gmail.com

More information

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x.

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x. Colloq. Math. 145(016), no. 1, 149-155. ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS FAN GE AND ZHI-WEI SUN Abstract. For m = 3, 4,... those p m (x) = (m )x(x 1)/ + x with x Z are called generalized

More information

Sun Life Financial Canadian Open Mathematics Challenge Section A 4 marks each. Official Solutions

Sun Life Financial Canadian Open Mathematics Challenge Section A 4 marks each. Official Solutions Sun Life Financial Canadian Open Mathematics Challenge 2015 Official Solutions COMC exams from other years, with or without the solutions included, are free to download online. Please visit http://comc.math.ca/2015/practice.html

More information

Basic Fraction and Integer Operations (No calculators please!)

Basic Fraction and Integer Operations (No calculators please!) P1 Summer Math Review Packet For Students entering Geometry The problems in this packet are designed to help you review topics from previous mathematics courses that are important to your success in Geometry.

More information

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun Proc. Amer. Math. Soc. 35(2007), no., 355 3520. A SHARP RESULT ON m-covers Hao Pan and Zhi-Wei Sun Abstract. Let A = a s + Z k s= be a finite system of arithmetic sequences which forms an m-cover of Z

More information

Binary quadratic forms and sums of triangular numbers

Binary quadratic forms and sums of triangular numbers Binary quadratic forms and sums of triangular numbers Zhi-Hong Sun( ) Huaiyin Normal University http://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of positive integers, [x] the

More information

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.5 On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence Eva Trojovská Department of Mathematics Faculty of Science

More information

arxiv: v2 [math.nt] 9 Oct 2013

arxiv: v2 [math.nt] 9 Oct 2013 UNIFORM LOWER BOUND FOR THE LEAST COMMON MULTIPLE OF A POLYNOMIAL SEQUENCE arxiv:1308.6458v2 [math.nt] 9 Oct 2013 SHAOFANG HONG, YUANYUAN LUO, GUOYOU QIAN, AND CHUNLIN WANG Abstract. Let n be a positive

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

arxiv: v1 [math.nt] 8 Jan 2014

arxiv: v1 [math.nt] 8 Jan 2014 A NOTE ON p-adic VALUATIONS OF THE SCHENKER SUMS PIOTR MISKA arxiv:1401.1717v1 [math.nt] 8 Jan 2014 Abstract. A prime number p is called a Schenker prime if there exists such n N + that p nandp a n, wherea

More information

Some new representation problems involving primes

Some new representation problems involving primes A talk given at Hong Kong Univ. (May 3, 2013) and 2013 ECNU q-series Workshop (Shanghai, July 30) Some new representation problems involving primes Zhi-Wei Sun Nanjing University Nanjing 210093, P. R.

More information

Pell Equation x 2 Dy 2 = 2, II

Pell Equation x 2 Dy 2 = 2, II Irish Math Soc Bulletin 54 2004 73 89 73 Pell Equation x 2 Dy 2 2 II AHMET TEKCAN Abstract In this paper solutions of the Pell equation x 2 Dy 2 2 are formulated for a positive non-square integer D using

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China J. Number Theory 16(016), 190 11. A RESULT SIMILAR TO LAGRANGE S THEOREM Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 10093, People s Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES

SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES SANJAI GUPTA, PAROUSIA ROCKSTROH, AND FRANCIS EDWARD SU 1. Introduction The Fibonacci sequence defined by F 0 = 0, F 1 = 1, F n+1 = F n

More information

Prime sequences. Faculty of Science, The University of Sydney, NSW 2006, Australia

Prime sequences. Faculty of Science, The University of Sydney, NSW 2006, Australia Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 77 83 DOI: 10.7546/nntdm.2018.24.3.77-83 Prime sequences J. V. Leyendekkers 1 and A. G.

