Information Encoding by Using Cellular Automata

Size: px
Start display at page:

Download "Information Encoding by Using Cellular Automata"

Transcription

1 Vol. 44 No. SIG 7(TOM 8) May 2003 CA CA CA 1 CA CA Information Encoding by Using Cellular Automata Yoshihisa Fukuhara and Yoshiyasu Takefuji In this paper, we propose a new information encoding method by using cellular automata (CA). In this approach, plural CA systems work simultaneously and input values are encoded into small bits by simple deterministic process. The proposed system cannot work under all situation depend on their transition rules and input values. We studied when the proposed system works correctly from various kinds of views. 1. CA 1) CA CA CA CA Berlekamp 2) Wolfram 3),4) CA 4 Wolfram IV CA Langton 5) SFC Takefuji Laboratory, Keio Research Institute at SFC Faculty of Environmental Information, Keio University Mitchell 10) CA CA CNN 7),8) CA Mitchell CA EvCA 9),10) CA CA 5) 1 110

2 Vol. 44 No. SIG 7(TOM 8) 111 CA CA CA 2. CA 2.1 CA CA CA 2 3 CA (1) 8 k n k kn 2 3 CA 2 23 = 256 f a (1) (2) a t i,j t i j a t+1 i,j = f(a t i,j x,..., a t i,j,..., a t i,j+x) (1) x = n 1 (2) 2 CA CA Fig. 1 1 CA An example of the information encoder by using CA. 2.2 CA CA

3 112 May 2003 (3) Sj t m CA t j S a (1) f a (4) j CA j j CA { f(x) = S t j = f(a t 1,j,a t 2,j,...a t i,j) (3) 0 a t 1,j = a t 2,j... = a t i,j 1 (4) (1) CA 2 3 (2) (3) (4) (5) (3) (4) (6) 4 CA CA 3. Langton 5) λ (5) λ λ = kn n q (5) k n k n n q 1 λ λ k n CA k kn

4 Vol. 44 No. SIG 7(TOM 8) G Fig. 2 Calculation of parameter G. G G (6) (7) (2) G = k n x qc pq C p (6) 3 Fig. 3 λ 2 5 CA C = { p=1 q= x 0 1 (7) p 1 q C pq p C p p n 1 (1) G =0+( 1) =0 2 G CA 0 CA G λ G 2 CA CA CA ,000 λ G 2 5 CA Fig. 4 CA λ % 10% 4 G λ G CA

5 114 May 2003 Fig CA Fig CA Fig CA Fig CA CA λ =0.5 G G =0 5 6 G =0 λ =0.3 G =0 λ =0.5 4 G λ G λ =0.3 G = CA λ =0.5 λ G λ /k

6 Vol. 44 No. SIG 7(TOM 8) >G> 1 Table 1 Effective parameters for the encoder. λ G bit 0.34 (0.66) bit 0.34 (0.66) bit (0.875) bit bit Fig Fig Fig Fig. 12 λ 2 3 CA Encode ability of CA (2 states 3 neighbors). G 2 3 CA Encode ability of CA (2 states 3 neighbors). λ 3 3 CA Encode ability of CA (3 states 3 neighbors). G 3 3 CA Encode ability of CA (3 states 3 neighbors). 4) λ = 1.0 1/k λ 0 1 λ λ =0.3 CA IV 5) 13 CA (a) (b) (d) II (c) III (c) 2 3 λ =0.5 II CA CA 2 CA CA

7 116 May 2003 (a) (b) (c) (d) 13 CA (a) (b) (c) (d) Fig. 13 Encode ability of CA: (a) 2 states 5 neighbors with 4 patterns to 2 bit, (b) 2 states 5 neighbors with 5 patterns to 3 bit, (c) 2 states 3 neighbors with 4 patterns to 2 bit, (d) 3 states 3 neighbors with 6 patterns to 2 bit. II III 5),6),11) Mitchell 10) III CA 12) 5.3 G G =0 G 1 1 G = G = (1) (2) λ (3) II λ G 2 (1) λ =1 1/k G =0 (2) λ G 6. CA

