Answers to the Conceptual Questions

Size: px
Start display at page:

Download "Answers to the Conceptual Questions"

Transcription

1 Chpter 3 Explining Motion 41 Physics on Your Own If the clss is not too lrge, tke them into freight elevtor to perform this exercise. This simple exercise is importnt if you re going to cover inertil forces lter. Sprott Contins demonstrtion (in Prt of rockets being lunched. Be sure to view this one before showing it: Depending on the level of your clss you my wnt to either omit it or sve it until Chpter 6 on Momentum. Video Encyclopedi #18 Rection Gliders #0 Cr on Rolling Bord #1 Fn Cr with Sil Computer Animtions Active Figure Animtions re vilble on the Multimedi Mnger Instructor s Resource CD. They re orgnized by textbook chpter, nd ech nimtion comes within shell tht provides informtion on how to use the nimtion, explortion ctivities, nd short quiz. Answers to the Conceptul Questions 1. The sncks re lso moving t 800 km/h west nd therefore pper to fll stright down.. The keys re lso moving sidewys t 400 m/s nd, by Newton s first lw, they keep moving sidewys. 3. We conclude tht there must be n unblnced force (tion opposing the cr's motion. 4. There must be n unblnced force opposing its motion. We conclude tht the surfce exerts tionl force on the book. 5. Becuse the velocity does not chnge, the force on ech cr must dd to zero. Therefore the two forces re the sme. 6. Becuse the velocity is constnt, the forces must dd to zero. The engine provides force equl to the sum of ll the opposing forces such s tion nd ir resistnce. 7. Becuse of its inerti. When the cr ccelertes bckwrd, the tssel tends to remin t its originl speed. 8. Becuse of its inerti, the wter does not move with the fur. 9. Becuse of your inerti. When the cr stops suddenly, your hed (nd body stys t its originl speed until your hed hits the windshield. 10. The hedrests re most effective in rer end collision. The hedrests mke the hed move forwrd with the rest of the body. 11. The lrge inerti of the nvil mens tht it does not move much when the hmmer hits. 1. The lrge cutting bord hs lrge inerti nd therefore smll ccelertions. 13. No, inerti refers more generlly to how hrd it is to chnge n object s motion, whether it is speeding up or slowing down. 14. If you pply the sme force to ech one nd they hve the sme ccelertion, they hve the sme inerti. 15. No, the force is vector sum nd will not necessrily point in the direction of ny of the individul forces. 16. The force is not the dominnt force; it is the vector sum of ll the forces. 17. If the forces ct in opposite directions, the force is 50 newtons. If they ct in the sme direction, the force is 130 N. 18. Yes, the force resulting from these two forces cn hve ny vlue between zero nd 1400 newtons. 19. Initilly, the force ws zero. Incresing the pplied force mkes the force non-zero. The wgon now ccelertes (speeds up indefinitely. 0. Initilly, the force ws zero. Removing the books reduces the force of tion mking the force non-zero. The crte now ccelertes (speeds up indefinitely. 1. The ccelertion lwys points in the sme direction s the force. Therefore, it will point due est in