More information

On the Rank and Integral Points of Elliptic Curves y 2 = x 3 px

On the Rank and Integral Points of Elliptic Curves y 2 = x 3 px International Journal of Algebra, Vol. 3, 2009, no. 8, 401-406 On the Rank and Integral Points of Elliptic Curves y 2 = x 3 px Angela J. Hollier, Blair K. Spearman and Qiduan Yang Mathematics, Statistics

More information

THE NUMBER OF DIOPHANTINE QUINTUPLES. Yasutsugu Fujita College of Industrial Technology, Nihon University, Japan

THE NUMBER OF DIOPHANTINE QUINTUPLES. Yasutsugu Fujita College of Industrial Technology, Nihon University, Japan GLASNIK MATEMATIČKI Vol. 45(65)(010), 15 9 THE NUMBER OF DIOPHANTINE QUINTUPLES Yasutsugu Fujita College of Industrial Technology, Nihon University, Japan Abstract. A set a 1,..., a m} of m distinct positive

More information

The Riddle of Primes

The Riddle of Primes A talk given at Dalian Univ. of Technology (Nov. 16, 2012) and Nankai University (Dec. 1, 2012) The Riddle of Primes Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2 1 47 6 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.7.6 An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n Bakir Farhi Department of Mathematics

More information

On arithmetic functions of balancing and Lucas-balancing numbers

On arithmetic functions of balancing and Lucas-balancing numbers MATHEMATICAL COMMUNICATIONS 77 Math. Commun. 24(2019), 77 1 On arithmetic functions of balancing and Lucas-balancing numbers Utkal Keshari Dutta and Prasanta Kumar Ray Department of Mathematics, Sambalpur

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Equations and Graphs Characteristics The Factor Theorem The Remainder Theorem http://www.purplemath.com/modules/polyends5.htm 1 A cross-section of a honeycomb has a pattern with one

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Cullen Numbers in Binary Recurrent Sequences

Cullen Numbers in Binary Recurrent Sequences Cullen Numbers in Binary Recurrent Sequences Florian Luca 1 and Pantelimon Stănică 2 1 IMATE-UNAM, Ap. Postal 61-3 (Xangari), CP 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Arithmetical properties of a sequence arising from an arctangent sum

Arithmetical properties of a sequence arising from an arctangent sum JID:YJNTH AID:3555 /FLA [m1+; v 1.76; Prn:4/09/007; 10:8] P.1 1-40 Journal of Number Theory www.elsevier.com/locate/jnt Arithmetical properties of a sequence arising from an arctangent sum Tewodros Amdeberhan,

More information

ON A FAMILY OF ELLIPTIC CURVES

ON A FAMILY OF ELLIPTIC CURVES UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 005 ON A FAMILY OF ELLIPTIC CURVES by Anna Antoniewicz Abstract. The main aim of this paper is to put a lower bound on the rank of elliptic

More information

Solutions of the Diophantine Equation 2 x + p y = z 2 When p is Prime

Solutions of the Diophantine Equation 2 x + p y = z 2 When p is Prime Annals of Pure and Applied Mathematics Vol. 16, No. 2, 2018, 471-477 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 March 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n2a25

More information

1 x i. i=1 EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA

1 x i. i=1 EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA Volume, Number 2, Pages 63 78 ISSN 75-0868 ON THE EQUATION n i= = IN DISTINCT ODD OR EVEN NUMBERS RAFAEL ARCE-NAZARIO, FRANCIS N. CASTRO, AND RAÚL FIGUEROA Abstract. In this paper we combine theoretical

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 5 Additional Topics By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Pythagorean

More information

A new proof of Euler s theorem. on Catalan s equation

A new proof of Euler s theorem. on Catalan s equation Journal of Applied Mathematics & Bioinformatics, vol.5, no.4, 2015, 99-106 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2015 A new proof of Euler s theorem on Catalan s equation Olufemi

More information

arxiv: v1 [math.nt] 22 Jun 2014

arxiv: v1 [math.nt] 22 Jun 2014 FIGURATE PRIMES AND HILBERT S 8TH PROBLEM TIANXIN CAI, YONG ZHANG, AND ZHONGYAN SHEN arxiv:140.51v1 [math.nt] 22 Jun 2014 Abstract. In this paper, by using the they of elliptic curves, we discuss several

More information

arxiv: v2 [math.nt] 4 Jun 2016

arxiv: v2 [math.nt] 4 Jun 2016 ON THE p-adic VALUATION OF STIRLING NUMBERS OF THE FIRST KIND PAOLO LEONETTI AND CARLO SANNA arxiv:605.07424v2 [math.nt] 4 Jun 206 Abstract. For all integers n k, define H(n, k) := /(i i k ), where the