8 Vol. 44 No. SIG 7(TOM 8) 117 CA 1 CA Langton λ G 7. G CA CA 13) 1) von Neumann, J.: Theory of self-reproducing automata, edited and completed by A. Burks, University of Illinois Press (1966). 2) Berlekamp, E., Conway, J. and Guy, R.: Winning Ways for your Mathematical Plays, Academic Press (1982). 3) Wolfram, S.: Statistical mechanics of cellular automata, Rev. Mod. Phys., Vol.55, pp (1983). 4) Wolfram, S.: Universality and Complexity in Cellular Automata, Physica D, Vol.10, pp.1 35 (1984). 5) Langton, C.G.: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation, Physica D, Vol.42, pp (1990). 6) Packard, N.H.: Adaptation toward the edge of chaos, Dynamic Patterns in Complex Systems, pp , Singapore, World Scientific (1988). 7) Chua, L.O. and Yang, L: Cellular neural networks: Theory, IEEE Trans. Circuits and Syst., Vol.35, No.10, pp (1988). 8) Chua, L.O. and Yang, L.: Cellular neural networks: Applications, IEEE Trans. Circuits and Syst., Vol.35, No.10, pp (1988). 9) Mitchell, M., et al.: Revisiting the edge of chaos: evolving cellular automata to perform computations, Complex Systems, Vol.7, pp (1993). 10) Mitchell, M., Crutchfield, J.P. and Hraber, P.T.: Dynamics, Computation and the Edge of Chaos : A Re-Examination, Cowan, G., Pines, D. and Melzner, D. (Eds), Complexity: Metaphors, Models and Reality, Santa Fe Institute Stuides in the Sciences of Complexity, Vol.19. Addison-Wesley (1993). 11) Kauffman, S.A.: The origin of order, Oxford University Press (1993). 12) Suzudo, T.: Crystallization of two-dimensional cellular automata, Complexity International, Vol.6 (1999). 13) Mori, T., et al.: Edge of Chaos in Rulechanging Cellular Automata, Physica D, Vol.116, pp (1998). ( ) ( ) ( ) SFC NTT 1998 Dr. Yoshiyasu Takefuji: professor of Keio University from 1992, was on the faculty of Case Western Reserve Univ. since 1988, Univ. of South Caroline ( ), Univ. of South Florida ( ). Research: neural computing and hyperspectral computing. Awards: NSF-RIA in 1989, distinguished service from IEEE Trans. on NN in 1992, best paper of IPSJ in 1980 and that of IFAC at AIRTC 98, TEPCO and KAST in 1993, Takayanagi award in 1995, KDD award in 1997, NTT tele-education courseware award in Government advisor: NCC of Philippines, VITTI of Vietnam, Jordan CTTISC, Thailand, Srilanka, Hong Kong, Multimedia Univ. in Malaysia. Published: 22 books and more than 200 papers.

Complexity Classes in the Two-dimensional Life Cellular Automata Subspace

Complexity Classes in the Two-dimensional Life Cellular Automata Subspace Complexity Classes in the Two-dimensional Life Cellular Automata Subspace Michael Magnier Claude Lattaud Laboratoire d Intelligence Artificielle de Paris V, Université René Descartes, 45 rue des Saints

More information

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob Cellular Automata and beyond The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC / MDSC 605 Fall 2003 Cellular

More information

cells [20]. CAs exhibit three notable features, namely massive parallelism, locality of cellular interactions, and simplicity of basic components (cel

cells [20]. CAs exhibit three notable features, namely massive parallelism, locality of cellular interactions, and simplicity of basic components (cel I. Rechenberg, and H.-P. Schwefel (eds.), pages 950-959, 1996. Copyright Springer-Verlag 1996. Co-evolving Parallel Random Number Generators Moshe Sipper 1 and Marco Tomassini 2 1 Logic Systems Laboratory,

More information

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x.

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x. and beyond Lindenmayer Systems The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC 673 Winter 2004 Random

More information

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing lecture 12 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

Chaotic Subsystem Come From Glider E 3 of CA Rule 110

Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Lingxiao Si, Fangyue Chen, Fang Wang, and Pingping Liu School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China Abstract The

More information

Non-Uniform Cellular Automata a Review. 1. Introduction. Daniel Camara

Non-Uniform Cellular Automata a Review. 1. Introduction. Daniel Camara Non-Uniform Cellular Automata a Review Daniel Camara Department of Computer Science University of Maryland A.V. Williams Building College Park, MD 20742 danielc@cs.umd.edu Abstract : This tutorial intends

More information

Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central

Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central control Complex dynamics from simple rules Capability of information

More information

Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work

Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 8751 mm@santafe.edu James P. Crutchfield 1 Santa Fe Institute

More information

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Yoshihiko Kayama BAIKA Women s University, Japan (Tel: 81-72-643-6221, Fax: 81-72-643-8473) kayama@baika.ac.jp

More information

Complex Systems Theory and Evolution

Complex Systems Theory and Evolution Complex Systems Theory and Evolution Melanie Mitchell and Mark Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 In Encyclopedia of Evolution (M. Pagel, editor), New York: Oxford University

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 10 Cosma Shalizi 14 February 2008 Some things you can read: [1] is what got me interested in the subject; [2] is the best introduction to CA modeling code

