Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Size: px
Start display at page:

Download "Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :"

Transcription

1

2 TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric circuits linked by a cmmn variable flux.

3

4 Thery f peratin : The primary cil f the transfrmer is cnnected t a supply f sine wave vltage. an alternating sine wave current will flw in the primary. thus the primary m.m.f ( N.I ) will prduce a cmmn flux ( g ) which is als alternating and in phase with the current accrding t Faraday s law the cmmn flux interesting tw cils will induce in them an alternating e.m.f ( e, e ). e e N d φ e - dt ( ) is an e.m.f f self inductin is an e.m.f f Mutual inductin e - N dφ dt ( ) frm, the transfrmatin rati e e K N N

5 Applying Kirchff s law n the primary circuit. V - e V+ e 0 e.m.f Frm the secndary circuit e v K e e Equivalent circuit : N N V.D V V

6 I 0 : 5 % f rated current. V E + I r + JI X V E + I r + JI X

7 Tansfrmer testing : Determinatin f parameters :

8 Cnnect the primary t a surce f alternating current at nmial vltage the secndary is pen circuit read the magnitude f ( I, V, P ) at n lad. The impeadence f the circuit at n lad. V I Z + Z Z << V Z 0 I Z Z Z Z << Z can be neglected p 0 r ( I ) r X Z + X Z r

9 -Anther methd: P V I is Z cs R φ V I 0 Z P VI cs φ φ cs Fr parallel circuit rm & JXm : Neglect Zm relatin t Z x I a I r φ r m Z I I cs V Ia sin φ cs φ sin φ - P V - V Xm Ir P V I

10 -Shrt circuit test:

11 Cnnect the primary t a reduced vltage ( frm 5 0 % f V ) until the primary current becmes near t the value f the full lad current f the primary. Shrt circuit the secndary winding. Measure ; ( V ) sh.c ( I ) sh.c ( P ) sh.c In the circuit Z, Z are cnnected in parallel Z is f the rder f ( 0 ) relative t Z S the effect f Z can be simplified t the shw figure ( c ). V I sh.c sh.c Z eq Where ; Zeq Req + Jxeq Req r + r x eq x + x

12 P φ ( ) sh.c sh.c x eq ( Z eq V)sh.c ( cs - sin φ I )sh.c ( csφ ) sh.c V P P I sh. c R eq Z eq r r X X r r K cs φ X x eq x k

13 D.C Test :

14 Cnnect the primary cil with a direct current supply. measure the applied vltage and the current. E I r hms The effect f X, X 0 will nt appear when using direct current X Ldi dt I is the cnst. relative t time ] als the effect f r will nt appear because it represent the eddy and hysteresis lsses which are nt existing in the case f direct current they appear nly when there is varialable flux in the cre. Similarly we can determine the resistance f the secndary ( r ) by cnnecting the battery t the terminals f the secndary cil.

15 Vltage regulatin : The vltage regulatin is defined as the change in the secndary vltage f a laded transfrmer when the lad is remved. while the primary vltage is cnstant at it s nminal value. E ( V ) n.l V lad In rder t enable the cmparisn between transfrmers f different wrking vltages, the vltage regulatin in usually expected as percent r a per unit value related t the secndary vltage at lad. usually the vltage regulatins is determined fr full lad cnditins. s t simplify equivalent circuit

16 ( ) V. - V ( ) n L L 00 % V.R V L ( ) V. - V ( ) n L L per unit V.R V L calculatin the effect f I0 is neglected and we get the fllwing simplified equivalent circuit and the crrespnding t it vectr diagram ( Kapp vectr diagram )

17 I neglected : I I Z q Req + JX eq ( r + r ) + J( X + X ) T calculate the vltage regulatin the fllwing value must be determined. V,I cs and Z eq. V V + IReq + JI Xeq V V + IReq + JI Xeq V ( ) ( ) Vcsφ IReq + V sinφ I Xeq Nte: ( V ) n.l V ε ε ε ( V ) n. l (V ) l (V ) l (K V ) n. l (KV ) l (KV ) l ( V ) n. l (V ) l (V ) l V V V -