2 4 Chpter 3 Explining Motion both cses.. The ccelertion lwys points in the sme direction s the force. Therefore, it will point upwrd in both cses. 3. You re slowing down while moving downwrd so your ccelertion is up. The force must lso be up. 4. You re slowing down while moving upwrd so your ccelertion is down. The force must lso be down. 5. The ccelertion doubles. 6. The ccelertion is hlved. 7. As ccelertion is inversely proportionl to mss, reducing the mss by fctor of two will double the ccelertion to 4 (meter per second per second. 8. Becuse the cr s re identicl, they hve the sme mss. In order to hve the sme ccelertion, ech cr must experience the sme force. 9. Her weight chnges becuse it is force of ttrction between her nd the Moon wheres her mss, which is mesure of her quntity of mtter, doesn't chnge. 30. Kilogrm is mss unit. 31. Six cns of pop must hve 6 times the weight of single cn. 3. Becuse the weight is proportionl to the ccelertion due to grvity, the weight is one-sixth s lrge on the Moon. 33. If the skier is moving to the right, her free-body digrm would be: N snow,skier 34. If the cr is moving to the right, its free-body digrm would be: fwind,cr W Erth,cr Nrod,cr f rod,cr f snow,skier W Erth,skier 35. If there is no ir resistnce, the two would fll with the sme ccelertion. 36. Aristotle would sy tht hevier objects nturlly fll fster; Glileo would ttribute the difference to ir resistnce. 37. The ccelertion is zero becuse the upwrd force of resistnce due to the sop is equl to the downwrd force of grvity. 38. The ccelertion is zero becuse the upwrd force of ir resistnce is equl to the downwrd force of grvity. 39. The ccelertion of both people is zero, so the forces must be zero. 40. The ccelertion of both objects is zero, so the forces must be zero. 41. Newton's first lw is lwys vlid. There must be other forces opposing the tion so tht the force is zero. 4. Newton's second lw is lwys vlid. The tionl force must be dded to the other forces to find the force. 43. The tionl force is equl to 400 newtons becuse the force is zero. 44. The kiic tionl force must be 10 newtons becuse the force is zero when moving t constnt speed. The mximum sttic tionl force is lwys greter thn the sliding tionl force nd so it is possible tht the jr would sty t rest. 45. According to Newton's first lw the force must be zero if the ccelertion is zero. If the tionl force is 50 newtons, the pplied force must lso be 50 newtons (in the opposite direction.

3 Chpter 3 Explining Motion The ccelertion is zero so the force must lso be zero by Newton s first lw. 47. They re equl nd opposite by Newton s third lw. 48. They re equl nd opposite by Newton s third lw. 49. By Newton's third lw, the force exerted on the Erth by the Sun must be equl (nd oppositely directed to the force exerted on the Sun by the Erth. 50. By Newton s third lw, the two forces must be equl in size. 51. Becuse the pple is not ccelerting, the force must be zero. 5. The force must be equl to its weight of 4 newtons. 53. According to Newton's third lw there is rection force cting on the cnnon. 54. According to Newton's third lw there is rection force cting on the tennis rcquet due to its interction with the bll. This force is opposite the rcquet s velocity nd therefore cuses the rcquet to slow down. 55. The forces tht llow you to wlk cross room re the tionl forces of the floor on your feet. 56. The engine provides downwrd force on its pistons tht rottes the driving xle. The xle rottes the wheels tht push bckwrd on the rod's surfce. The rod, in rection to this force, pushes forwrd on the cr. 57. The bll exerts n upwrd force on the Moon equl to the size of the force the Moon exerts on the bll, nmely 40 newtons. 58. Ceiling on string & string on ceiling; string on bll & bll on string; bll on erth & erth on bll. Ech pir is equl by Newton's third lw. The force of the ceiling on the string nd the force of the bll on the string re the sme by Newton's second lw. Likewise for the force of the string on the bll nd the force of Erth on the bll. Therefore, ll of the forces re equl in size. 59. The forces ct on different objects. The tionl force of the ground on the horse's hoofs llows the horse to move the crt. 60. Newton s third-lw forces lwys ct on different objects, so they cn never cncel. The force of the door on Gry does not ffect the door s motion. 61. The upwrd force of the tble on the cn must be equl nd opposite the weight by Newton s second lw becuse the force is zero. 6. The rection force to the grvittionl force on the mouse is the upwrd grvittionl pull of the mouse on Erth. Answers to the Exercises 1. 8 N + 6 N = 14 N b 8 N 6 N = N 8 N + 6 N = 10 N or use scle drwing c ( (. 1 N + 5 N = 17 N b 1 N 5 N = 7 N in the direction of the 8-N force 1 N + 5 N = 13 N or use scle drwing c ( ( N 300 N = 50 N in the direction of the 300-N force 3N + 4N = 5N 4. ( (