More information

Symmetry and Entropy of One- Dimensional Legal Cellular Automata

Symmetry and Entropy of One- Dimensional Legal Cellular Automata Symmetry and Entropy of One- Dimensional Legal Cellular Automata Kazuhito Yamasaki Department of Earth and Planetary Sciences, Kobe University Nada, Kobe, 657-8501, Japan Kazuyoshi Z. Nanjo Earthquake

More information

Sorting Network Development Using Cellular Automata

Sorting Network Development Using Cellular Automata Sorting Network Development Using Cellular Automata Michal Bidlo, Zdenek Vasicek, and Karel Slany Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno, Czech republic

More information

Analysis of Decision-making Behavior Based on Complex Adaptive System

Analysis of Decision-making Behavior Based on Complex Adaptive System Analysis of Decision-making Behavior Based on Complex Adaptive System CHANG-RUI YU 1, YAN LUO 2 1 School of Information Management and Engineering Shanghai University of Finance and Economics No.777, Guoding

More information

Dynamical Concepts Used in Creativity and Chaos

Dynamical Concepts Used in Creativity and Chaos 177 Article. Dynamical Concepts Used in Creativity and Chaos Frederick David Abraham, Stanley Krippner and Ruth Richards ABSTRACT Basic dynamical concepts relevant to human creativity include those of

More information

Introduction to Cellular automata

Introduction to Cellular automata Jean-Philippe Rennard Ph.D. 12/2000 Introduction to Cellular automata There is a wealth of literature about cellular automata, as well as many Internet resources (you'll find some of them in the links

More information

Natural Computation. Transforming Tools of NBIC: Complex Adaptive Systems. James P. Crutchfield Santa Fe Institute

Natural Computation. Transforming Tools of NBIC: Complex Adaptive Systems. James P. Crutchfield  Santa Fe Institute Natural Computation Transforming Tools of NBIC: Complex Adaptive Systems James P. Crutchfield www.santafe.edu/~chaos Santa Fe Institute Nanotechnology, Biotechnology, Information Technology, and Cognitive

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 10: Cellular Automata Cosma Shalizi 12 February 2009 Some things you can read: Poundstone (1984) is what got me interested in the subject; Toffoli and

More information

(Anti-)Stable Points and the Dynamics of Extended Systems

(Anti-)Stable Points and the Dynamics of Extended Systems (Anti-)Stable Points and the Dynamics of Extended Systems P.-M. Binder SFI WORKING PAPER: 1994-02-009 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

Dynamical Concepts used in Creativity and Chaos i

Dynamical Concepts used in Creativity and Chaos i Abstract Dynamical Concepts used in Creativity and Chaos i Frederick David Abraham, Stanley Krippner, & Ruth Richards 2012 Basic dynamical concepts relevant to human creativity include those of stability,

More information

o or 1. The sequence of site values is the "configuration" of the cellular automaton. The cellular

o or 1. The sequence of site values is the configuration of the cellular automaton. The cellular Physica loo (1984) vii- xii North-Holland. Amsterdam VlI PREFACE Stephen WOLFRAM The Institute /or Advanced Study, Princeton, NJ 08540, USA 1. Introduction Differential equations form the mathematical

More information

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09 Cellular Automata CS 591 Complex Adaptive Systems Spring 2009 Professor: Melanie Moses 2/02/09 Introduction to Cellular Automata (CA) Invented by John von Neumann (circa~1950). A cellular automata consists

More information

The Evolution of Emergent Computation

The Evolution of Emergent Computation Communicated by Murray Gell-Mann to the Proceedings of the National Academy of Sciences PNAS Classification: Computer Science SFI Technical Report 94-03-012 The Evolution of Emergent Computation James

More information

Justine Seastres. Cellular Automata and the Game of Life

Justine Seastres. Cellular Automata and the Game of Life Justine Seastres Saint Mary s College of California Department of Mathematics May 16, 2016 Cellular Automata and the Game of Life Supervisors: Professor Porter Professor Sauerberg 2 Contents 1 Introduction

More information

Statistical Complexity of Simple 1D Spin Systems

Statistical Complexity of Simple 1D Spin Systems Statistical Complexity of Simple 1D Spin Systems James P. Crutchfield Physics Department, University of California, Berkeley, CA 94720-7300 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

More information

Rule table φ: Lattice: r = 1. t = 0. t = 1. neighborhood η: output bit: Neighborhood η

Rule table φ: Lattice: r = 1. t = 0. t = 1. neighborhood η: output bit: Neighborhood η Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 8751 mm@santafe.edu James P. Crutcheld 1 Santa Fe Institute

