Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings

Size: px
Start display at page:

Download "Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings"

Transcription

1 Joural of Algebra 212, Artcle ID jabr , avalable ole at o Necessary ad Suffcet Codtos for the CoheMacaulayess of Form Rgs Eero Hyry Natoal Defese College, Satahama, FIN-00860, Helsk, Flad E-mal: eero.hyry@helsk.f Commucated by Crag Hueke Receved December 18, 1997 Let A be a CoheMacaulay local rg wth a fte resdue feld ad let I A be a deal of heght h 0. Supposg that depth AI s hgh eough for certa values of, we gve ths paper ecessary ad suffcet codtos for the form rg gr Ž I. A to be CoheMacaulay wth a-varat h or h Academc Press INTRODUCTION Let A be a CoheMacaulay local rg of dmeso d wth a fte resdue feld ad let I A be a deal of postve heght h ad aalytc 1 spread l. Let G deote the form rg gra I I I.Itsa mportat questo commutatve algebra to fd out whe G s CoheMacaulay. I recet years may authors have studed ths questo the case I s geercally a complete tersecto or has geercally reducto umber oe. Recall here that a deal J I s sad to be a reducto of I f I 1 JI for 0 ad that the reducto umber r Ž I. J s the smallest teger wth ths property. Startg from the assumpto that depth AI s hgh eough for certa values of, they have foud suffcet codto for the CoheMacaulayess of G terms of local reducto umbers of I. For the latest developmet of ths research, tated by Huckaba ad Hueke 10, 11, see, e.g., 12, 1, 2, 6. The purpose of ths paper s to provde ecessary ad suffcet codtos for the CoheMacaulayess of G the above settg. At the same tme we wat to pot out how the depth of G depeds o vashg of homogeeous compoets of the graded local cohomology wth respect to $30.00 Copyrght 1999 by Academc Press All rghts of reproducto ay form reserved.

2 18 EERO HYRY the rrelevat deal. Whe the deal I s equmultple,.e., l h, ecessary ad suffcet codtos for the CoheMacaulayess of G has bee gve by Valabrega ad Valla 18. Ths well-kow result says that f Ž a,...,a. 1 l s a mmal reducto of I, the G s CoheMacaulay f ad 2 oly f a 1,...,al s a regular sequece ad a 1,...,al I Ž a. 1,...,al I 1 for all 0. We ow descrbe the results of ths paper more precsely. By the theorem of Serre we kow that the local cohomology wth respect to the rrelevat deal vashes all hgh degrees. Supposg that ths vashg happes degrees where 0, we show our Theorem 2.3 that f depth AI d q for some q h 1 ad all 1,...,d q 1, the depth G mž d q, d.. The proof of ths result reles o Lemma 2.1, whch deals wth vashg propertes of the sheaf cohomology wth supports. By utlzg the theory of flter-regular sequeces, 4 we ca the show Corollary 2.5 that f q h 1, h ad depth AI d q for 1,...,l q, the G s CoheMacaulay wth a-varat h or h 1 f ad oly f some Ž ad the also every. mmal reducto J I satsfes the codtos: Ž. 1 There exsts a geeratg set a,...,a 4 1 l of J such that Ž q. q a a,...,a I : a I Ž a,...,a. I q1 Ž ,...,l. Ž b. Ž a,...,a. I q I q2 Ž a,...,a. I q1 Ž 1 1 q,..., l 1;. Ž. 2 r Ž I. J l q. Fally, we expla Remark 2.8 why the suffcet codtos gve 12, 1, 2, 6 mply the codtos of Corollary PRELIMINARIES I the followg we assume that all rgs are Noethera. Let S be a stadard graded rg defed over a local rg Ž A,.. By the word stadard we mea here that S S s ftely geerated over S0 A by elemets of S 1. The rrelevat deal of S s deoted by S as usual. Let be the homogeeous maxmal deal of S. Let X Proj S ad E X A. Let M be a graded S-module ad let M A deote the assocated sheaf of OX-modules. We eed to compare the graded local cohomology wth the sheaf cohomology wth supports E. Recall from 15 that ths ca be doe by meas of the Sacho de Salas sequece H Ž M. H Ž M. H X, M. E