More information

Perfect if and only if Triangular

Perfect if and only if Triangular Advances in Theoretical and Applied Mathematics ISSN 0973-4554 Volume 1, Number 1 (017), pp. 39-50 Research India Publications http://www.ripublication.com Perfect if and only if Triangular Tilahun Muche,

More information

5.1 Polynomial Functions

5.1 Polynomial Functions 5.1 Polynomial Functions In this section, we will study the following topics: Identifying polynomial functions and their degree Determining end behavior of polynomial graphs Finding real zeros of polynomial

More information

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix Notes on Number Theory and Discrete Mathematics Print ISSN 30 532, Online ISSN 2367 8275 Vol 24, 208, No, 03 08 DOI: 07546/nntdm2082403-08 Fibonacci and Lucas numbers via the determinants of tridiagonal

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO

DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO Abstract. In this paper, we give a sampling of the theory of differential posets, including various topics that excited me. Most of the material is taken from

More information

Applications of Number Theory in Statistics

Applications of Number Theory in Statistics Bonfring International Journal of Data Mining, Vol. 2, No., September 202 Applications of Number Theory in Statistics A.M.S. Ramasamy Abstract--- There have been several fascinating applications of Number

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Asia Pacific Journal of Multidisciplinary Research, Vol 3, No 4, November 05 Part I On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Romer C Castillo, MSc Batangas

More information

OEIS A I. SCOPE

OEIS A I. SCOPE OEIS A161460 Richard J. Mathar Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands (Dated: August 7, 2009) An overview to the entries of the sequence A161460 of the Online Encyclopedia of

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

On Diophantine m-tuples and D(n)-sets

On Diophantine m-tuples and D(n)-sets On Diophantine m-tuples and D(n)-sets Nikola Adžaga, Andrej Dujella, Dijana Kreso and Petra Tadić Abstract For a nonzero integer n, a set of distinct nonzero integers {a 1, a 2,..., a m } such that a i

More information

QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS. Alain Lasjaunias

QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS. Alain Lasjaunias QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS Alain Lasjaunias 1991 Mathematics Subject Classification: 11J61, 11J70. 1. Introduction. We are concerned with diophantine approximation

More information

CHAPTER 1 REAL NUMBERS KEY POINTS

CHAPTER 1 REAL NUMBERS KEY POINTS CHAPTER 1 REAL NUMBERS 1. Euclid s division lemma : KEY POINTS For given positive integers a and b there exist unique whole numbers q and r satisfying the relation a = bq + r, 0 r < b. 2. Euclid s division

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

Solutions of the Diophantine Equation p x + (p+6) y = z 2 when p, (p + 6) are Primes and x + y = 2, 3, 4

Solutions of the Diophantine Equation p x + (p+6) y = z 2 when p, (p + 6) are Primes and x + y = 2, 3, 4 Annals of Pure and Applied Mathematics Vol. 17, No. 1, 2018, 101-106 ISSN: 2279-087X (P), 2279-0888(online) Published on 3 May 2018 www.researchmathsci.g DOI: http://dx.doi.g/10.22457/apam.v17n1a11 Annals

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

MINIMAL NUMBER OF GENERATORS AND MINIMUM ORDER OF A NON-ABELIAN GROUP WHOSE ELEMENTS COMMUTE WITH THEIR ENDOMORPHIC IMAGES

MINIMAL NUMBER OF GENERATORS AND MINIMUM ORDER OF A NON-ABELIAN GROUP WHOSE ELEMENTS COMMUTE WITH THEIR ENDOMORPHIC IMAGES Communications in Algebra, 36: 1976 1987, 2008 Copyright Taylor & Francis roup, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870801941903 MINIMAL NUMBER OF ENERATORS AND MINIMUM ORDER OF

More information

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF. Zrinka Franušić and Ivan Soldo

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF. Zrinka Franušić and Ivan Soldo THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q( ) Zrinka Franušić and Ivan Soldo Abstract. We solve the problem of Diophantus for integers of the quadratic field Q( ) by finding a D()-quadruple in Z[( + )/]