More information

II. Spatial Systems A. Cellular Automata 8/24/08 1

II. Spatial Systems A. Cellular Automata 8/24/08 1 II. Spatial Systems A. Cellular Automata 8/24/08 1 Cellular Automata (CAs) Invented by von Neumann in 1940s to study reproduction He succeeded in constructing a self-reproducing CA Have been used as: massively

More information

II. Spatial Systems. A. Cellular Automata. Structure. Cellular Automata (CAs) Example: Conway s Game of Life. State Transition Rule

II. Spatial Systems. A. Cellular Automata. Structure. Cellular Automata (CAs) Example: Conway s Game of Life. State Transition Rule II. Spatial Systems A. Cellular Automata B. Pattern Formation C. Slime Mold D. Excitable Media A. Cellular Automata 1/18/17 1 1/18/17 2 Cellular Automata (CAs) Invented by von Neumann in 1940s to study

More information

II. Cellular Automata 8/27/03 1

II. Cellular Automata 8/27/03 1 II. Cellular Automata 8/27/03 1 Cellular Automata (CAs) Invented by von Neumann in 1940s to study reproduction He succeeded in constructing a self-reproducing CA Have been used as: massively parallel computer

More information

Evolving Robust Asynchronous Cellular Automata for the Density Task

Evolving Robust Asynchronous Cellular Automata for the Density Task Evolving Robust Asynchronous Cellular Automata for the Density Task Marco Tomassini Mattias Venzi Computer Science Institute, University of Lausanne, 1015 Lausanne, Switzerland In this paper the evolution

More information

Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata

Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata Stephanie Forrest ME 214 http://cs.unm.edu/~forrest/cs365/ forrest@cs.unm.edu 505-277-7104 Reading Assignment! Mitchell Ch. 10" Wolfram

More information

Detecting non-trivial computation in complex dynamics

Detecting non-trivial computation in complex dynamics Detecting non-trivial computation in complex dynamics Joseph T. Lizier 1,2, Mikhail Prokopenko 1, and Albert Y. Zomaya 2 1 CSIRO Information and Communications Technology Centre, Locked Bag 17, North Ryde,

More information

The Nature of Computation

The Nature of Computation The Nature of Computation Introduction of Wolfram s NKS Complex systems research center Zhang Jiang What can we do by computers? Scientific computation Processing data Computer simulations New field emerging

More information

NETWORK REPRESENTATION OF THE GAME OF LIFE

NETWORK REPRESENTATION OF THE GAME OF LIFE JAISCR, 2011, Vol.1, No.3, pp. 233 240 NETWORK REPRESENTATION OF THE GAME OF LIFE Yoshihiko Kayama and Yasumasa Imamura Department of Media and Information, BAIKA Women s University, 2-19-5, Shukuno-sho,

More information

From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110

From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110 From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110 Pingping Liu, Fangyue Chen, Lingxiao Si, and Fang Wang School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang,

More information

Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations

Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations Melanie Mitchell 1, Peter T. Hraber 1, and James P. Crutchfield 2 Abstract We present results from an experiment similar

More information

A comparison of evolutionary and coevolutionary search

A comparison of evolutionary and coevolutionary search A comparison of evolutionary and coevolutionary search Ludo Pagie Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM87501, US ludo@santafe.edu Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa

More information

Chaotic Properties of the Elementary Cellular Automaton Rule 40 in Wolfram s Class I

Chaotic Properties of the Elementary Cellular Automaton Rule 40 in Wolfram s Class I Chaotic Properties of the Elementary Cellular Automaton Rule 4 in Wolfram s Class I Fumio Ohi Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan This paper examines the chaotic

More information

A Phase Diagram for Elementary Cellular Automata

A Phase Diagram for Elementary Cellular Automata Complex Systems 7 (1993) 241-247 A Phase Diagram for Elementary Cellular Automata P.-M. Binder IIASA, A-2361 Laxenburg, A ustria Abstract. We construct a phase diagram for the possible dynamics of one-dimensional,

More information

Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata

Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata Emergence of Behavior R. Breukelaar Leiden Institute of Advanced Computer Science, Universiteit Leiden P.O. Box 9512,

More information

Complex dynamics of elementary cellular automata emerging from chaotic rules

Complex dynamics of elementary cellular automata emerging from chaotic rules International Journal of Bifurcation and Chaos c World Scientific Publishing Company Complex dynamics of elementary cellular automata emerging from chaotic rules Genaro J. Martínez Instituto de Ciencias

More information

Mechanisms of Emergent Computation in Cellular Automata

Mechanisms of Emergent Computation in Cellular Automata Mechanisms of Emergent Computation in Cellular Automata Wim Hordijk, James P. Crutchfield, Melanie Mitchell Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 87501 NM, USA email: {wim,chaos,mm}@santafe.edu