3 COHENMACAULAYNESS OF FORM RINGS 19 Note that f M 0 for some, the H Ž M. H ŽX, M. for all 0. Let S be a homogeeous deal. Let 0. The th a-arat of S wth respect to s 1 E ½ 5 a, S sup H S 0. Of course we thk here maly the case S or. I the latter case we call a Ž, S. the a-arat of S ad deote t by as dm S as usual. I comparg the a-varats wth respect to S ad we eed the followg lemma, whch s closely related to 15, Theorem LEMMA. Let S be a stadard graded rg defed oer a local rg Ž A,.. Let be the homogeeous maxmal deal of S. Let X Proj S ad E X A A. Let M be a graded S-module. Let. The the followg codtos are equalet: Ž. 1 H Ž M. 0 for all 0; Ž. 2 The caocal homomorphsm H Ž M. H ŽX, M. E s a somorphsm for all 0; Ž. 3 The caocal homomorphsm M ŽX, M. s a somor- phsm ad H ŽX, M. 0 for 0; Ž. 4 H Ž M. 0 for all 0. Proof. sequece S The equvalece of Ž. 1 ad Ž. 2 follows from the Sacho de Salas H Ž M. H Ž M. H X, M E whereas the equvalece of Ž. 3 ad Ž. 4 s mmedate from the exact sequece H M M X, M H S S M 0 1 Ž. S ad the somorphsms H M H X, M 1. The proof ca ow be completed by usg the followg lemma whch s a modfcato of 15, Lemma 4.2 ad ca be proved the same way LEMMA. Wth the otato of Lemma 1.1 the followg codtos are equalet for all. Ž. 1 The caocal morphsm R H Ž M. R ŽX, M. s a somorphsm; Ž. 2 The caocal morphsm M RŽX, M. s a somorphsm. 0 E

4 20 EERO HYRY! Moreoer, f A has a ormalzed dualzg complex R, ad R f R X where f: X Spec A s the caocal projecto s the duced dualzg complex o X, the both codtos are equalet to Ž. 3 The caocal morphsm s a somorphsm. Ž. R Hom MŽ., R R Hom R X, MŽ., R X X A R Hom A Ž M, R. It s coveet to troduce the followg varat Žcf. 13. : 1.3. DEFINITION. Let S be a stadard graded rg defed over a local rg Ž A,.. Set 4 S max a S, S 0,...,l S. Here ls dm SS deotes the aalytc spread of S. Note that we always have H Ž S. 0 for ls Žuse, for example, S 7, Corollare Ž PROPOSITION. Let S be a stadard graded rg defed oer a local rg Ž A,.. The až S. Ž S.. If S s CoheMacaulay, the až S. Ž S.. Proof. The equalty as Ž S. mmedately follows from the spectral sequece p, q p q pq E H H 2 S S H S, where s the homogeeous maxmal deal of S. IfS s CoheMacaulay, the H Ž S. 0 for all 0 ad as. Accordg to Lemma 1.1 ths meas that also H Ž S. 0 for all 0 ad as. S Ths mples that a ŽS, S. as for all 0 as eeded Remark. Let S be a stadard graded rg defed over a local rg A,.IfS s CoheMacaulay, the as ht S. Whe I A s a deal of postve heght such that gr Ž I. A s CoheMacaulay, ths gves partcular that agr Ž Ž I.. A ht I. To see ths, ote frst that by movg to the fathfully flat exteso At Atwhere t s a varable, we ca assume that the resdue feld of A s fte. Set h ht S ad choose a regular sequece Ž s,...,s. 1 h S1 Žsee 4, Proposto Set T SŽ s,...,s..as at as 1 h h Žsee 19, Remark , t s eough to show that at 0. Cosder the exact sequece 0 K T A 0.

