INTEGRAL REPRESENTATION OF THE POLYNOMIAL K N (A, B, ; X)

Size: px
Start display at page:

Download "INTEGRAL REPRESENTATION OF THE POLYNOMIAL K N (A, B, ; X)"

Transcription

1 Bullein of he Marahwada Mahemaical Sociey Vol. 15, No. 2, ecember 214, Pages INTEGRAL REPRESENTATION OF THE POLYNOMIAL K N (A, B, ; X) N.M.Kavahekar 1, P.G. Andhare 2, T.B.Jagap 3 1,3 Y.C. Insiue of Science, Saara,4151,(MS), India. kavahekarnirmala@gmail.com, and dr.bjagap@gmail.com 2 R.B.N.B. College Shrirampur , is. Ahmednagar (MS), India. pandurangandandhare@gmail.com Absrac In his paper we have obained conour inegral represenaion, real inegral represenaion, infinie single inegral represenaion, finie single inegral represenaion, finie double inegral represenaion, of he polynomial K n (a, b, ; x) INTROUCTION In he usual noaion, le (λ) n denoe he Pochhammer symbol defined by Γ(λ + n) (λ) n Γ(λ) { 1, if n λ(λ + 1)...(λ + n 1), if n 1, 2, 3,... (1.1) so ha ( n) k { ( 1) k (n k)!, if k n,, if k > n. (1.2) and he Gamma funcion, Γ(z) is defined by Euler s inegral as Γ(z) The recurrence relaion for Γ(z) is given by e z 1 d, Re(z) >. (1.3) Γ(z + 1) zγ(z), Re(z) <, z 1, 2,... (1.4) 1 Keywords:Orhogonal Polynomial, Generaing funcion, inegral represenaion. Marahwada Mahemaical Sociey, Aurangabad, India, ISSN

2 3 N.M.Kavahekar, P.G. Andhare, T.B.Jagap ) The hypergeomeric funcion 2 F 1 (a, b; c; z is defined as, ) 2F 1 (a, b; c; z n The exponenial hypergeomeric funcion is defined as, ) 1F (a; ; z (a) n (b) n z n, c, 1, 2, (1.5) (c) n (a) n z n, (1.6) There are several useful sysems of polynomials of a discree variable eg. Krawchouk polynomials 3,P-75. n K n (x; p, N) 2 F 1 n, x; N; p 1, where < p < 1, (1.7) x, 1, 2,..., N and Meixner polynomials. M n (x, β, c) 2 F 1 n, x; β; 1 c 1, β >, < c < 1, x, 1, 2, (1.8) In his paper we have obained various ypes of inegral represenaions of he polynomial he K n (a, b; x) defined by K n (a, b, ; x) 2 F 1 n, a; b; 1 x K ( n) k (a) k ( 1 x (b) k k! (1.9) where < x < 1. Replacing a by x, x by p and b by N, where < p < 1 and x, 1, 2,, N he polynomial (1.9) reduces o Krawchouk polynomial (1.7). 2 SIMPLE GENERATING RELATION In his secion we obain a generaing funcion of he polynomial (1.9). We prove he following resul. Theorem 2.1 If 1 F (a; ; x) and K n (a, b; x) are he polynomials given by (1.6) and ((1.9) respecively, hen (b) n K n (a, b, ; x)() n n (1 ) b 1F a; ; (2.1)