18 where V is calculated by eq ( ) sme times the quantities knwn are V, I Cs g, Zeq in this case T find the vltage regulatin V we can calculated frm the gemetry as Nte : Parameters r, X, I, E as fllws : V ( ) V cs I R ( V sin I X ) eq + - eq φ φ Where ; I K I r k r, x k x E ke k N N E E V V I I

19 Transfrmer efficiency (η ) : P P utput input P in - lsses P in pcu ( r + r ) P cu I I I req I req This means that if the cu lsses are knwn at a certain lad ( current ), then the cpper lsses can be determined at anther lad. P P ( cu) ( cu) a b ( I ) a ( I )b I : nminal value ( full lad value ) usually the cpper lsses are determined frm a shrt circuit test at a current equal t the full lad r nminal value, accrdingly the equatin can be written as :

20 P ( Pcu) cu f. l ( I) ( I) f. l ( pcu) required ( pcu) I f. l If.l I let X If.l P cu required X ( Pcu) f.l Put ( K.V.A) ut csφ P ut + cnst. lss + culss ( K.V.A ) ut cs φ + P + Pcu ( K.V.A) ut csφ ( K.V.A) ut csφ + + cu p in - lsses p in P X ( K.V.A ) X ( K.V.A ) f.l csφ + f.l p Χ : P csφ + X ( p cu )f.l X ( K.V.A ) f.l csφ X ( K.V.A ) η f.l X ( cu ) f.l csφ p p

21

22 average efficiency fr the transfrmer during day ; η Ttal utput energy thrugh 4 hurs Ttal input energy thrugh 4 hurs the input energy f the transfrmer thrugh the day is equal t the Ttal ut put + Ttal lsses per/day. lsses are cnst. r magnetic ( P ) and are cnstant thrugh the day. the ( electrical r cu ) lsses are variable accrding t the lad ( I ). E.X : 00 K.V.A lighting transfrmer has a full lad lss f 3 K.V.A, the lsses being equally devided between irn and cpper. During a day the transfrmer perates, n full lad fr 3 hurs, ne half fr 4 hurs, the utput being negligible fr the reminder f the day calculate the all day efficiency.

23 Slutin : It shuld be nted that lighting transfrmers are taken t have a lad p.f f unity irn lsses fr 4 hurs.5 x 4 36 K.W.h ( cnst. lsses ) FL.cu lsses.5 K.W Cu lss fr 3 hurs n F.L.5 x k.w.h Cu lss fr half F.L.5 /4 k.w.h Cu lss fr 4 hurs at half the lad (.5 / 4 ) x 4.5 k.w.h Ttal lsses k.w.h Ttal utput ( 00 x3 ) + ( 50 x 4 ) 500 k.w.h η all day 500 x 00 / % Grup numbers : The grup number indicates the phase differience between primary and secndary ( H.T and L.T ) line vltages in electrical degrees. It is smetimes determined as a clck reading each hur is equivalent t 30 phase difference.

24 Y-Y Y cnnectis :

25

26 ( Y )

27 Parallel peratin : In pwer statin transfrmers are usually wrking in parallel in rder t enable the cnnectins r discnnectin f any number f them accrding t their required lad :- The fllwing cnditins must be fulfilled fr crrect parallel peratin :.the transfrmatins ratis must be the same.the grup number must be the same 3.the phase cnnectin must be in same sequence 4.shrt circuit impendence ( Zeq ) must be the same

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Metering Principles & Configurations

Metering Principles & Configurations Metering Principles & Cnfiguratins CT PT Startc Western Energy Cmpany DCS Presenters Western Energy Cmpany Mnte Wilke Electrical Superintendent Curt Brckel Electrical Supervisr Brady Clbert Electrical

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

LECTURES 4 AND 5 THREE-PHASE CONNECTIONS (1)

LECTURES 4 AND 5 THREE-PHASE CONNECTIONS (1) ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURES 4 AND 5 THREEPHASE CONNECTIONS (1) AcknwledgmentThese handuts and lecture ntes given in class are based n material frm Prf. Peter Sauer s ECE 330 lecture

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems Intrductin t Three-hase Circuits Balanced 3-hase systems Unbalanced 3-hase systems 1 Intrductin t 3-hase systems Single-hase tw-wire system: Single surce cnnected t a lad using tw-wire system Single-hase