5 COHENMACAULAYNESS OF FORM RINGS 21 Sce dm T dm A, the correspodg log exact sequece of cohomoldm T dm ogy gves us a epmorphsm H T H A Ž A. where s the dm homogeeous maxmal deal of S. As H A Ž A. 0, we see that also dm H T Ž T. 0, whch mples that at 0 as wated. 0 We ext recall the oto of flter-regularty. Let z 1,..., zr S be homogeeous elemets. Let t,...,t, 4. Followg 1 r 3 we say that the sequece Ž z,..., z. s t,...,t -regular f 1 r 1 r Ž z,..., z.: z Ž z,..., z for t Ž 1,...,r.. The sequece Ž z,..., z. 1 r s called flter-regular f t s t,...,t -regular for some t,...,t. We deote 1 r 1 r Ž z,..., z. f m Ž z,..., z. : z 1 r 1 1 Ž z 1,..., z1. for m 4 for 1,...,r ad call,..., the flter-regularty of Ž z,..., z. 1 r 1 r. Flter-regularty s closely coected to the a-varats a ŽS, S LEMMA. Let S be a stadard graded rg defed oer a local rg A, whch has a fte resdue feld. Set l ls. Let Z S be a mmal reducto geerated by elemets of degree oe. Choose a flter-regular sequece Ž z,..., z. 1 l cosstg of degree oe elemets whch geerate Z Žsee, e. g., 17, Lemma The Ž S. t f ad oly f Ž z,..., z. 1 l s t, t 1,...,tl 1-regular ad r ŽS. t l. Proof. We kow by 17, Proposto 2.2 that max Ž z,..., z. j 1,..., Z ½ j 1 l 5 max½ajž S, S. j 1 j 0,...,15 for all 1,...,l. It follows by ducto o that the codtos a ŽS, S. t Ž j 0,...,1. ad Ž z,..., z. t j 1 Ž j 1,...,. j j 1 l are equvalet for all 1,...,l. So ½ 5 max aj S, S j 0,...,l 1 t f ad oly f Ž z,..., z. s t, t 1,...,tl 1 1 l -regular. If ths s the case, the by 17, Proposto 3.2 ½ 5 al S, S l rz S max aj S, S j j 0,...,l 4 max t l 1, a Ž S, S. l l

6 22 EERO HYRY from whch we see that a ŽS, S. t f ad oly f r ŽS. l Z t l. The lemma has therefore bee prove. The followg lemma ca be proved the same way as 9, Lemma LEMMA. Let Ž A, m. be a local rg ad let I A be a deal. Let 2 a,...,a be a mmal reducto of I ad set a a I gr Ž I. 1 l A 1 Ž 1,...,l.. Let t t. The Ža,...,a. s t,...,t 1 l 1 l 1 l -regular f ad oly f the followg codtos are satsfed for 1,..., l ad t : Ž. 1 a 1,...,a1 I : a I a 1,...,a1 I 1 Ž. 2 Ž a,...,a. I I 2 Ž a,...,a. I THE MAIN RESULT We beg wth two lemmas LEMMA. Let S be a stadard graded rg defed oer a local rg Ž A,. whch has a fte resdue feld. Set X Proj S ad E X A A. Let F be a coheret OX-module. Suppose that there exsts m ad p such that H ŽX, F Ž m.. 0 for all p. The H ŽX, F Ž E E.. 0 for all p ad m. Proof. We use ducto o dm Supp F. I the case dm Supp F 1 e., Supp F. the clam s trval. We ca thus assume that F 0. Wrte F M where M s a ftely geerated graded S-module. By prme avodace we ca fd a elemet s S1 such that s P whe P Ass M ad S P. Set Y V Ž s. ad G j*f where j: Y X s the cluso. The dm Supp G dm Supp F 1 ad there s for all a exact sequece 0 FŽ 1. F j G 0. From the correspodg cohomology sequece we obta the exact sequece HE Ž X, FŽ 1.. HE Ž X, F. HE Ž Y, G. H 1 Ž X, FŽ 1... H 1 Y, G E E By takg m, ths sequece frst mples that H ŽY, GŽ m.. E 0 for all p 1. By the ducto hypothess we the have H Ž E Y, GŽ.. 0 for all p 1 ad m. Fally, usg ducto o ad lookg the sequece aga we see that H ŽX, FŽ.. E 0 for all p ad m.

