-ИИИИИ"ИИИИИИИИИ 2017.

Size: px
Start display at page:

Download "-ИИИИИ"ИИИИИИИИИ 2017."

Transcription

1 -.. -ИИИИИ"ИИИИИИИИИ Ы :,. : ,..,

2 .. " " : «, -.» 2. : ( ): ( ) Э (, ). : ИИИИИИИИИИИИИИИИ. : ИИИИИИИИИИИИИИИИИИ..,.. : ИИИИИИИИИИИИИ

3 45, ,. : (MDS codes),,,.

4 Abstact Pages 45, 3 tables and 5 pictures. The thesis is devoted to Study of efficiency of the Guruswami Wooters method for data recovery in storage systems. A description of the Guruswami Wooters method is presented, its software implementation is described, and simulation results are presented. Key words: Maximum Distance Separating (MDS codes), Guruswamy- Wooters algorithm, encoding, decoding of repairing information.

5 Э , MDS MDS А = F

6 4. Ч З

7 BCH (Bose Chaudhuri Hocquenghem codes), RS MDS (maximum distance separating) ADSL xdsl CD - DVD RAID RAID5 ё 7

8 ( ).,, Д2]. ( ),., n.,. k, F. F. n 1,..., n. (, ). k..., и ющих, 8

9 ,. [1],., [1]..,...,. =.,.. 9

10 1 1.1.,..,..,,.,.,. : 10

11 -, ; - =, ; -.,. - ( ё ) -. =,. (parity check matrix),, =,., : = (1.1) 1.2. К. (Reed Solomon codes) (Irving S. Reed) (Gustave Solomon). 11

12 GF(2) ( ),. ( )., -,,, = =,,., =, =,, - ( ) =,, : = =,.. =, deg <.,., = +.,, ( ). - : - (, CD, DVD, -,..); - (,..); - ; - / DVB (digital video broadcast); 12

13 -, ADSL, xdsl К :. :,,.. =. =. Э : g0 g1 gd 2 gd g0 gd 3 gd 2 gd 1 0 G g0 g1 gd 1,.. k, k. 13

14 ,.,, /. Э,,,, ,.,.,.,,,,. 14

15 ,.. [1] -,.. ( ),,.,,... Э (, SIMD)...1., RAID- 5,. 15

16 RAID -., : ( ),

17 2 Э 2.1.,, ё,. -. : =, = {,.., : е е и е лее }, F, = {,., } а а. С. С,,,,..., С..,,, C. 17

18 ,.,,,.. - -,, F,. (MDS),,.,,, (MDS),,, min { : } = + MDS,,,,,., k f :,.. С,, А. : = { : : = } 18

19 MDS MDS :,,,., ( ),. MDS, f F, F. n,.,,.., Д1],,., = = ( ). : \{ }., = λ 19

20 ,, F В. : { ( ): } \ = b,, = max \{ } (2.2). 3. :.,.,,, 20

21 =. В,,.,, : = max \{ } = log -.,. [1] log, -,,. =,, =.,. 2.3.,,, log = log. Д4] MDS,, F,. 21

22 ., Д4] ( ) MDS. MDS =,, В. Э ё (5, 3) (6, 4) 1, (14, 10) -, ApКМСО HКНШШp, FКМОЛШШФ. Д5, 6, 7, 8, 9, 10] -. -,,,, -,.. ё [4] -.,, [1] Д4]. -, Д4] =,,. 22

23 , MDS, -. -, Д4]. ( ), ;., Ч. Д4],,. 1, RS MDS ё MDS ( - )...,, -, ( ) 23

24 ., -, -.., ( ), ё.,,,. Д1]. - =, = log. -.,. :., : = + (2.4) Д11, 12],. [13], (, ), (2.4).., Д14],,, (2.4) ; = 24

25 , exp [15]., (2.4) /, [16, 17]. :.,,, (2.4)., + MDS., <, = +.. = + ё, = Х MDS MDS., MDS, { : } =. 1:, ; - ; - 25

26 MDS. : -, -, { : } = { : } max \{ } : 1 [1],, MDS.,, 1. Д1], 4.,,,,. 4,,, -., F. 26

27

28 3 А = F А =,. 3.1 С { : }, { : } =. 28 [1], (1.1),, max \{ } : (3.1) Д1],, =,, ( )