More information

Partitioning of Cellular Automata Rule Spaces

Partitioning of Cellular Automata Rule Spaces Partitioning of Cellular Automata Rule Spaces Rodrigo A. Obando TSYS School of Computer Science Columbus State University 4225 University Avenue Columbus, GA 31907, USA Obando_Rodrigo@ColumbusState.edu

More information

Lyapunov exponents in random Boolean networks

Lyapunov exponents in random Boolean networks Physica A 284 (2000) 33 45 www.elsevier.com/locate/physa Lyapunov exponents in random Boolean networks Bartolo Luque a;, Ricard V. Sole b;c a Centro de Astrobiolog a (CAB), Ciencias del Espacio, INTA,

More information

Letter. Resource Sharing and Coevolution in Evolving Cellular Automata

Letter. Resource Sharing and Coevolution in Evolving Cellular Automata 388 IEEE TRASACTIOS O EVOLUTIOARY COMPUTATIO, VOL. 4, O. 4, OVEMBER 2000 Letter Resource Sharing and Coevolution in Evolving Cellular Automata Justin Werfel, Melanie Mitchell, and James P. Crutchfield

More information

Computation in Cellular Automata: A Selected Review

Computation in Cellular Automata: A Selected Review Computation in Cellular Automata: A Selected Review Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 87501 U.S.A. email: mm@santafe.edu In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell,

More information

Complex Dynamics of a Memristor Based Chua s Canonical Circuit

Complex Dynamics of a Memristor Based Chua s Canonical Circuit Complex Dynamics of a Memristor Based Chua s Canonical Circuit CHRISTOS K. VOLOS Department of Mathematics and Engineering Sciences Univ. of Military Education - Hellenic Army Academy Athens, GR6673 GREECE

More information

Mathematica. A Systemjor Doing Mathematics by Computer. Stephen Wolfral1l. ~ C;:tr lju J. ~c~~

Mathematica. A Systemjor Doing Mathematics by Computer. Stephen Wolfral1l. ~ C;:tr lju J. ~c~~ Mathematica A Systemjor Doing Mathematics by Computer Stephen Wolfral1l. ~ ~A_ ~ C;:tr lju J ~c~~ Mathematica was designed and implemented by: Stephen Wolfram, Daniel Grayson, Roman Maeder, _/ Henry Cejtin,

More information

Computation by competing patterns: Life rule B2/S

Computation by competing patterns: Life rule B2/S Computation by competing patterns: Life rule B2/S2345678 Genaro J. Martínez, Andrew Adamatzky, Harold V. McIntosh 2, and Ben De Lacy Costello 3 Faculty of Computing, Engineering and Mathematical Sciences,

More information

Power Spectral Analysis of Elementary Cellular Automata

Power Spectral Analysis of Elementary Cellular Automata Power Spectral Analysis o Elementary Cellular Automata Shigeru Ninagawa Division o Inormation and Computer Science, Kanazawa Institute o Technology, 7- Ohgigaoka, Nonoichi, Ishikawa 92-850, Japan Spectral

More information

DT PhD Seminar in Computer Science

DT PhD Seminar in Computer Science DT8114 - PhD Seminar in Computer Science STEFANO NICHELE Department of Computer and Information Science Norwegian University of Science and Technology Sem Sælandsvei 7-9, NO-7491 nichele@idi.ntnu.no Abstract:

More information

Mitchell Chapter 10. Living systems are open systems that exchange energy, materials & information

Mitchell Chapter 10. Living systems are open systems that exchange energy, materials & information Living systems compute Mitchell Chapter 10 Living systems are open systems that exchange energy, materials & information E.g. Erwin Shrodinger (1944) & Lynn Margulis (2000) books: What is Life? discuss

More information

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Paola Flocchini and Vladimir Cezar School of Information Technology and Engineering University of Ottawa, 800 King Eduard,

More information

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Stochastic Model for Adaptation Using Basin Hopping Dynamics Stochastic Model for Adaptation Using Basin Hopping Dynamics Peter Davis NTT Communication Science Laboratories 2-4 Hikaridai, Keihanna Science City, Kyoto, Japan 619-0237 davis@cslab.kecl.ntt.co.jp Abstract

More information

Evolutionary Games and Computer Simulations

Evolutionary Games and Computer Simulations Evolutionary Games and Computer Simulations Bernardo A. Huberman and Natalie S. Glance Dynamics of Computation Group Xerox Palo Alto Research Center Palo Alto, CA 94304 Abstract The prisoner s dilemma

More information

Recognizing Complex Behavior Emerging from Chaos in Cellular Automata

Recognizing Complex Behavior Emerging from Chaos in Cellular Automata Recognizing Complex Behavior Emerging from Chaos in Cellular Automata Gabriela M. González, Genaro J. Martínez,2, M.A. Aziz Alaoui 3, and Fangyue Chen 4 Artificial Life Robotics Lab, Escuela Superior de