7 COHENMACAULAYNESS OF FORM RINGS 23 The ext lemma s 14, Lemma LEMMA. Let A be a local rg ad let I A be a deal of poste heght. Let be the homogeeous maxmal deal of gr Ž I. A. Set g depth gr Ž I.. If g depth A, the a Ž, gr Ž I.. a Ž, gr Ž I.. A g A g1 A. We ca ow prove the followg theorem whch relates the varat Žgr Ž I.. of Defto 1.3 to the depth of gr Ž I. A A THEOREM. Let Ž A,. be a CoheMacaulay local rg of dmeso d ad let I A be a deal of poste heght. Set h ht I, l lž I., ad Ž. gra I. Let q h 1. Suppose that depth AI d q for 1,...,dq1. If 0, the depth gr Ž I. mž d q, d. A. Proof. By movg to the fathfully flat exteso A t At where t s a varable, t s possble to assume that the resdue feld of A s fte. Set G gr Ž I. A ad let be the homogeeous maxmal deal of G. Also set X Proj G ad E X A A. Let us frst show that depth G d q 1. As a ŽG, G. for all 0, we kow that H Ž G. G 0 for all 0 ad 1. Lemma 1.1 the mples that also H Ž G. 0 for all 0 ad 1. We therefore eed to show that H Ž G. 0 for 0 d q 1 ad. As 0, ths s the same as H ŽX, O. E X 0 for 0 d q 2 ad. By Lemma 2.1 t s eough to prove that H ŽX, O Ž d q 2.. E X 0 for all d q 2. By Lemma 1.1 we also have H ŽX, O. H Ž G. E X for all 0 ad 1. Ths mmedately mples that H ŽX, O Ž d q 2.. E X 0 for d q 2 d q 2. Suppose d q 2. By lookg at the log exact sequece of cohomology correspodg to the exact sequece 0 I I 1 AI 1 AI 0, we see that the assumpto mples that depth I I 1 d q 1 for 0,...,dq2. Hece depth Gdq2 1, ad we obta H Ž G. dq2 0 as eeded. Suppose the that we would have depth G d q 1 d. Accordg to Lemma 2.2 ths mples that a Ž, G. a Ž, G. dq1 dq so that Ž. dq2 dq1 HE X, OX H G 0. Hece H ŽX, O Ž d q 2.. E X 0 for all d q 2. But t the follows from Lemma 2.1 that Ž. dq1 dq2 H G HE X, OX 0 for all, whch s a cotradcto.

8 24 EERO HYRY We are ow gog to gve ecessary ad suffcet codtos for the CoheMacaulayess of gr Ž I. A. To ths purpose we eed the followg techcal lemma LEMMA. Let A be a CoheMacaulay local rg of dmeso d ad let I A be a deal. Let J Ž a,...,a. 1 l be a mmal reducto of I wth reducto umber r l. Set J Ž a,...,a. 1 for 0,...,l. Let q be a Ž. 1 teger wth 0 q l r. Suppose that J1 I : a I J1 I for 1,...,l ad q. If depth AI d q for 1,...,l q, the depth AI d q 1 for all l q 1,...,dq. Proof. As I JI l 1 for l q 1, we ca prove the clam by showg that depth AJ I d q for all 1,...,l ad q. Assume the cotrary. Take the smallest gvg a couterexample. For ths, choose to be mmal. Cosder the exact sequeces 0 I J1 I 1 AJ1 I 1 AI 0 ad 0 JI J1 I AJ1 I AJ I 0. Ž. 1 The assumpto J I : a I J I for q mples that 1 1 a the epmorphsm I JI J I duces a somorphsm I J I JI J1 I. Whe 1, the above sequeces mply that depth AJ1 I depth AI. But for l q, we have depth AI d q by assumpto. Moreover, the case l q 1 our choce of would gve depth AI depth AJl I 1 d q 1. Ths meas that ecessarly 1. By the choce of ad we ow have depth AJ I 1 d q 1 ad depth AJ1 I d q. As also depth AI depth AJ1 I d q, t thus follows from the above exact se- queces that depth AJ I d q, whch s a cotradcto. The clam has thus bee prove COROLLARY. Let Ž A,. be a CoheMacaulay local rg of dmeso d wth a fte resdue feld ad let I A be a deal of poste heght. 4 Set h ht I ad l l I. Let q h 1, h. Suppose that depth AI d q for 1,...,l q. The gr Ž I. A s CoheMacaulay wth agr Ž Ž I.. q f ad oly f some Ž ad the also eery. A mmal reducto J I satsfes the codtos Ž. 1 There exsts a geeratg set a,...,a 4 1 l of J such that Ž q. q a a,...,a I : a I Ž a,...,a. I q1 Ž ,...,l. Ž b. Ž a,...,a. I q I q2 Ž a,...,a. I q1 Ž 1 1 q,..., l 1;. Ž. 2 r Ž I. J l q. 1