4 44 Chpter 3 Explining Motion F 1800 N = = 3ms m 600 kg F 4000 N = = ms m 000 kg F 9000 N = = 900,000 m s m 0.01 kg F 6000 N = = 0.1 m s m 60,000 kg 9. F m ( ( 10. F m ( ( 11. = = 60 kg 3 m s = 180 N = = 0 kg 5 m s = 100 N 10 N = = = 1.67 m s m 6kg 1. F m ( ( = = 100 kg 3 m s = 3600 N F 300 N 13. m = = 75 kg 4ms 4 N 14. m = = = 60 kg 0.4 m s 15. F W mg ( ( 16. ( ( = = = 0.5 kg 10 m s = 5 N down F = W = mg = = 30 N = = = 4ms m 80 kg F 555 N = = 3.7 m s m 150 kg 19. F m ( ( 1 kg 10 m s 10 N down; = 10 m/s down = = 4 kg 3 m s = 7 N Therefore, F = F + F = 7 N + 90 N = 16 N pp t 0. F m ( ( = = 10 kg 3 m s = 30 N Therefore, F = F + F = 30 N + 50 N = 80 N pp t 1. F m ( ( = = 40 kg 5 m s = 00 N F = F F = 10 N 00 N = 10 N. F m ( ( = = 60 kg m s = 10 N F = F + W = 10 N N = 70 N scle 3. Frope Terry mterryterry ( ( Chris, = = 75 kg m s = 150 N F 150 N = = = 3ms m 50 kg rope, Chris Chris

5 Chpter 3 Explining Motion F m ( ( F = = 5 kg m s = 50 N, = Fdughter, mother = 50 N by the 3rd lw mother dughter 50 N mother = = 1ms 50 kg Answers to the Problems in Problem Solving F = 50 N + 50 N = 70.7 N northwest 1. ( ( F = 4 N + 9 N 6 N = 5 N 37 south of est. ( ( F = 40 N + 60 N = 7.1 N upwrd to the left t 56.3 to the horizontl 3. ( ( 1 30 N 4. θ = tn = N 5. F m ( ( 6. F m ( ( = = 400 kg 3 m s = 700 N est = = 100 kg m s = 400 N 7. = = = m 90 kg 88 N 9.8 m s to the right 8. = = = m 90 kg 150 N 1.67 m s downwrd 3. N 9. m = = = 8kg 0.4 m s 100 N 10. m = = = 66.7 kg 1.5 m s m = mb r 30 m/s m 3; red one hs smller mss m = = 10 m s = b b r r c 9 m s m t t m c c mt mc t 3 m s b = = = 0. kg = 0.6 kg = F 4N v 8ms = = 4ms t = = m 1kg 4ms = s F m 10 N v 8 m s ms t 60 kg m s = = = = = = v f = 8 m s in the opposite direction 15. The ccelertion is up nd therefore the upwrd force is greter thn 300 N. b The crte is moving downwrd but slowing down, which mens the ccelertion is up. c The ccelertion should be in the sme direction s the force. 4s

6 46 Chpter 3 Explining Motion v 30 m s 0 m s = = = 000 kg = 3000 N t 0 s 16. F m m ( 17. W mg ( ( Mss = 1 kg; = = 1 kg 3.7 m s = 44.4 N 18. Mss = 40 kg; weight = ( 39 N / 6 = 65.3 N 19. Fs mg m m( g ( ( 0. Fs mg m m( g ( ( = + = + = 85 kg 9.8 m s + 1. m s = 935 N = + = + = 70 kg 9.8 m s 0.8 m s = 630 N 1m/s F W Fs m mg g = = = = 600 N = 61. N 9.8 m/s 1. ( 1m/s F Fs W m mg g = = = = 900 N = 91.8 lb 9.8 m/s ( N floor, womn = 700 N f ir, mn = 400 N W Erth, womn = 700 N W Erth, mn = 800 N T cord, light = 14 N N floor, block = 196 N f floor, block = 100 N F hnd, block = 400 N F hnd, light = 30 N W Erth, light = 10 N W Erth, block = 196 N 7. N mg m m( g ( ( = + = + = 100 kg 9.8 m s + 1 m s = 1080 N ( F = F = µ N = N = 43 N pp