3 INTEGRAL REPRESENTATION OF POLYNOMIAL K N (A, B, ; X) 31 Proof: Consider, (δ) n K n (a, b, ; x)() n n n k n k n k n k k k n (δ) n ( n) k (a) k ( 1 x n (b) k k! n (δ) n ( 1) k ()(a) k ( 1 x n (n k)!(b) k k! ( 1) k (δ) n+k (a) k ( 1 x n+k (b) k k! ( 1) k (δ) k (δ + k) n (a) k ( 1 x n+k (δ) k (a) k x k k!(b) k (b) k k! (δ + k) n n n (δ) k (a) k x k (1 ) (δ+k) k!(b) k (δ) k (a) k x(1 ) k 1 k!(b) k (1 ) δ k 1 (1 ) δ (δ) k (a) k k!(b) k x(1 ) k 1 (1 ) δ 2 F 1 δ, a; b; k Taking δ b, we obain (2.1) as (b) n K n (a, b, ; x)() n n (1 ) b 1F a; ; If we pu a x, x p and b N in he above polynomial hen i reduces o Krawchouk polynomial as below ( N) n K n (x; p, N)() n n (1 ) N 1F x; ; p( 1) (2.2) 3 INTEGRAL REPRESENTATION I Conour Inegral Represenaion: The conour inegral of a complex funcion is defined as follows: Le γ be a pah in he complex plane wih domain a, b and le f be a complex valued

4 32 N.M.Kavahekar, P.G. Andhare, T.B.Jagap funcion defined on he graph of γ. Then conour inegral of f along γ denoed by f is given by γ γ f b a fγ()dγ() whenever he inegral on he righ hand side exiss. Here we obain conour inegral represenaion of he polynomial (1.9). For his ake f() (1 ) b 1F a; ; We recall he Maclaurian s heorem f() f n ()() n n where f n () f() d, n 1, 2, 3, 2πi c n+1 and c is any closed conour encircling he origin. From (2.1) we have (b) n K n (a, b, ; x)() n n (1 ) b 1F a; ; f() n 1 b n (1 ) 2πi c 1 F a; ; d. n This furher implies ha K n (a, b, ; x) (n)! n 1 (1 ) b 1F a; ; d (3.1) (b) n 2πi c where he conour inegraion encircles he origin of he plane in he posiive direcion. If we replace a by x, x by p and b by N in he above polynomial (3.1) hen i reduces o he Krawchouk polynomial as follows. K n ( x; N, p) II Real Inegral Represenaion: n 1 (1 ) N 1F a; ; d (3.2) ( N) n 2πi c Here we obain he inegral represenaion of he polynomial K n (a, b, ; x) in inerval o 2π.

5 INTEGRAL REPRESENTATION OF POLYNOMIAL K N (A, B, ; X) 33 Now pu e iθ so ha d ie iθ in euaion 3.1 2π K n (a, b, ; (x)) (n)! (e iθ ) n 1 (1 e iθ ) b e 1F a; iθ ; 2πi(b) n x(1 e iθ ie iθ dθ ) (n)! 2π e inθ (1 e iθ ) b e 1F a; iθ ; 2π(b) n x(e iθ dθ 1) (n)! (a) 2π k e inθ (1 e iθ ) b e iθ kdθ 2π(b) n k! k x(e iθ 1) (n)! (a) 2π k ( 1) k x k e (k n)iθ (1 e iθ ) b k dθ 2π(b) n k! k (n)! ( 1) k x k (a) 2π k e (k n)iθ (b + k) s (e iθ ) s dθ 2π(b) n k! k s! s (n)! ( 1) k x k (a) k (b + k) 2π s e (k n+s)iθ dθ 2π(b) n k!s! k s (n)! ( 1) k (a) k (b + k) s x k 2π(b) n k! s! 2π k s cos(k n + s)θ + isin(k n + s)θdθ. (3.3) If we replace a by x, x by p and b by N in he above polynomial hen i reduces o Krawchouk polynomial as below K n ( x; N, p) (n)! 2π( N) n k s ( 1) k ( x) k ( N + k) s (p k ) k! s! 2π cos(k n + s)θ + isin(k n + s)θdθ (3.4) III Infinie Single Inegral Represenaion: Here we obain he inegral represenaion of he polynomial K n (a, b, ; x) in inerval o. Consider he equaion (1.9), K n (a, b, ; x) k k k k ( n) k (a) k ( 1 x (b) k k! ( n) k Γ(a + k)( 1 x Γ(a)(b) k k! ( n) k ( 1 x Γ(a + k ) Γ(a)(b) k k! ( n) k (x) k Γ(a + k ) Γ(a)(b) k k!