29 = { ( ) } F B. =. = { : } = = 1: α = =, =. Э 2., α =, =, -,. В. = {, } = {, } - F : i = 1 : i = 2 : = ( ) = + = = = {,,, },, ( ) ( ) ( ) G 0 k 1 k 14 k ( ) ( ) ( ) 29

30 . = [,,, ] -. = = [,,, ] * [ ] {, }: = {,,,,,,,,,,,,,, } = {,,,,,,,,,,,,,, },,,. 2. (16, 8) = = (2).,. = 8, log =., Д1], =,, log =.,.,.. \{ },,, 30

31 =, \{ }. : =, \{ },,,,.,.,,,,,.,. [1]. 1: - =. - RS,, B,. 2:. =. RS, log. Э MDS ; +, 1. 31

32 MDS. B -. ( ) log, ( ) MDS log log \{ } : :., = \{ } \{ } 32 {, : } : -. : = {,,, }, :, = ( ) = {,

33 - {, : }, = : * q11 q 1, ( ) t1 v1 * q1 t q tt v t, ( ) t 3.. = {,,, },., Z , = ( ) = { =.,,, :

34 , = \{ } \{ } А,, : = {,,,,,,,,,,,,,, } = {,,,,,,,,,,,,,, } { ( ): }. = {,,, } - В, = {,,, }. = = 3.2 -,, CRSExtendedProcessor. 34

35 . 2. RAID,.,,. 1,. 1.,. Attach CheckCodeWord EncodeStrip IsCorrectable DecodeDataSymbols UpdateInformation 35

36 -, Attach.,,..,. ResetErasures.. FieldValue. FТОХНCШЧstruМtШr :,,,,.. «RSGenerator».,, «rs_misc.h». -,,.,,. ErasureID ( ). IsCorrectable,.,, :,... 36

37 ,,. RAID.. EncodeStripe -,.. RAID,..,.,,,..,.,,.,. 37

38 . DecodeDataSymbols. CheckCodeword,,.,,. UpdateInformationSymbols,.., ( ),,., -. 38

39 4 Ч 3., 16,. ё, ( ).. 5. ё,, ё.,, {,..., }., = 8, 2, = %, -. =,., = 30%. 39

40 Data read redundancy, times (16, K) RS B = GF(2) (16, K) RS B = GF(4) 16, К RS Code Dimension, K ( / ) 0 2,68435e e e e e e e e ,, 0,. 40

41 1 1 1 ; ; ,,.,,.,,., -,,,,! Э, RS.,, = ; 41

42 З -, -. - (.., ) 25%.,. 700,,, 87,5 700.,.,,,, (, ),,,,. RAID, RAID,. 42

43 [1] Venkatesan V. Guruswami, Mary. Wooter, RОpКТrТЧР RООН Solomon МШНОs Д ]. Available :, in Proceedings of the 48th Annual Symposium on the Theory of Computing, [2] В. Аu КЧН A. G. DТЦКФТs. RОНuМТЧР rоpктr trкпптм ПШr ОrКsurО МШНТЧР-based storage via interference alignment.,тч 2009 IEEE IЧtОrЧКtТШЧКХ SвЦpШsТuЦ on Information Theory, pages , June [3] -..,...,.,.:, [4] Karthikeyan Shanmugam, Dimitris S Papailiopoulos, Alexandros G Dimakis, and Giuseppe Caire. A repair framework for scalar mds codes. Selected Areas in Communications, IEEE Journal on, 32(5): , [5] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel erasure codes for big data. In Proceedings of the VLDB Endowment, volume 6, pages VLDB Endowment, [6] Yunghsiang S Han, Hung-Ta Pai, Rong Zheng, and Pramod K Varshney. Update-efficient regenerating codes with minimum per-node storage. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages IEEE, [7] Yunghsiang S Han, Rong Zheng, and Wai Ho Mow. Exact regenerating codes for byzantine fault tolerance in distributed storage. In INFOCOM Proceedings, pages IEEE, [8] K.R. Rashmi, Nihar B Shah, P Vijay Kumar, and Kannan Ramchandran. Explicit codes minimizing repair bandwidth for distributed storage. In 43