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 AC Machinery Fundamentals 1 The Vltage Induced in a Rtating Lp e v B ind v = velcity f the cnductr B = Magnetic Flux Density vectr l = Length f the Cnductr Figure 3-1 A simple rtating lp in a

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

EXPERIMENT NO : EM I/1

EXPERIMENT NO : EM I/1 EE 491 ELECTRCL MCHE LB. MUL EXPERMET O : EM /1 TTLE STUDY THE CHRCTERSTCS OF SEPRTELY EXCTED DC GEERTOR OBJECTE : T plt the fllwing characteristics f a separately excited DC generatr. lad characteristics

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations chedule Time Varying electrmagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 nly) 6.3 Maxwell s equatins Wave quatin (3 Week) 6.5 Time-Harmnic fields 7.1 Overview 7.2 Plane Waves in Lssless

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Power Formulas for Various Energy Resources and Their Application

Power Formulas for Various Energy Resources and Their Application EP@BHS-TOPIC 2: Energy, UNIT2.2: Energy Cnversin and Efficiency Page 1 UNIT 2.2 Energy Cnversin and Efficiency Purpse Once energy resurces are effectively utilized, cnversin t ther frms f energy is necessary

More information

A Novel Isolated Buck-Boost Converter

A Novel Isolated Buck-Boost Converter vel slated uck-st Cnverter S-Sek Kim *,WOO-J JG,JOOG-HO SOG, Ok-K Kang, and Hee-Jn Kim ept. f Electrical Eng., Seul atinal University f Technlgy, Krea Schl f Electrical and Cmputer Eng., Hanyang University,

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here)

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here) Making xperimenting with Vltaic Cells I. Basic Cncepts Definitins (sme ideas discussed in class are mitted here) A. Directin f electrn flw psitiveness f electrdes. If ne electrde is mre psitive than anther,

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution)

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution) CBSE Bard Class XII Physics Set 1 Bard Paper 2008 (Slutin) 1. The frce is given by F qv B This frce is at right angles t &. 2. Micrwaves. It is used in radar & cmmunicatin purpses. 3. Or As m e e m S,

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

"NEET / AIIMS " SOLUTION (6) Avail Video Lectures of Experienced Faculty.

NEET / AIIMS  SOLUTION (6) Avail Video Lectures of Experienced Faculty. 07 NEET EXAMINATION SOLUTION (6) Avail Vide Lectures f Exerienced Faculty Page Sl. The lean exressin which satisfies the utut f this lgic gate is C = A., Whichindicates fr AND gate. We can see, utut C

More information

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS J.e. Sprtt PLP 924 September 1984 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

W V. (d) W. (3) Which one is used to determine the internal resistance of a cell

W V. (d) W. (3) Which one is used to determine the internal resistance of a cell [CHAPT-13 CUNT LCTICITY] www.prfaminz.cm MULTIPL CHOIC QUSTIONS (1) In carbn resistr the gld band indicates tlerance f (a) 5% (b) % 0% (d) 10% () The wrk dne t mve a psitive charge frm ne pint t anther

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

CHAPTER 2. EE 5344 Intro to MEMS - Interface Circuitry. ( x)

CHAPTER 2. EE 5344 Intro to MEMS - Interface Circuitry. ( x) Open Lp vs lsed Lp Gain HAPTE EE 53 Intr t MEMS - Interface ircuitry v () s G () s Y () s Y ( s) G( s) ( s) pen Lp n feedback v ( S ) - G () s Y () s e ( s) ( s) Y ( s) H ( s) Y ( s) G( s) e( s) () s H

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Chapter - 7 ALTERNATING CURRENT

Chapter - 7 ALTERNATING CURRENT hapter - 7 AENANG UEN A simple type f ac is ne which varies with time is simple harmnic manner- epresented by sine curve. ac vltage = sin t - Where = NAB Amplitude and = NAB ac current - - sin Where, Amplitude

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance DUCTCE 3. Sef nductance Cnsider the circuit shwn in the Figure. S R When the switch is csed the current, and s the magnetic fied, thrugh the circuit increases frm zer t a specific vaue. The increasing

More information

Fields and Waves I. Lecture 3

Fields and Waves I. Lecture 3 Fields and Waves I ecture 3 Input Impedance n Transmissin ines K. A. Cnnr Electrical, Cmputer, and Systems Engineering Department Rensselaer Plytechnic Institute, Try, NY These Slides Were Prepared by

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected.