6 34 N.M.Kavahekar, P.G. Andhare, T.B.Jagap Using Γ(ρ k ) e 2 2(ρ k) d K n (a, b, ; x) 1 Γ(a) 1 Γ(a) 1 Γ(a) ( n) k (b) k k! (x) k e 2 2(a+k 1 2 ) d e 2 2a 1 ( n) ( k 2 ) kd (b) k k! x k k e 2 2a 1 1F 1 n; b; 2 x d (3.5) If we replace a by x, x by p and b by N in he above polynomial hen i reduces o Krawchouk polynomial as below K n ( x; N, p) 1 Γ( x) IV Finie Single Inegral Represenaion: e 2 2x 1 1F 1 n; N; 2 d (3.6) p Here we obain he inegral represenaion of he polynomial K n (a, b, ; x) in inerval, 1. Consider he equaion (1.9), K n (a, b, ; x) Γ(b) Γ(a)Γ(b a) We recall he resul 1, p-13,14 K n (a, b, ; x) k ( n) k (a) k ( 1 x (b) k k! ( n) k Γ(a + k)γ(b a)(x) k k β(x, y) Γ(x)Γ(y) Γ(x + y) Γ(b + k! 1 x 1 (1 ) y 1 d... (A) (3.7) Using he above resul in equaion (3.7) we have Γ(b) ( n) k x k 1 K n (a, b, ; x) a+k+1 (1 ) b a 1 d Γ(a)Γ(b a) k! k Γ(b) 1 ( n) k ( x a 1 (1 ) b a 1 d. Γ(a)Γ(b a) k! Using we ge n k (a) n y n (1 y) a 2, p-47, K n (a, b, ; x) Γ(b) Γ(a)Γ(b a) Γ(b) Γ(a)Γ(b a) 1 1 a 1 (1 ) b a 1( 1 x) nd a 1 (1 ) b a 1( x ) nd (3.8) x

7 INTEGRAL REPRESENTATION OF POLYNOMIAL K N (A, B, ; X) 35 If we replace a by x, x by p and b by N in he above polynomial, hen i reduces o he Krawchouk polynomial as below. K n ( x; N, p) Γ( N) Γ( x)γ( N + x) 1 V Finie ouble Inegral Represenaion: x 1 (1 ) N+x 1( p ) nd (3.9) p Here we obain he inegral represenaion of he polynomial K n (a, b, ; x) in erms of finie double inegral inegraion represenaion. Firs we recall he resul, if Re(a), Re(b) and Re(c), hen u a 1 v b 1 (1 u v) c 1 dudv Γ(a)Γ(b)Γ(c) (3.1) Γ(a + b + c) where is bounded by he lines u >, v > and u + v 1...4, p-275. ( n) k (a) k ( 1 x K n (a, b, ; x) (b) k k! k ( n) k Γ(b)Γ(a + k)( 1 x Γ(a)Γ(b + k! k 1 ( n) k Γ(b)Γ(a + k)(α) k Γ(α a b)( 1 x Γ(a) Γ(α+k) k Γ(b + k!γ(α a b) ( n) k (α) k Γ(b)Γ(a + k)γ(α a b)( 1 x Γ(a)Γ(α a b) Γ(b + k)γ(α + k! k ( n) k (α) k u a+k 1 v b 1 (1 u v) α a b 1 Γ(a)Γ(α a b) k!γ(b + k) k ( 1 x dudv(using(3.1)) ( n) k (α) k ( u x u a 1 v b 1 (1 u v) α a b 1 dudv Γ(a)Γ(α a b)γ(b) k!(b) k k u a 1 v b 1 (1 u v) α a b 1 2F 1 n; α; b; u dudv Γ(a)Γ(α a b)γ(b) x u a 1 v b 1 (1 u v) α a b 1 K n (α, b, ; x)dudv Γ(a)Γ(α a b)γ(b) If we replace a by x, x by p and b by N in he above polynomial, hen he value of K n ( x; N, p) (i.e. Krawchouk s polynomial)is Γ( x)γ(α + x + N)Γ( N) u x 1 v N 1 (1 u v) α+x+n 1 K n (α, N, ; p)dudv