7 Chpter 3 Explining Motion N mg m m( g ( ( = = = 100 kg 9.8 m s 1.5 m s = 830 N ( F = F = µ N = N = 33 N pp 9. F = F = 650 N (becuse = pp ( ( mg F 90 kg 9.8 m s 500 N 4.4 m s = = = = m m 90 kg 31. F = m = ( ( = Fir mg F ( ( 3. F = m = ( ( = 70 kg 7 m s 490 N = = 70 kg 9.8 m s 490 N = 196 N 5.4 kg 1.5 m s 8.1 N F = Fpp F = 1 N 8.1 N = 3.9 N 33. F Fpp m ( ( = = 160 N 0 kg 3 m s = 100 N µ = F F 100 N 0.51 N = mg = = 34. pp F = m + F = m + µ mg ( 0 kg( 9.8 m s ( ( ( ( ( = 00 kg 1.5 m/s kg 9.8 m/s = 300 N N = 496 N F pp / dog = 496 N/10 = 49.6 N

4-6 ROTATIONAL MOTION

4-6 ROTATIONAL MOTION Chpter 4 Motions in Spce 51 Reinforce the ide tht net force is needed for orbitl motion Content We discuss the trnsition from projectile motion to orbitl motion when bll is thrown horizontlly with eer

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion Lecture 5 Physics 2A Olg Dudko UCSD Physics Tody: Motion in mny dimensions: Circulr motion. Newton s Lws of Motion. Lws tht nswer why questions bout motion. Forces. Inerti. Momentum. Uniform Circulr Motion

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

Model Solutions to Assignment 4

Model Solutions to Assignment 4 Oberlin College Physics 110, Fll 2011 Model Solutions to Assignment 4 Additionl problem 56: A girl, sled, nd n ice-covered lke geometry digrm: girl shore rope sled ice free body digrms: force on girl by

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

Answers to selected problems from Essential Physics, Chapter 3

Answers to selected problems from Essential Physics, Chapter 3 Answers to selected problems from Essentil Physics, Chpter 3 1. FBD 1 is the correct free-body dirm in ll five cses. As fr s forces re concerned, t rest nd constnt velocity situtions re equivlent. 3. ()

More information

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings Chpter 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings When, in the cse of tilted coordinte system, you brek up the

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Multiple Choice ( 6 Points Ech ): F pp = 40 N 20 kg Q = 60 O m s,k = 0 1. A 20 kg box is pulled long frictionless floor with n pplied force of 40 N. The pplied force mkes n ngle of 60 degrees with the

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

SECTION B Circular Motion

SECTION B Circular Motion SECTION B Circulr Motion 1. When person stnds on rotting merry-go-round, the frictionl force exerted on the person by the merry-go-round is (A) greter in mgnitude thn the frictionl force exerted on the

More information

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY The Atwood Mchine OBJECTIVE To derive the ening of Newton's second lw of otion s it pplies to the Atwood chine. To explin how ss iblnce cn led to the ccelertion of the syste. To deterine the ccelertion

More information

CHAPTER 5 Newton s Laws of Motion

CHAPTER 5 Newton s Laws of Motion CHAPTER 5 Newton s Lws of Motion We ve been lerning kinetics; describing otion without understnding wht the cuse of the otion ws. Now we re going to lern dynics!! Nno otor 103 PHYS - 1 Isc Newton (1642-1727)

More information

Chapter 5 Exercise 5A

Chapter 5 Exercise 5A Chpter Exercise Q. 1. (i) 00 N,00 N F =,00 00 =,000 F = m,000 = 1,000 = m/s (ii) =, u = 0, t = 0, s =? s = ut + 1 t = 0(0) + 1 ()(00) = 00 m Q.. 0 N 100 N F = 100 0 = 60 F = m 60 = 10 = 1 m/s F = m 60