9 Proof. COHENMACAULAYNESS OF FORM RINGS 25 Let us frst show that f Ž. 2 holds, the Ž. 1 s equvalet to Ž 1. There exsts a geeratg set a,...,a 4 1 l of J such that Ž. a a 1,...,a1 I : a I a 1,...,a1 I 1 Ž b. Ž a. 2 1,...,a I I a 1,...,a I 1 for all 1,...,l ad q. It s eough to prove that Ž. 1 mples Ž 1.. We use ducto o. Whe q, everythg s clear by assumpto. Note that Ž b. holds ths case trvally for l because of Ž. 2. Suppose thus that q. Cosder frst codto Ž a.. The ducto hypothess ow says that ad Therefore Ž a,...,a. I 1 : a I 1 Ž a,...,a. I Ž a 1,...,a1. I 2 I Ž a 1,...,a1. I 1. Ž 1 1. Ž 1 1. Ž a,...,a. I : a I Ž a,...,a. I 1 : a I Ž a 1,...,a1. I 1 mplyg Ž a.. I order to prove codto Ž b. take x Ž a. 1,...,a I I 2.As Ž a 1,...,a. I I 2 Ž a 1,...,a1. I I 2 Ž a 1,...,a1. I 1 by the ducto hypothess, we ca wrte x 1a1 a 1a1 where 1,...,, 1 I 1. But by usg the ducto hypothess aga, we get Ž a,...,a. I : a I 1 Ž a,...,a. I 1 I Ž a 1,...,a. I. Hece x Ž a,...,a. I 1, whch proves Ž b Set G gra I, ad a* a I G1 for a I as usual. It s well kow that f J I s ay mmal reducto, the t s always possble to fd geerators a,...,a J such that the sequece Ža,...,a. 1 l 1 l s flterregular Žsee 17, Lemma By Lemma 1.7 codto Ž 1. meas that Ža,...,a. s q 1,...,q l 1 l -regular. Accordg to Lemma 1.6 codtos Ž. 1 ad Ž. 2 are the equvalet to Ž G. q. I the case G s CoheMacaulay we kow by Proposto 1.4 that ag Ž G.. It therefore remas to show that Ž G. q mples the CoheMacaulayess of G. Note that by Lemma 2.4 we obta depth AI d q for all 1,...,dq1. Thus we may apply Theorem 2.3 to get the clam.

10 26 EERO HYRY 2.6. Remark. Foret has defed 5 the oto of a relatve regular sequece: Let A be a rg, M a A-module, ad N M a submodule. If a,...,a A, Ž a,...,a. 1 r 1 r s sad to be a relatve M-regular sequece wth respect to N f x N ad axž a,...,a. 1 1 N mples x Ž a,...,a. M for 1,...,r. We thus see that codto Ž 1.Ž a the proof of Corollary 2.5 meas that a 1,...,a s a relatve I -regular sequece wth respect to I for 1,...,l ad q Remark. I the stuato of Corollary 2.5 we always have rž I. 1 for all M AI such that ht h. Ideed, by usg the fact that the a-varat does ot crease by localzato, we get agr Ž Ž I.. A h 1 for all M AI. But the by 17, Proposto 3.2, rž I. agr Ž Ž I.. h 1. A 2.8. Remark. Goto et al. have gve 6, Theorem 1.1 suffcet codtos for the CoheMacaulay property of gr Ž I. A. Ths result covers all the earler results metoed the troducto. I ths remark we wat to expla why these codtos mply those of Corollary 2.5. As before, let Ž A,. be a CoheMacaulay local rg of dmeso d wth a fte resdue feld ad let I A be a deal of postve heght. Set h ht I ad l lž I.. Let J I be a mmal reducto. Gve a geeratg set a,...,a 4 of J, set J Ž a,...,a. 1 l 1. It s possble to choose a,...,a such a way that the followg codtos hold 6, Lemma 2.1 : 1 l Set Ž. 1 J s a reducto of I for ay VŽ I. ad ht l; Ž. 2 a f Ass AJ VŽ I. for ay 1 l. 1 ½ 5 r max r I VŽ I.,ht Ž 1,...,l.. J Let 0 r l h 1. The result of Goto et al. ow says that f the codtos Ž. 1 depth AI d l r for 1 r; Ž. 2 r max0, l r4 for all h l; Ž. 3 AJ : I s CoheMacaulay for h l r 1; Ž. 4 r Ž I. r J are satsfed, the gr Ž I. A s CoheMacaulay. It s show 6, Lemma 3.1 ad Corollary 3.3 that codtos Ž. 1 Ž mply J I JI ad J 1 : a I J1 I for 1,...,l ad l r. Therefore also the codtos of Corollary 2.5 hold for q l r.