8 36 N.M.Kavahekar, P.G. Andhare, T.B.Jagap References 1 N.N. Lebedev, Special Funcions and Their Applicaions, Prenice-Hall, Englewood Cliffs, New Jersery, (1965). 2 E.. Rainville, Special Funcions, Macmillan, New Yark; Reprened by Chelsea Publ.co., Bronx, New Yark, (1971) 3 H.M. Shrivasava, and H.L. Manocha, A Treaise on Generaing Funcions, Ellis Harwood Ld, (1984). 4 H.M. Shrivasava, and P.W. Karlsson, Muliple Gaussion Hypergeomeric Series, Halsed Press (Ellis Harwood Ld., Checheser) John Wiley and Sons, New Yark,(1985).

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Mapping Properties Of The General Integral Operator On The Classes R k (ρ, b) And V k (ρ, b)

Mapping Properties Of The General Integral Operator On The Classes R k (ρ, b) And V k (ρ, b) Applied Mahemaics E-Noes, 15(215), 14-21 c ISSN 167-251 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Mapping Properies Of The General Inegral Operaor On The Classes R k (ρ, b) And V k

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no., 51-56 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.41196 On Volerra Inegral Equaions of he Firs Kind wih a Bulge Funcion by Using Laplace Transform

More information

Representation of Stochastic Process by Means of Stochastic Integrals

Representation of Stochastic Process by Means of Stochastic Integrals Inernaional Journal of Mahemaics Research. ISSN 0976-5840 Volume 5, Number 4 (2013), pp. 385-397 Inernaional Research Publicaion House hp://www.irphouse.com Represenaion of Sochasic Process by Means of

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT Inerna J Mah & Mah Sci Vol 4, No 7 000) 48 49 S0670000970 Hindawi Publishing Corp GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT RUMEN L MISHKOV Received

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Integral representations and new generating functions of Chebyshev polynomials

Integral representations and new generating functions of Chebyshev polynomials Inegral represenaions an new generaing funcions of Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 186 Roma, Ialy email:

More information

BASIC DEVELOPMENTS OF FRACTIONAL CALCULUS AND ITS APPLICATIONS

BASIC DEVELOPMENTS OF FRACTIONAL CALCULUS AND ITS APPLICATIONS Bullein of he Marahwada Mahemaical Sociey Vol., No., Dec, Pages 7. BASIC DEVELOPMENTS OF FRACTIONAL CALCULUS AND ITS APPLICATIONS A. P. Bhadane Deparmen of Mahemaics, Sm. Puspaai Hiray Mahila Mahavidyalya

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

on the interval (x + 1) 0! x < ", where x represents feet from the first fence post. How many square feet of fence had to be painted?

on the interval (x + 1) 0! x < , where x represents feet from the first fence post. How many square feet of fence had to be painted? Calculus II MAT 46 Improper Inegrals A mahemaician asked a fence painer o complee he unique ask of paining one side of a fence whose face could be described by he funcion y f (x on he inerval (x + x

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Orthogonal Rational Functions, Associated Rational Functions And Functions Of The Second Kind

Orthogonal Rational Functions, Associated Rational Functions And Functions Of The Second Kind Proceedings of he World Congress on Engineering 2008 Vol II Orhogonal Raional Funcions, Associaed Raional Funcions And Funcions Of The Second Kind Karl Deckers and Adhemar Bulheel Absrac Consider he sequence

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a Boye/DiPrima 9 h ed, Ch 6.: Definiion of Laplae Transform Elemenary Differenial Equaions and Boundary Value Problems, 9 h ediion, by William E. Boye and Rihard C. DiPrima, 2009 by John Wiley & Sons, In.