More information

Dynamics Applying Newton s Laws Accelerated Frames

Dynamics Applying Newton s Laws Accelerated Frames Dynmics Applying Newton s Lws Accelerted Frmes Ln heridn De Anz College Oct 18, 2017 Lst time Circulr motion nd force Centripetl force Exmples Non-uniform circulr motion Overview one lst circulr motion

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Motion ccelertion Prt : Constnt ccelertion ccelertion ccelertion ccelertion is the rte of chnge of elocity. = - o t = Δ Δt ccelertion = = - o t chnge of elocity elpsed time ccelertion is ector, lthough

More information

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law ME 141 Engineering Mechnics Lecture 10: Kinetics of prticles: Newton s nd Lw Ahmd Shhedi Shkil Lecturer, Dept. of Mechnicl Engg, BUET E-mil: sshkil@me.buet.c.bd, shkil6791@gmil.com Website: techer.buet.c.bd/sshkil

More information

Correct answer: 0 m/s 2. Explanation: 8 N

Correct answer: 0 m/s 2. Explanation: 8 N Version 001 HW#3 - orces rts (00223) 1 his print-out should hve 15 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Angled orce on Block 01 001

More information

Physics 105 Exam 2 10/31/2008 Name A

Physics 105 Exam 2 10/31/2008 Name A Physics 105 Exm 2 10/31/2008 Nme_ A As student t NJIT I will conduct myself in professionl mnner nd will comply with the proisions of the NJIT Acdemic Honor Code. I lso understnd tht I must subscribe to

More information

Introduction to Mechanics Practice using the Kinematics Equations

Introduction to Mechanics Practice using the Kinematics Equations Introduction to Mechnics Prctice using the Kinemtics Equtions Ln Sheridn De Anz College Jn 24, 2018 Lst time finished deriing the kinemtics equtions some problem soling prctice Oeriew using kinemtics equtions

More information

A wire. 100 kg. Fig. 1.1

A wire. 100 kg. Fig. 1.1 1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the

More information

COURSE TARGETS AP PHYSICS TEST SCORES World SHS

COURSE TARGETS AP PHYSICS TEST SCORES World SHS 2011 AP PHYSICS TEST SCORES World SHS 2011 AP PHYSICS TEST SCORES World SHS COURSE TARGETS be ble to stte, nd understnd the mening of, Newton's 3 lws of motion. be ble to pply Newton's lws to simple situtions

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16)

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16) AP Physics 1 Prctice Exm #3 (/11/16) Directions: Ech questions or incomplete sttements below is followed by four suggested nswers or completions. Select one tht is best in ech cse nd n enter pproprite

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16 CHAPTER 16 1. The number of electrons is N = Q/e = ( 30.0 10 6 C)/( 1.60 10 19 C/electrons) = 1.88 10 14 electrons.. The mgnitude of the Coulomb force is Q /r. If we divide the epressions for the two forces,

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

General Relativity 05/12/2008. Lecture 15 1

General Relativity 05/12/2008. Lecture 15 1 So Fr, We Hve Generl Reltivity Einstein Upsets the Applecrt Decided tht constnt velocity is the nturl stte of things Devised nturl philosophy in which ccelertion is the result of forces Unified terrestril

More information

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4 Phy 231 Sp 3 Hoework #8 Pge 1 of 4 8-1) rigid squre object of negligible weight is cted upon by the forces 1 nd 2 shown t the right, which pull on its corners The forces re drwn to scle in ters of the

More information

Section 7.2 Velocity. Solution

Section 7.2 Velocity. Solution Section 7.2 Velocity In the previous chpter, we showed tht velocity is vector becuse it hd both mgnitude (speed) nd direction. In this section, we will demonstrte how two velocities cn be combined to determine

More information

_3-----"/- ~StudI_G u_id_e_-..,...-~~_~

_3-----/- ~StudI_G u_id_e_-..,...-~~_~ e- / Dte Period Nme CHAPTR 3-----"/- StudIG uide-..,...- [-------------------- Accelerted Motion Vocbulry Review Write the term tht correctly completes the sttement. Use ech term once. ccelertion verge