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected. 1 HW #3: Cnservatin f Linear Mmentum, Cnservatin f Energy, Cnservatin f Angular Mmentum and Turbmachines, Bernulli s Equatin, Dimensinal Analysis, and Pipe Flws Prblem 1. Cnservatins f Mass and Linear

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

System Non-Synchronous Penetration Definition and Formulation

System Non-Synchronous Penetration Definition and Formulation System Nn-Synchrnus Penetratin Definitin and Frmulatin Operatinal Plicy 27 August 2018 Disclaimer EirGrid as the Transmissin System Operatr (TSO) fr Ireland, and SONI as the TSO fr Nrthern Ireland make

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-3 Transductin Based n Changes in the Energy Stred in an Electrical ield Department f Mechanical Engineering Example:Capacitive Pressure Sensr Pressure sensitive capacitive device With separatin

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

An Introduction to Symmetrical Components, System Modeling and Fault Calculation

An Introduction to Symmetrical Components, System Modeling and Fault Calculation An ntrductin t Symmetrical Cmpnents, System Mdeling and Fault Calculatin Presented at the 3 th Annual HANDS-ON Relay Schl March 6 -, 5 Washingtn State University Pullman, Washingtn By Stephen Marx, and

More information

EREC G5 Stage 2 Sub-group. Meeting No. 1

EREC G5 Stage 2 Sub-group. Meeting No. 1 EREC G5 Stage 2 Sub-grup Meeting N. 1 Held at William Gilbert Meeting Rm, REEC Building, Sir William Siemens Huse, Princess Rad, Manchester, M20 2UR On Mnday 13th June 2016 10:30-14:30 Meeting Ntes Attendee

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Simulation of Push-pull Multi-output Quasi-resonant Converter

Simulation of Push-pull Multi-output Quasi-resonant Converter IOSR Jurnal f Electrical and Electrnics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 3-3331, Vlue 9, Issue 1 Ver. V (Feb. 14), PP 19-4 Siulatin f Push-pull Multi-utput Quasi-resnant Cnverter T.Anitha

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot Mathematics DM 05 Tpic : Trignmetric Functins LECTURE OF 5 TOPIC :.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC :. Trignmetric Ratis and Identities LEARNING : At the end f the lessn, students shuld be able t: OUTCOMES

More information

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters EEE 7 La # Laratry #: Intrductin t Micrstripline Transmissin Lines, Reflectin and Transmissin Cefficients, and -Parameters I. OBJECTIVE A micrstrip transmissin line is designed fr nminally 50Ω. The reflectin

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

OpenPowerNet Release Notes Version 1.7.0

OpenPowerNet Release Notes Version 1.7.0 OpenPwerNet Release Ntes Versin 1.7.0 Institut für Bahntechnik GmbH Branch Office Dresden Dcument N. 1.7.0 l:\pn\10_dcuments\20_prgram_dcumentatin\30_release_ntes\rn_pn_01.07.00.dcx Authr Date Martin Jacb

More information

ECE 546 Lecture 02 Review of Electromagnetics

ECE 546 Lecture 02 Review of Electromagnetics C 546 Lecture 0 Review f lectrmagnetics Spring 018 Jse. Schutt-Aine lectrical & Cmputer ngineering University f Illinis jesa@illinis.edu C 546 Jse Schutt Aine 1 Printed Circuit Bard C 546 Jse Schutt Aine

More information

Time varying fields and Maxwell's equations Chapter 9

Time varying fields and Maxwell's equations Chapter 9 Tie varying fields and Maxwell's equatins hapter 9 Dr. Naser Abu-Zaid Page 9/7/202 FARADAY LAW OF ELETROMAGNETI INDUTION A tie varying agnetic field prduces (induces) a current in a clsed lp f wire. The