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

SELBERG S CENTRAL LIMIT THEOREM ON THE CRITICAL LINE AND THE LERCH ZETA-FUNCTION. II

SELBERG S CENTRAL LIMIT THEOREM ON THE CRITICAL LINE AND THE LERCH ZETA-FUNCTION. II SELBERG S CENRAL LIMI HEOREM ON HE CRIICAL LINE AND HE LERCH ZEA-FUNCION. II ANDRIUS GRIGUIS Deparmen of Mahemaics Informaics Vilnius Universiy, Naugarduko 4 035 Vilnius, Lihuania rius.griguis@mif.vu.l

More information

SOLUTIONS TO ASSIGNMENT 2 - MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx =

SOLUTIONS TO ASSIGNMENT 2 - MATH 355. with c > 3. m(n c ) < δ. f(t) t. g(x)dx = SOLUTIONS TO ASSIGNMENT 2 - MATH 355 Problem. ecall ha, B n {ω [, ] : S n (ω) > nɛ n }, and S n (ω) N {ω [, ] : lim }, n n m(b n ) 3 n 2 ɛ 4. We wan o show ha m(n c ). Le δ >. We can pick ɛ 4 n c n wih

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

SOME INEQUALITIES AND ABSOLUTE MONOTONICITY FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

SOME INEQUALITIES AND ABSOLUTE MONOTONICITY FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND Commun. Korean Mah. Soc. 3 (6), No., pp. 355 363 hp://dx.doi.org/.434/ckms.6.3..355 SOME INEQUALITIES AND ABSOLUTE MONOTONICITY FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND Bai-Ni Guo Feng Qi Absrac.

More information

Week #13 - Integration by Parts & Numerical Integration Section 7.2

Week #13 - Integration by Parts & Numerical Integration Section 7.2 Week #3 - Inegraion by Pars & Numerical Inegraion Secion 7. From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 5 by John Wiley & Sons, Inc. This maerial is used by permission

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Dynamic Systems and Applications 12 (2003) A SECOND-ORDER SELF-ADJOINT EQUATION ON A TIME SCALE

Dynamic Systems and Applications 12 (2003) A SECOND-ORDER SELF-ADJOINT EQUATION ON A TIME SCALE Dynamic Sysems and Applicaions 2 (2003) 20-25 A SECOND-ORDER SELF-ADJOINT EQUATION ON A TIME SCALE KIRSTEN R. MESSER Universiy of Nebraska, Deparmen of Mahemaics and Saisics, Lincoln NE, 68588, USA. E-mail:

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

On Hankel type transform of generalized Mathieu series

On Hankel type transform of generalized Mathieu series Inernaional Journal of Saisika and Mahemaika ISSN: 77-79 E-ISSN: 49-865 Volume Issue 3 3- On Hankel ye ransform of generalized Mahieu series BBWahare MAEER s MIT ACSC Alandi Pune-45 Maharashra India Corresondence

More information

REMARK ON THE PAPER ON PRODUCTS OF FOURIER COEFFICIENTS OF CUSP FORMS 1. INTRODUCTION

REMARK ON THE PAPER ON PRODUCTS OF FOURIER COEFFICIENTS OF CUSP FORMS 1. INTRODUCTION REMARK ON THE PAPER ON PRODUCTS OF FOURIER COEFFICIENTS OF CUSP FORMS YUK-KAM LAU, YINGNAN WANG, DEYU ZHANG ABSTRACT. Le a(n) be he Fourier coefficien of a holomorphic cusp form on some discree subgroup

More information

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations A Sharp Exisence and Uniqueness Theorem for Linear Fuchsian Parial Differenial Equaions Jose Ernie C. LOPE Absrac This paper considers he equaion Pu = f, where P is he linear Fuchsian parial differenial

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

A HARDY TYPE GENERAL INEQUALITY IN L p( ) (0, 1) WITH DECREASING EXPONENT

A HARDY TYPE GENERAL INEQUALITY IN L p( ) (0, 1) WITH DECREASING EXPONENT Transacions of NAS of Azerbaijan, 23, vol. XXXIII, No, pp. 45-5. 45 Farman I. MAMEDOV, Firana M. MAMEDOVA A HARDY TYPE GENERAL INEQUALITY IN L p ), ) WITH DECREASING EXPONENT Absrac We derive a Hardy ype