More information

Hierarchical Self-Organization in the Finitary Process Soup

Hierarchical Self-Organization in the Finitary Process Soup Hierarchical Self-Organization in the Finitary Process Soup Olof Görnerup 1,3, and James P. Crutchfield 2,3, 1 Department of Physical Resource Theory, Chalmers University of Technology, 412 96 Göteborg,

More information

Shannon Information (very briefly!) Lecture 4. Maximum and Minimum Entropy. Entropy. Entropy of Transition Rules. Entropy Examples

Shannon Information (very briefly!) Lecture 4. Maximum and Minimum Entropy. Entropy. Entropy of Transition Rules. Entropy Examples Lecture 4 9/4/07 1 Shannon Information (very briefly!) Information varies directly with surprise Information varies inversely with probability Information is additive The information content of a message

More information

A comparison of evolutionary and coevolutionary search

A comparison of evolutionary and coevolutionary search A comparison of evolutionary and coevolutionary search Ludo Pagie and Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM8751, US ludo@santafe.edu mm@santafe.edu phone: (+1)(55)-984-88

More information

Research Article Complex Dynamic Behaviors in Cellular Automata Rule 14

Research Article Complex Dynamic Behaviors in Cellular Automata Rule 14 Discrete Dynamics in Nature and Society Volume, Article ID 5839, pages doi:.55//5839 Research Article Complex Dynamic Behaviors in Cellular Automata Rule 4 Qi Han, Xiaofeng Liao, and Chuandong Li State

More information

ESD.84 Doctoral Seminar Session 8 Notes Guests Presenting: Seth Lloyd, Joe Sussman, Neil Gershenfeld

ESD.84 Doctoral Seminar Session 8 Notes Guests Presenting: Seth Lloyd, Joe Sussman, Neil Gershenfeld ESD.84 Doctoral Seminar Session 8 Notes Guests Presenting: Seth Lloyd, Joe Sussman, Neil Gershenfeld Session Design: Welcome and Overview and Introductions (5-10 min.) Generating Key Questions from Readings

More information

Modelling with cellular automata

Modelling with cellular automata Modelling with cellular automata Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Concepts about cellular

More information

SIMULATION OF SPREADS OF FIRE ON CITY SITE BY STOCHASTIC CELLULAR AUTOMATA

SIMULATION OF SPREADS OF FIRE ON CITY SITE BY STOCHASTIC CELLULAR AUTOMATA SIMULATION OF SPREADS OF FIRE ON CITY SITE BY STOCHASTIC CELLULAR AUTOMATA Atsushi TAKIZAWA 1, Atsushi YAMADA 2, Hiroshi KAWAMURA 3 And Akinori TANI 4 SUMMARY Earthquakes often cause serious fires. At

More information

Cellular Automata as Models of Complexity

Cellular Automata as Models of Complexity Cellular Automata as Models of Complexity Stephen Wolfram, Nature 311 (5985): 419 424, 1984 Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of

More information

New Possibilities for Cellular Automata in Cryptography

New Possibilities for Cellular Automata in Cryptography New Possibilities for Cellular Automata in Cryptography Mauro Tardivo Filho Marco A. A. Henriques Faculty of Electrical and Computer Engineering University of Campinas Sao Paulo - Brazil Overview 1. History

More information

P The Entropy Trajectory: A Perspective to Classify Complex Systems. Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI

P The Entropy Trajectory: A Perspective to Classify Complex Systems. Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI P 0 0 8 The Entropy Trajectory: A Perspective to Classify Complex Systems Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI What are complex systems? Having macroscopic properties which are

More information

Natural Computation: the Cellular Automata Case

Natural Computation: the Cellular Automata Case Natural Computation: the Cellular Automata Case Martin Schüle 1 Abstract. The question what makes natural systems computational is addressed by studying elementary cellular automata (ECA), a simple connectionist

More information

Cellular Automaton Supercomputing

Cellular Automaton Supercomputing Cellular Automaton Supercomputing 1988 Many of the models now used in science and engineering are over a century old. Most of them can be implemented on modem digital computers only with considerable difficulty.