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

MATHEMATICS Higher Grade - Paper I

MATHEMATICS Higher Grade - Paper I Higher Mathematics - Practice Eaminatin B Please nte the frmat f this practice eaminatin is different frm the current frmat. The paper timings are different and calculatrs can be used thrughut. MATHEMATICS

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics PHY 2054C Review guide Fall 2018 Chapter 17 Wave ptics Light acts as a wave, ray, particle, and phtn. Refractive index n = c/v Light waves travel with speed c in a vacuum they slw dwn when they pass thrugh

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion .54 Neutrn Interactins and Applicatins (Spring 004) Chapter (3//04) Neutrn Diffusin References -- J. R. Lamarsh, Intrductin t Nuclear Reactr Thery (Addisn-Wesley, Reading, 966) T study neutrn diffusin

More information

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS GENERAL PHYSICS PH -A (MIROV) Exam 3 (03/31/15) STUDENT NAME: STUDENT i #: ------------------------------------------------------------------------------------------------------------------------------------------

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2 CEE 371 Octber 8, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

Chapter VII Electrodynamics

Chapter VII Electrodynamics Chapter VII Electrdynamics Recmmended prblems: 7.1, 7., 7.4, 7.5, 7.7, 7.8, 7.10, 7.11, 7.1, 7.13, 7.15, 7.17, 7.18, 7.0, 7.1, 7., 7.5, 7.6, 7.7, 7.9, 7.31, 7.38, 7.40, 7.45, 7.50.. Ohm s Law T make a

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 March 10, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 March 10, Please grade the following questions: 1 or 2 CEE 371 March 10, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Unit/Comments. %; Equal Output Loads %; Equal Output Loads Full Load

Unit/Comments. %; Equal Output Loads %; Equal Output Loads Full Load 600 series Single, Dual, Triple DC/DC Cnverter DESCRIPTIONS The 600 series 6 watts high perfrmance DC/DC cnverters are cst effective slutin t the high reliability and perfrmance requirements f pwer distributin

More information

Protection of ungrounded systems using an advanced relay element

Protection of ungrounded systems using an advanced relay element ENG 460 Prtectin f ungrunded systems using an advanced relay element A reprt submitted t the schl f Engineering and Energy, Murdch University in partial fulfilment f the requirements fr the degree f Bachelr

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Math 9 Year End Review Package. (b) = (a) Side length = 15.5 cm ( area ) (b) Perimeter = 4xside = 62 m

Math 9 Year End Review Package. (b) = (a) Side length = 15.5 cm ( area ) (b) Perimeter = 4xside = 62 m Math Year End Review Package Chapter Square Rts and Surface Area KEY. Methd #: cunt the number f squares alng the side ( units) Methd #: take the square rt f the area. (a) 4 = 0.7. = 0.. _Perfect square

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

A Comparison of AC/DC Piezoelectric Transformer Converters with Current Doubler and Voltage Doubler Rectifiers

A Comparison of AC/DC Piezoelectric Transformer Converters with Current Doubler and Voltage Doubler Rectifiers A Cmparisn f AC/DC Piezelectric Transfrmer Cnverters with Current Dubler and ltage Dubler Rectifiers Gregry vensky, Svetlana Brnstein and Sam Ben-Yaakv* Pwer Electrnics abratry Department f Electrical

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

ALUMINIUM ELECTROLYTIC CAPACITORS PG - LL9 Long Life Grade

ALUMINIUM ELECTROLYTIC CAPACITORS PG - LL9 Long Life Grade Useful Life : Useful life is the perid f time which the capacitr takes t reach end-f-life Fr PG-LL9 capacitrs the useful life is estimated as 100 hurs at maximum rated temperature, ripple current and vltage

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

The special theory of relativity

The special theory of relativity The special thery f relatiity The preliminaries f special thery f relatiity The Galilean thery f relatiity states that it is impssible t find the abslute reference system with mechanical eperiments. In

More information

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet EXAMLE HERMAL DAMING wrk in air sealed utlet A BIYLE UM WIH HE OULE EALED When the pistn is depressed, a fixed mass f air is cmpressed mechanical wrk is dne he mechanical wrk dne n the air is cnerted t

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information