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 139 Slide 2 / 139 P Physics C - Mechnics Dynmics - pplictions of Newtons Lws 2015-12-03 www.njctl.org Tble of Contents Slide 3 / 139 Click on the topic to go to tht section Introduction Sliding

More information

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler Universl Grvittion Chpter 1 Johnnes Kepler Johnnes Kepler ws Germn mthemticin, stronomer nd strologer, nd key figure in the 17th century Scientific revolution. He is best known for his lws of plnetry motion,

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Physics Physics 8T Fll Term 4 In-Clss Problems nd 3: Projectile Motion Solutions We would like ech group to pply the problem solving strtegy with the

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

a) mass inversely proportional b) force directly proportional

a) mass inversely proportional b) force directly proportional 1. Wht produces ccelertion? A orce 2. Wht is the reltionship between ccelertion nd ) mss inersely proportionl b) orce directly proportionl 3. I you he orce o riction, 30N, on n object, how much orce is

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform circulr disc hs mss m, centre O nd rdius. It is free to rotte bout fixed smooth horizontl xis L which lies in the sme plne s the disc nd which is tngentil to the disc t the point A. The disc

More information

PHYSICS ASSIGNMENT-9

PHYSICS ASSIGNMENT-9 MPS/PHY-XII-11/A9 PHYSICS ASSIGNMENT-9 *********************************************************************************************************** 1. A wire kept long the north-south direction is llowed

More information

Trigonometric Functions

Trigonometric Functions Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

AP Physics C - Mechanics. Introduction. Sliding Blocks. Slide 1 / 139 Slide 2 / 139. Slide 3 / 139. Slide 4 / 139. Slide 5 / 139.

AP Physics C - Mechanics. Introduction. Sliding Blocks. Slide 1 / 139 Slide 2 / 139. Slide 3 / 139. Slide 4 / 139. Slide 5 / 139. Slide 1 / 139 Slide 2 / 139 P Physics C - Mechnics Dynmics - pplictions of Newtons Lws 2015-12-03 www.njctl.org Slide 3 / 139 Slide 4 / 139 Tble of Contents Click on the topic to go to tht section Introduction

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION Responses to Questions. A cr speedometer mesures only speed. It does not give ny informtion bout the direction, so it does not mesure velocity.. If the velocity

More information

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines Msschusetts Institute of Technology Deprtment of Physics 8.0T Fll 004 Study Guide Finl Exm The finl exm will consist of two sections. Section : multiple choice concept questions. There my be few concept

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

MATH FIELD DAY Contestants Insructions Team Essay. 1. Your team has forty minutes to answer this set of questions.

MATH FIELD DAY Contestants Insructions Team Essay. 1. Your team has forty minutes to answer this set of questions. MATH FIELD DAY 2012 Contestnts Insructions Tem Essy 1. Your tem hs forty minutes to nswer this set of questions. 2. All nswers must be justified with complete explntions. Your nswers should be cler, grmmticlly

More information

A little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight?

A little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight? Neton s Ls of Motion (ges 9-99) 1. An object s velocit vector v remins constnt if nd onl if the net force cting on the object is zero.. hen nonzero net force cts on n object, the object s velocit chnges.

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

3.1 Review of Sine, Cosine and Tangent for Right Angles

3.1 Review of Sine, Cosine and Tangent for Right Angles Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,

More information

IMPOSSIBLE NAVIGATION

IMPOSSIBLE NAVIGATION Sclrs versus Vectors IMPOSSIBLE NAVIGATION The need for mgnitude AND direction Sclr: A quntity tht hs mgnitude (numer with units) ut no direction. Vector: A quntity tht hs oth mgnitude (displcement) nd

More information

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum? Which of the following summrises the chnge in wve chrcteristics on going from infr-red to ultrviolet in the electromgnetic spectrum? frequency speed (in vcuum) decreses decreses decreses remins constnt