More information

arxiv: v1 [q-bio.pe] 28 Apr 2007

arxiv: v1 [q-bio.pe] 28 Apr 2007 Santa Fe Institute Working Paper 7-5-XXX arxiv.org e-print adap-org/75xxx Primordial Evolution in the Finitary Process Soup arxiv:74.3771v1 [q-bio.pe] 28 Apr 27 Olof Görnerup 1, and James P. Crutchfield

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 20 Jan 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 20 Jan 1997 arxiv:cond-mat/9701118v1 [cond-mat.stat-mech] 20 Jan 1997 Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness Cristopher Moore Santa Fe Institute 1399 Hyde Park Road, Santa Fe NM 87501

More information

Average Range and Network Synchronizability

Average Range and Network Synchronizability Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 115 120 c Chinese Physical Society and IOP Publishing Ltd Vol. 53, No. 1, January 15, 2010 Average Range and Network Synchronizability LIU Chao ( ),

More information

THE winner-take-all (WTA) network has been playing a

THE winner-take-all (WTA) network has been playing a 64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999 Analysis for a Class of Winner-Take-All Model John P. F. Sum, Chi-Sing Leung, Peter K. S. Tam, Member, IEEE, Gilbert H. Young, W. K.

More information

Structuring Cellular Automata Rule Space with Attractor Basins

Structuring Cellular Automata Rule Space with Attractor Basins Structuring Cellular Automata Rule Space with Attractor Basins Dave Burraston Complex systems such as Cellular Automata (CA) produce global behaviour based on the interactions of simple units (cells).

More information

Asynchronous updating of threshold-coupled chaotic neurons

Asynchronous updating of threshold-coupled chaotic neurons PRAMANA c Indian Academy of Sciences Vol. 70, No. 6 journal of June 2008 physics pp. 1127 1134 Asynchronous updating of threshold-coupled chaotic neurons MANISH DEV SHRIMALI 1,2,3,, SUDESHNA SINHA 4 and

More information

The Fixed String of Elementary Cellular Automata

The Fixed String of Elementary Cellular Automata The Fixed String of Elementary Cellular Automata Jiang Zhisong Department of Mathematics East China University of Science and Technology Shanghai 200237, China zsjiang@ecust.edu.cn Qin Dakang School of

More information

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator.

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 28-33 e-issn: 2319 4200, p-issn No. : 2319 4197 Optimization of 1D and 2D Cellular Automata for Pseudo

More information

Complex Systems Theory

Complex Systems Theory Complex Systems Theory 1988 Some approaches to the study of complex systems are outlined. They are encompassed by an emerging field of science concerned with the general analysis of complexity. Throughout

More information

arxiv: v1 [nlin.cg] 23 Sep 2010

arxiv: v1 [nlin.cg] 23 Sep 2010 Complex networks derived from cellular automata Yoshihiko Kayama Department of Media and Information, BAIKA Women s University, 2-9-5, Shukuno-sho, Ibaraki-city, Osaka-pref., Japan arxiv:009.4509v [nlin.cg]

More information

Evolvability, Complexity and Scalability of Cellular Evolutionary and Developmental Systems

Evolvability, Complexity and Scalability of Cellular Evolutionary and Developmental Systems 1 Evolvability, Complexity and Scalability of Cellular Evolutionary and Developmental Systems Stefano Nichele February 18, 2015 2 Outline Motivation / Introduction Research Questions Background Results

More information

Cellular Automata. History. 1-Dimensional CA. 1-Dimensional CA. Ozalp Babaoglu

Cellular Automata. History. 1-Dimensional CA. 1-Dimensional CA. Ozalp Babaoglu History Cellular Automata Ozalp Babaoglu Developed by John von Neumann as a formal tool to study mechanical self replication Studied extensively by Stephen Wolfram ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

More information

EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL

EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL International Journal of Modern Physics C Vol. 20, No. 1 (2009) 133 145 c World Scientific Publishing Company EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL PAUL G. KASSEBAUM and

More information

Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA a

Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA a Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA 94720-7300 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,

More information

Periodic Cellular Automata of Period-2

Periodic Cellular Automata of Period-2 Malaysian Journal of Mathematical Sciences 10(S) February: 131 142 (2016) Special Issue: The 3 rd International Conference on Mathematical Applications in Engineering 2014 (ICMAE 14) MALAYSIAN JOURNAL

More information

arxiv: v1 [cs.fl] 17 May 2017

arxiv: v1 [cs.fl] 17 May 2017 New Directions In Cellular Automata arxiv:1705.05832v1 [cs.fl] 17 May 2017 Abdulrhman Elnekiti Department of Computer Science University of Turkish Aeronautical Association 11 Bahcekapi, 06790 Etimesgut

More information

Life and Evolution in Computers

Life and Evolution in Computers Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 2000 Life and Evolution in Computers Melanie Mitchell Los Alamos National Laboratory Let us

More information

arxiv: v1 [cond-mat.stat-mech] 3 Jul 2014

arxiv: v1 [cond-mat.stat-mech] 3 Jul 2014 Conway s game of life is a near-critical metastable state in the multiverse of cellular automata Sandro M. Reia 1 and Osame Kinouchi 1 arxiv:1407.1006v1 [cond-mat.stat-mech] 3 Jul 2014 1 Faculdade de Filosofia,