11 COHENMACAULAYNESS OF FORM RINGS 27 REFERENCES 1. K. M. Aberbach, Local reducto umbers ad CoheMacaulayess of assocated graded rgs, J. Algebra 178 Ž 1995., I. M. Aberbach, Cohe-Macaulay assocated graded rgs for deals whch are ot geerc complete tersectos, Comm. Algebra 23 Ž 1995., I. M. Aberbach ad C. Hueke, A mproved BraçoSkoda theorem wth applcatos to the CoheMacaulayess of Rees algebras, Math. A. 297 Ž 1993., W. Brus ad J. Herzog, CoheMacaulay Rgs, Cambrdge Uv. Press, Cambrdge, M. Foret, O relatve regular sequeces, J. Algebra 18 Ž 1971., S. Goto, Y. Nakamura, ad K. Nshda, CoheMacaulay graded rgs assocated to deals, Amer. J. Math. 118 Ž 1996., A. Grothedeck ad J. Deudoe, Elemets de Geometre Algebrque III, Ist. Hautes Etudes Sc. Publ. Math. 11 Ž 1961.; 17 Ž M. Herrma, S. Ikeda, ad U. Orbaz, Equmultplcty ad Blowg Up, Sprger- Verlag, BerlHedelbergNew York, M. Herrma ad E. Hyry, Flter-regularty ad CoheMacaulay multgraded Rees algebras, Comm. Algebra 24 Ž 1996., S. Huckaba ad C. Hueke, Powers of deals havg small aalytc devato, Amer. J. Math. 114 Ž 1992., S. Huckaba ad C. Hueke, Rees algebras of deals havg small aalytc devato, Tras. Amer. Math. Soc. 339 Ž 1993., M. Johso ad B. Ulrch, ArtNagata propertes ad CoheMacaulay assocated graded rgs, Composto Math. 103 Ž 1996., T. Korb, O a-ivarats, Flter-Regularty ad the CoheMacaulayess of Graded Algebras, Thess, Uv. of Cologe, T. Korb ad Y. Nakamura, O the CoheMacaulayess of mult-rees algebras ad Rees algebras of powers of deals, J. Math. Soc. Japa 50 Ž 1998., J. Lpma, Cohe-Macaulayess graded algebras, Math. Res. Lett. 1 Ž 1994., D. G. Northcott ad D. Rees, Reductos of deals local rgs, Math. Proc. Cambrdge Phlos. Soc. 50 Ž 1954., N. V. Trug, Reducto expoet ad degree boud for the defg equatos of graded rgs, Proc. Amer. Math. Soc. 101 Ž 1987., P. Valabrega ad G. Valla, Form rgs ad regular sequeces, Nagoya Math. J. 72 Ž 1978., W. V. Vascocelos, Arthmetc of Blowup Algebras, Lodo Math. Soc. Lecture Note Ser., Vol. 195, Cambrdge Uv. Press, Cambrdge, 1994.

On a-invariant Formulas

On a-invariant Formulas Joural of Algebra 227, 25267 2000 do:10.1006jabr.1999.8236, avalable ole at http:www.dealbrary.com o O a-ivarat Formulas Mafred Herrma 1 Mathematsches Isttut der Uerstat zu Kol, Weyertal 8690, 50931 Cologe,

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

13. Dedekind Domains. 13. Dedekind Domains 117

13. Dedekind Domains. 13. Dedekind Domains 117 3. Dedekd Domas 7 3. Dedekd Domas I the last chapter we have maly studed -dmesoal regular local rgs,. e. geometrcally the local propertes of smooth pots o curves. We ow wat to patch these local results

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia JKAU: Sc., O vol. the Prmtve, pp. 55-62 Classes (49 of A.H. K (BU) / 999 A.D.) * 55 O the Prmtve Classes of K * (BU) KHALED S. FELALI Departmet of Mathematcal Sceces, Umm Al-Qura Uversty, Makkah Al-Mukarramah,

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Derived Limits in Quasi-Abelian Categories