More information

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA Hrris: Quntittive Chemicl Anlysis, Eight Edition CHAPTER 08: MONOPROTIC ACIDBASE EQUILIBRIA CHAPTER 08: Opener A CHAPTER 08: Opener B CHAPTER 08: Opener C CHAPTER 08: Opener D CHAPTER 08: Opener E Chpter

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Mathematics Extension 1

Mathematics Extension 1 04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Physics Honors. Final Exam Review Free Response Problems

Physics Honors. Final Exam Review Free Response Problems Physics Honors inl Exm Review ree Response Problems m t m h 1. A 40 kg mss is pulled cross frictionless tble by string which goes over the pulley nd is connected to 20 kg mss.. Drw free body digrm, indicting

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

STUDY MATERIAL LAWS OF MOTION AIEEE NARAYANA INSTITUTE OF CORRESPONDENCE COURSES

STUDY MATERIAL LAWS OF MOTION AIEEE NARAYANA INSTITUTE OF CORRESPONDENCE COURSES P H Y S I C S STUDY MATERIAL LAWS O MOTION AIEEE NARAYANA NS HOUSE, 63 KALU SARAI MARKET SARVAPRIYA VIHAR, NEW DELHI-006 PH.: (0) 3003/3/50 AX : (0) 48830 Website : w w w. n r y n i c c. c o m E-mil :

More information

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy.

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy. HW Solutions # 5-8.01 MIT - Prof. Kowlski Friction, circulr dynmics, nd Work-Kinetic Energy. 1) 5.80 If the block were to remin t rest reltive to the truck, the friction force would need to cuse n ccelertion

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Numerical Problems With Solutions(STD:-XI)

Numerical Problems With Solutions(STD:-XI) Numericl Problems With Solutions(STD:-XI) Topic:-Uniform Circulr Motion. An irplne executes horizontl loop of rdius 000m with stedy speed of 900kmh -. Wht is its centripetl ccelertion? Ans:- Centripetl

More information

Eunil Won Dept. of Physics, Korea University 1. Ch 03 Force. Movement of massive object. Velocity, acceleration. Force. Source of the move

Eunil Won Dept. of Physics, Korea University 1. Ch 03 Force. Movement of massive object. Velocity, acceleration. Force. Source of the move Eunil Won Dept. of Phsics, Kore Uniersit 1 Ch 03 orce Moement of mssie object orce Source of the moe Velocit, ccelertion Eunil Won Dept. of Phsics, Kore Uniersit m ~ 3.305 m ~ 1.8 m 1.8 m Eunil Won Dept.

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO.

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO. PHYSICS 1 Fll 017 EXAM 1: October 3rd, 017 8:15pm 10:15pm Nme (printed): Recittion Instructor: Section #: DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO. This exm contins 5 multiple-choice questions,

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Problems Blinn Collee - Physic425 - Terry Honn Problem E.1 () Wht is the centripetl (rdil) ccelertion of point on the erth's equtor? (b) Give n expression for the centripetl ccelertion s function

More information

Chapters Five Notes SN AA U1C5

Chapters Five Notes SN AA U1C5 Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

More information

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student) A-Level Mthemtics Trnsition Tsk (compulsory for ll mths students nd ll further mths student) Due: st Lesson of the yer. Length: - hours work (depending on prior knowledge) This trnsition tsk provides revision

More information

Chapter 4. (a) (b) (c) rocket engine, n r is a normal force, r f is a friction force, and the forces labeled mg

Chapter 4. (a) (b) (c) rocket engine, n r is a normal force, r f is a friction force, and the forces labeled mg Chpter 4 0. While the engines operte, their totl upwrd thrust eceeds the weight of the rocket, nd the rocket eperiences net upwrd fce. his net fce cuses the upwrd velocit of the rocket to increse in mgnitude

More information

WELCOME TO THE LECTURE

WELCOME TO THE LECTURE WELCOME TO THE LECTURE ON DC MOTOR Force on conductor If conductor is plced in mgnetic field nd current is llowed to flow through the conductor, the conductor will experience mechnicl force. N S Electric

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information