More information

MODELLING CELLuLAR AUTOMATA WITH PARTIAL DIFFERENTIAL EQUATIONS

MODELLING CELLuLAR AUTOMATA WITH PARTIAL DIFFERENTIAL EQUATIONS Physica Ion (1984) 128-134 North-Holland, Amsterdam MODELLING CELLuLAR AUTOMATA WITH PARTIAL DIFFERENTIAL EQUATIONS Stephen OMOHUNDRO* Lawrence Berkeley Laboratory, University of California, Berkeley,

More information

Undecidability and Intractability in Theoretical Physics

Undecidability and Intractability in Theoretical Physics Undecidability and Intractability in Theoretical Physics 1985 Physical processes are viewed as computations, and the difficulty of answering questions about them is characterized in terms of the difficulty

More information

1 What makes a dynamical system computationally powerful?

1 What makes a dynamical system computationally powerful? 1 What makes a dynamical system computationally powerful? Robert Legenstein and Wolfgang Maass Institute for Theoretical Computer Science Technische Universität Graz Austria, 8010 Graz {legi, maass}@igi.tugraz.at

More information

Discovery of the Boolean Functions to the Best Density-Classification Rules Using Gene Expression Programming

Discovery of the Boolean Functions to the Best Density-Classification Rules Using Gene Expression Programming Discovery of the Boolean Functions to the Best Density-Classification Rules Using Gene Expression Programming Cândida Ferreira Gepsoft, 37 The Ridings, Bristol BS13 8NU, UK candidaf@gepsoft.com http://www.gepsoft.com

More information

APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL

APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL J. Appl. Math. & Computing Vol. 20(2006), No. 1-2, pp. 433-443 Website: http://jamc.net APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL CHUNLING CHANG, YUNJIE ZHANG, YUNYING DONG Abstract.

More information

Controlling chaos in random Boolean networks

Controlling chaos in random Boolean networks EUROPHYSICS LETTERS 20 March 1997 Europhys. Lett., 37 (9), pp. 597-602 (1997) Controlling chaos in random Boolean networks B. Luque and R. V. Solé Complex Systems Research Group, Departament de Fisica

More information

Reliability Modeling of Nanoelectronic Circuits

Reliability Modeling of Nanoelectronic Circuits Reliability odeling of Nanoelectronic Circuits Jie Han, Erin Taylor, Jianbo Gao and José Fortes Department of Electrical and Computer Engineering, University of Florida Gainesville, Florida 6-600, USA.

More information

New communication schemes based on adaptive synchronization

New communication schemes based on adaptive synchronization CHAOS 17, 0114 2007 New communication schemes based on adaptive synchronization Wenwu Yu a Department of Mathematics, Southeast University, Nanjing 210096, China, Department of Electrical Engineering,

More information

The Quest for Small Universal Cellular Automata Nicolas Ollinger LIP, ENS Lyon, France. 8 july 2002 / ICALP 2002 / Málaga, Spain

The Quest for Small Universal Cellular Automata Nicolas Ollinger LIP, ENS Lyon, France. 8 july 2002 / ICALP 2002 / Málaga, Spain The Quest for Small Universal Cellular Automata Nicolas Ollinger LIP, ENS Lyon, France 8 july 2002 / ICALP 2002 / Málaga, Spain Cellular Automata Definition. A d-ca A is a 4-uple ( Z d, S, N, δ ) where:

More information

Synchronizing Chaotic Systems Based on Tridiagonal Structure

Synchronizing Chaotic Systems Based on Tridiagonal Structure Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 008 Synchronizing Chaotic Systems Based on Tridiagonal Structure Bin Liu, Min Jiang Zengke

More information

Exact results for deterministic cellular automata traffic models

Exact results for deterministic cellular automata traffic models June 28, 2017 arxiv:comp-gas/9902001v2 2 Nov 1999 Exact results for deterministic cellular automata traffic models Henryk Fukś The Fields Institute for Research in Mathematical Sciences Toronto, Ontario

More information

Classification of Random Boolean Networks

Classification of Random Boolean Networks Classification of Random Boolean Networks Carlos Gershenson, School of Cognitive and Computer Sciences University of Sussex Brighton, BN1 9QN, U. K. C.Gershenson@sussex.ac.uk http://www.cogs.sussex.ac.uk/users/carlos

More information

Computation in Cellular Automata: A Selected Review

Computation in Cellular Automata: A Selected Review Computation in Cellular Automata: A Selected Review Melanie Mitchell SFI WORKING PAPER: 1996-09-074 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information