More information

GENERALIZED PALINDROMIC CONTINUED FRACTIONS

GENERALIZED PALINDROMIC CONTINUED FRACTIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 48, Number 1, 2018 GENERALIZED PALINDROMIC CONTINUED FRACTIONS DAVID M. FREEMAN ABSTRACT. In this paper, we introduce a generalization of palindromic continued

More information

Appendix G: Mathematical Induction

Appendix G: Mathematical Induction Appendix G: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

Monochromatic 4-term arithmetic progressions in 2-colorings of Z n

Monochromatic 4-term arithmetic progressions in 2-colorings of Z n Monochromatic 4-term arithmetic progressions in 2-colorings of Z n Linyuan Lu Xing Peng University of South Carolina Integers Conference, Carrollton, GA, October 26-29, 2011. Three modules We will consider

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX #A05 INTEGERS 9 (2009), 53-64 TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 shattuck@math.utk.edu

More information

, 500, 250, 125, , 2, 4, 7, 11, 16, , 3, 9, 27, , 3, 2, 7, , 2 2, 4, 4 2, 8

, 500, 250, 125, , 2, 4, 7, 11, 16, , 3, 9, 27, , 3, 2, 7, , 2 2, 4, 4 2, 8 Warm Up Look for a pattern and predict the next number or expression in the list. 1. 1000, 500, 250, 125, 62.5 2. 1, 2, 4, 7, 11, 16, 22 3. 1, 3, 9, 27, 81 4. 8, 3, 2, 7, -12 5. 2, 2 2, 4, 4 2, 8 6. 7a

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Certain Diophantine equations involving balancing and Lucas-balancing numbers

Certain Diophantine equations involving balancing and Lucas-balancing numbers ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 0, Number, December 016 Available online at http://acutm.math.ut.ee Certain Diophantine equations involving balancing and Lucas-balancing

More information

Math 3000 Section 003 Intro to Abstract Math Homework 6

Math 3000 Section 003 Intro to Abstract Math Homework 6 Math 000 Section 00 Intro to Abstract Math Homework 6 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 01 Solutions April, 01 Please note that these solutions are

More information

Matrix operations on generator matrices of known sequences and important derivations

Matrix operations on generator matrices of known sequences and important derivations 2016; 2(7): 933-938 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2016; 2(7): 933-938 www.allresearchjournal.com Received: 13-05-2016 Accepted: 14-06-2016 Sneha S Kadiya Research

More information

ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME SUMS OF COMPLEMENTARY DIVISORS

ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME SUMS OF COMPLEMENTARY DIVISORS Math. J. Okayama Univ. 60 (2018), 155 164 ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME SUMS OF COMPLEMENTARY DIVISORS Kenichi Shimizu Abstract. We study a class of integers called SP numbers (Sum Prime

More information

ON THE CONTINUED FRACTION EXPANSION OF THE UNIQUE ROOT IN F(p) OF THE EQUATION x 4 + x 2 T x 1/12 = 0 AND OTHER RELATED HYPERQUADRATIC EXPANSIONS

ON THE CONTINUED FRACTION EXPANSION OF THE UNIQUE ROOT IN F(p) OF THE EQUATION x 4 + x 2 T x 1/12 = 0 AND OTHER RELATED HYPERQUADRATIC EXPANSIONS ON THE CONTINUED FRACTION EXPANSION OF THE UNIQUE ROOT IN F(p) OF THE EQUATION x 4 + x 2 T x 1/12 = 0 AND OTHER RELATED HYPERQUADRATIC EXPANSIONS by A. Lasjaunias Abstract.In 1986, Mills and Robbins observed

More information

A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION. 1. Introduction. 1 n s, k 2 = n 1. k 3 = 2n(n 1),

A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION. 1. Introduction. 1 n s, k 2 = n 1. k 3 = 2n(n 1), Journal of Mathematical Inequalities Volume, Number 07, 09 5 doi:0.753/jmi--0 A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION LIN XIN AND LI XIAOXUE Communicated by J. Pečarić Abstract. This paper,

More information