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

DISCRETE GRONWALL LEMMA AND APPLICATIONS

DISCRETE GRONWALL LEMMA AND APPLICATIONS DISCRETE GRONWALL LEMMA AND APPLICATIONS JOHN M. HOLTE MAA NORTH CENTRAL SECTION MEETING AT UND 24 OCTOBER 29 Gronwall s lemma saes an inequaliy ha is useful in he heory of differenial equaions. Here is

More information

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 29(29), No. 49, pp. 2. ISSN: 72-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN

More information

SOME UNIFIED AND GENERALIZED KUMMER S FIRST SUMMATION THEOREMS WITH APPLICATIONS IN LAPLACE TRANSFORM TECHNIQUE

SOME UNIFIED AND GENERALIZED KUMMER S FIRST SUMMATION THEOREMS WITH APPLICATIONS IN LAPLACE TRANSFORM TECHNIQUE Asia Pacific Journal of Mathematics, Vol. 3, No. 1 16, 1-3 ISSN 357-5 SOME UNIFIED AND GENERAIZED KUMMER S FIRST SUMMATION THEOREMS WITH APPICATIONS IN APACE TRANSFORM TECHNIQUE M. I. QURESHI 1 AND M.

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation INERNAIONAL JOURNAL OF SCIENIFIC & ECHNOLOGY RESEARCH VOLUME 3 ISSUE 5 May 4 ISSN 77-866 Meod For Solving Fuzzy Inegro-Differenial Equaion By Using Fuzzy Laplace ransformaion Manmoan Das Danji alukdar

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Research Article Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems

Research Article Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems Hindawi Publishing Corporaion Boundary Value Problems Volume 29, Aricle ID 42131, 1 pages doi:1.1155/29/42131 Research Aricle Exisence and Uniqueness of Posiive and Nondecreasing Soluions for a Class of

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

An Inventory Model for Time Dependent Weibull Deterioration with Partial Backlogging

An Inventory Model for Time Dependent Weibull Deterioration with Partial Backlogging American Journal of Operaional Research 0, (): -5 OI: 0.593/j.ajor.000.0 An Invenory Model for Time ependen Weibull eerioraion wih Parial Backlogging Umakana Mishra,, Chaianya Kumar Tripahy eparmen of

More information

Short Introduction to Fractional Calculus

Short Introduction to Fractional Calculus . Shor Inroducion o Fracional Calculus Mauro Bologna Deparameno de Física, Faculad de Ciencias Universidad de Tarapacá, Arica, Chile email: mbologna@ua.cl Absrac In he pas few years fracional calculus

More information

arxiv: v1 [math.nt] 13 Feb 2013

arxiv: v1 [math.nt] 13 Feb 2013 APOSTOL-EULER POLYNOMIALS ARISING FROM UMBRAL CALCULUS TAEKYUN KIM, TOUFIK MANSOUR, SEOG-HOON RIM, AND SANG-HUN LEE arxiv:130.3104v1 [mah.nt] 13 Feb 013 Absrac. In his paper, by using he orhogonaliy ype

More information

Research Article Marichev-Saigo-Maeda Fractional Integration Operators Involving Generalized Bessel Functions

Research Article Marichev-Saigo-Maeda Fractional Integration Operators Involving Generalized Bessel Functions Mahemaical Problems in Engineering Volume 014 Aricle ID 74093 11 pages hp://dx.doi.org/10.1155/014/74093 Research Aricle Marichev-Saigo-Maeda Fracional Inegraion Operaors Involving Generalized Bessel Funcions

More information

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems.