Derived Limits in Quasi-Abelian Categories Prépublcatos Mathématques de l Uversté Pars-Nord Derved Lmts Quas-Abela Categores by Fabee Prosmas 98-10 March 98 Laboratore Aalyse, Géométre et Applcatos, UMR 7539 sttut Gallée, Uversté Pars-Nord 93430

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Koszul Cycles and Eliahou Kervaire Type Resolutions

Koszul Cycles and Eliahou Kervaire Type Resolutions JOURNAL OF ALGEBRA 181, 347370 1996 ARTICLE NO. 0124 Koszul Cycles ad ElahouKervare Type Resolutos Aetta Aramova*, Isttute of Mathematcs, Bulgara Academy of Sceces, Academk G. Boche Street, bl. 8, BG-1113

More information

Generalized Weyl Algebras Are Tensor Krull Minimal

Generalized Weyl Algebras Are Tensor Krull Minimal Joural of Algebra 239, 93111 2001 do:10.1006jabr.2000.8641, avalable ole at http:www.dealbrary.com o Geeralzed Weyl Algebras Are Tesor Krull Mmal V. V. Bavula 1 Departmet of Pure Mathematcs, Uersty of

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Journal of Algebra 323 (2010) Contents lists available at ScienceDirect. Journal of Algebra.

Journal of Algebra 323 (2010) Contents lists available at ScienceDirect. Journal of Algebra. Joural of Algebra 323 (2010) 2257 2269 Cotets lsts avalable at SceceDrect Joural of Algebra www.elsever.com/locate/jalgebra Fotae rgs ad local cohomology Paul C. Roberts Uversty of Utah, Departmet of Mathematcs,

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi Faculty of Sceces ad Matheatcs, Uversty of Nš, Serba Avalable at: http://wwwpfacyu/float Float 3:3 (009), 303 309 DOI:098/FIL0903303J SUBCLASS OF ARMONIC UNIVALENT FUNCTIONS ASSOCIATED WIT SALAGEAN DERIVATIVE

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Prime and Semi Prime Subbi-Semi Modules of (R, R) Partial Bi-Semi Modules 1

Prime and Semi Prime Subbi-Semi Modules of (R, R) Partial Bi-Semi Modules 1 Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved http://wwwcsouralorg Prme ad Sem Prme Subb-Sem Modules of (R, R) Partal B-Sem

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

About k-perfect numbers

About k-perfect numbers DOI: 0.47/auom-04-0005 A. Şt. Uv. Ovdus Costaţa Vol.,04, 45 50 About k-perfect umbers Mhály Becze Abstract ABSTRACT. I ths paper we preset some results about k-perfect umbers, ad geeralze two equaltes

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

Packing of graphs with small product of sizes

Packing of graphs with small product of sizes Joural of Combatoral Theory, Seres B 98 (008) 4 45 www.elsever.com/locate/jctb Note Packg of graphs wth small product of szes Alexadr V. Kostochka a,b,,gexyu c, a Departmet of Mathematcs, Uversty of Illos,

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS M.A./M.Sc. Mathematcs (Fal) MM-50 Drectorate of Dstace Educato Maharsh Dayaad Uversty ROHTAK 4 00 Copyrght 004, Maharsh Dayaad Uversty, ROHTAK All Rghts Reserved.

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

A Characterization of Jacobson Radical in Γ-Banach Algebras

A Characterization of Jacobson Radical in Γ-Banach Algebras Advaces Pure Matheatcs 43-48 http://dxdoorg/436/ap66 Publshed Ole Noveber (http://wwwscrporg/joural/ap) A Characterzato of Jacobso Radcal Γ-Baach Algebras Nlash Goswa Departet of Matheatcs Gauhat Uversty

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

E be a set of parameters. A pair FE, is called a soft. A and GB, over X is the soft set HC,, and GB, over X is the soft set HC,, where.