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems. 9/9/99 (T.F. Weiss) Lecure #: Inroducion o signals Moivaion: To describe signals, boh man-made and naurally occurring. Ouline: Classificaion ofsignals Building-block signals complex exponenials, impulses

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration Journal of Agriculure and Life Sciences Vol., No. ; June 4 On a Discree-In-Time Order Level Invenory Model for Iems wih Random Deerioraion Dr Biswaranjan Mandal Associae Professor of Mahemaics Acharya

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION Bull. London Mah. Soc. 39 2007 482 486 C 2007 London Mahemaical Sociey doi:10.1112/blms/bdm032 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON and S. M. GONEK Absrac Le πs denoe he

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Fuzzy Laplace Transforms for Derivatives of Higher Orders

Fuzzy Laplace Transforms for Derivatives of Higher Orders Maemaical Teory and Modeling ISSN -58 (Paper) ISSN 5-5 (Online) Vol, No, 1 wwwiiseorg Fuzzy Laplace Transforms for Derivaives of Higer Orders Absrac Amal K Haydar 1 *and Hawrra F Moammad Ali 1 College

More information

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique Filoma 29:5 (2015), 1067 1080 DOI 10.2298/FI1505067W Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma Nonlinear Fuzzy Sabiliy of a Funcional

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

Web Appendix N - Derivations of the Properties of the LaplaceTransform

Web Appendix N - Derivations of the Properties of the LaplaceTransform M. J. Robers - 2/18/07 Web Appenix N - Derivaions of he Properies of he aplacetransform N.1 ineariy e z= x+ y where an are consans. Then = x+ y Zs an he lineariy propery is N.2 Time Shifing es = xe s +

More information

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS D. D. ANDERSON, SHUZO IZUMI, YASUO OHNO, AND MANABU OZAKI Absrac. Le A 1,..., A n n 2 be ideals of a commuaive ring R. Le Gk resp., Lk denoe

More information

The Miki-type identity for the Apostol-Bernoulli numbers

The Miki-type identity for the Apostol-Bernoulli numbers Annales Mahemaicae e Informaicae 46 6 pp. 97 4 hp://ami.ef.hu The Mii-ype ideniy for he Aposol-Bernoulli numbers Orli Herscovici, Toufi Mansour Deparmen of Mahemaics, Universiy of Haifa, 3498838 Haifa,

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

Fractional Laplace Transform and Fractional Calculus

Fractional Laplace Transform and Fractional Calculus Inernaional Mahemaical Forum, Vol. 12, 217, no. 2, 991-1 HIKARI Ld, www.m-hikari.com hps://doi.org/1.12988/imf.217.71194 Fracional Laplace Transform and Fracional Calculus Gusavo D. Medina 1, Nelson R.

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Some operator monotone functions related to Petz-Hasegawa s functions

Some operator monotone functions related to Petz-Hasegawa s functions Some operaor monoone funcions relaed o Pez-Hasegawa s funcions Masao Kawasaki and Masaru Nagisa Absrac Le f be an operaor monoone funcion on [, ) wih f() and f(). If f() is neiher he consan funcion nor

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 3. Le M be a complee Riemannian manifold wih non-posiive secional curvaure. Prove ha d exp p v w w, for all p M, all v T p M and all w T v T p M. Proof. Le γ

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Research Article On Fractional Integral Inequalities Involving Hypergeometric Operators

Research Article On Fractional Integral Inequalities Involving Hypergeometric Operators Hindawi Publishing Corporaion Chinese Mahemaics, Aricle ID 69476, 5 pages hp://dx.doi.org/1.1155/214/69476 Research Aricle On Fracional Inegral Inequaliies Involving Hypergeomeric Operaors D. Baleanu,

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Symmetry Reduction for a System of Nonlinear Evolution Equations

Symmetry Reduction for a System of Nonlinear Evolution Equations Nonlinear Mahemaical Physics 1996, V.3, N 3 4, 447 452. Symmery Reducion for a Sysem of Nonlinear Evoluion Equaions Lyudmila BARANNYK Insiue of Mahemaics of he Naional Ukrainian Academy of Sciences, 3

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

The L p -Version of the Generalized Bohl Perron Principle for Vector Equations with Infinite Delay

The L p -Version of the Generalized Bohl Perron Principle for Vector Equations with Infinite Delay Advances in Dynamical Sysems and Applicaions ISSN 973-5321, Volume 6, Number 2, pp. 177 184 (211) hp://campus.ms.edu/adsa The L p -Version of he Generalized Bohl Perron Principle for Vecor Equaions wih

More information