E be a set of parameters. A pair FE, is called a soft. A and GB, over X is the soft set HC,, and GB, over X is the soft set HC,, where. The Exteso of Sgular Homology o the Category of Soft Topologcal Spaces Sad Bayramov Leoard Mdzarshvl Cgdem Guduz (Aras) Departmet of Mathematcs Kafkas Uversty Kars 3600-Turkey Departmet of Mathematcs Georga

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

The Brunn Minkowski Inequality, Minkowski s First Inequality, and Their Duals 1

The Brunn Minkowski Inequality, Minkowski s First Inequality, and Their Duals 1 Joural of Mathematcal Aalyss ad Applcatos 245, 502 52 2000 do:0.006 jmaa.2000.6774, avalable ole at http: www.dealbrary.com o The Bru Mkowsk Iequalty, Mkowsk s Frst Iequalty, ad Ther Duals R. J. Garder

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE G. ANDROULAKIS, E. ODELL, TH. SCHLUMPRECHT, N. TOMCZAK-JAEGERMANN Abstract We study some questos cocerg the structure of the set of spreadg models

More information

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form Hypersurfaces wth Costat Scalar Curvature a Hyperbolc Space Form Lu Xm ad Su Wehog Abstract Let M be a complete hypersurface wth costat ormalzed scalar curvature R a hyperbolc space form H +1. We prove

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY ON THE DEFINITION OF KAC-MOODY 2-CATEGORY JONATHAN BRUNDAN Abstract. We show that the Kac-Moody 2-categores defed by Rouquer ad by Khovaov ad Lauda are the same. 1. Itroducto Assume that we are gve the

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

PPCP: The Proofs. 1 Notations and Assumptions. Maxim Likhachev Computer and Information Science University of Pennsylvania Philadelphia, PA 19104

PPCP: The Proofs. 1 Notations and Assumptions. Maxim Likhachev Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 PPCP: The Proofs Maxm Lkhachev Computer ad Iformato Scece Uversty of Pesylvaa Phladelpha, PA 19104 maxml@seas.upe.edu Athoy Stetz The Robotcs Isttute Carege Mello Uversty Pttsburgh, PA 15213 axs@rec.r.cmu.edu

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Evaluating Polynomials

Evaluating Polynomials Uverst of Nebraska - Lcol DgtalCommos@Uverst of Nebraska - Lcol MAT Exam Expostor Papers Math the Mddle Isttute Partershp 7-7 Evaluatg Polomals Thomas J. Harrgto Uverst of Nebraska-Lcol Follow ths ad addtoal

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras JOURNAL OF ALGEBRA 183, 898912 1996 ARTICLE NO. 0243 Irreducble Represetatos of Brad Groups va Quatzed Evelopg Algebras Oh Kag Kwo School of Mathematcs ad Statstcs, Uersty of Sydey, Sydey NSW 2006, Australa

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Notes on Generalizations of Local Ogus-Vologodsky Correspondence

Notes on Generalizations of Local Ogus-Vologodsky Correspondence J. Math. Sc. Uv. Tokyo 22 (2015), 793 875. Notes o Geeralzatos of Local Ogus-Vologodsky Correspodece By Atsush Shho Abstract. Gve a smooth scheme over Z/p Z wth a lft of relatve Frobeus to Z/p +1 Z, we

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

Some properties of symmetry classes of tensors

Some properties of symmetry classes of tensors The d Aual Meetg Mathematcs (AMM 07) Departmet of Mathematcs, Faculty of Scece Chag Ma Uversty, Chag Ma Thalad Some propertes of symmetry classes of tesors Kulathda Chmla, ad Kjt Rodtes Departmet of Mathematcs,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph Aals of Pure ad Appled Mathematcs Vol. 3, No., 7, -3 ISSN: 79-87X (P, 79-888(ole Publshed o 3 March 7 www.researchmathsc.org DOI: http://dx.do.org/.7/apam.3a Aals of O Eccetrcty Sum Egealue ad Eccetrcty

More information

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes A^VÇÚO 32 ò 5 Ï 206 c 0 Chese Joural of Appled Probablty ad Statstcs Oct 206 Vol 32 No 5 pp 452-462 do: 03969/jss00-426820605002 Probablstc Meags of Numercal Characterstcs for Sgle Brth Processes LIAO

More information

Polynomial Sequences in Groups

Polynomial Sequences in Groups JOURNAL OF ALGEBRA 201, 189206 1998 ARTICLE NO. JA977269 Polyomal Sequeces Groups A. Lebma* Departmet of Mathematcs, The Oho State Uersty, Columbus, Oho 43210 Commucated by Walter Fet Receved February

More information

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura Statstcs Descrptve ad Iferetal Statstcs Istructor: Dasuke Nagakura (agakura@z7.keo.jp) 1 Today s topc Today, I talk about two categores of statstcal aalyses, descrptve statstcs ad feretal statstcs, ad

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information