44 Allerton Conference on Communication, Control, and Computing, pages IEEE, [9] Itzhak Tamo, Dimitris S Papailiopoulos, and Alexandros G Dimakis. Optimal locally repairable codes and connections to matroid theory. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages IEEE, [10] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable codes. Information Theory, IEEE Transactions on, 60(8): , [11] Alexandros G Dimakis, P Godfrey, Yunnan Wu, Martin J Wainwright, and Kannan Ramchandran. Network coding for distributed storage systems. Information Theory, IEEE Transactions on, 56(9): , [12] Yunnan Wu, Alexandros G Dimakis, and Kannan Ramchandran. Deterministic regenerating codes for distributed storage. In Allerton Conference on Control, Computing, and Communication, [13] Changho Suh and Kannan Ramchandran. On the existence of optimal exactrepair mds codes for distributed storage. arxiv preprint arxiv: , [14] I. Tamo, Z. Wang, and J. Bruck. Access versus bandwidth in codes for storage. Information Theory, IEEE Transactions on, 60(4): , [15] Sreechakra Goparaju, Itzhak Tamo, and Robert Calderbank. An improved sub-packetization bound for minimum storage regenerating codes. Information Theory, IEEE Transactions on, 60(5): , [16] Viveck R Cadambe, Cheng Huang, and Jin Li. Permutation code: Optimal exact-repair of a single failed node in mds code based distributed storage 44

45 systems. In Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pages IEEE, [17] Dimitris S Papailiopoulos, Alexandros G Dimakis, and Viveck R Cadambe. Repair optimal erasure codes through hadamard designs. Information Theory, IEEE Transaction on, 59(5): ,

Progress on High-rate MSR Codes: Enabling Arbitrary Number of Helper Nodes

Progress on High-rate MSR Codes: Enabling Arbitrary Number of Helper Nodes Progress on High-rate MSR Codes: Enabling Arbitrary Number of Helper Nodes Ankit Singh Rawat CS Department Carnegie Mellon University Pittsburgh, PA 523 Email: asrawat@andrewcmuedu O Ozan Koyluoglu Department

More information

Balanced Locally Repairable Codes

Balanced Locally Repairable Codes Balanced Locally Repairable Codes Katina Kralevska, Danilo Gligoroski and Harald Øverby Department of Telematics, Faculty of Information Technology, Mathematics and Electrical Engineering, NTNU, Norwegian

More information

Balanced Locally Repairable Codes

Balanced Locally Repairable Codes Balanced Locally Repairable Codes Katina Kralevska, Danilo Gligoroski and Harald Øverby Department of Telematics, Faculty of Information Technology, Mathematics and Electrical Engineering, NTNU, Norwegian

More information

Can Linear Minimum Storage Regenerating Codes be Universally Secure?

Can Linear Minimum Storage Regenerating Codes be Universally Secure? Can Linear Minimum Storage Regenerating Codes be Universally Secure? Sreechakra Goparaju University of California, San Diego La Jolla, CA, USA Email: sgoparaju@ucsd.edu Salim El Rouayheb Illinois Institute

More information

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction K V Rashmi, Nihar B Shah, and P Vijay Kumar, Fellow, IEEE Abstract Regenerating codes

More information

Cyclic Linear Binary Locally Repairable Codes

Cyclic Linear Binary Locally Repairable Codes Cyclic Linear Binary Locally Repairable Codes Pengfei Huang, Eitan Yaakobi, Hironori Uchikawa, and Paul H. Siegel Electrical and Computer Engineering Dept., University of California, San Diego, La Jolla,

More information

On Locally Recoverable (LRC) Codes

On Locally Recoverable (LRC) Codes On Locally Recoverable (LRC) Codes arxiv:151206161v1 [csit] 18 Dec 2015 Mario Blaum IBM Almaden Research Center San Jose, CA 95120 Abstract We present simple constructions of optimal erasure-correcting

More information

Coding problems for memory and storage applications

Coding problems for memory and storage applications .. Coding problems for memory and storage applications Alexander Barg University of Maryland January 27, 2015 A. Barg (UMD) Coding for memory and storage January 27, 2015 1 / 73 Codes with locality Introduction:

More information

Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes

Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes Bin Chen, Shu-Tao Xia, Jie Hao, and Fang-Wei Fu Member, IEEE 1 arxiv:160901136v1 [csit] 5 Sep 016 Abstract A code is said to be a r-local

More information

An Upper Bound On the Size of Locally. Recoverable Codes

An Upper Bound On the Size of Locally. Recoverable Codes An Upper Bound On the Size of Locally 1 Recoverable Codes Viveck Cadambe Member, IEEE and Arya Mazumdar Member, IEEE arxiv:1308.3200v2 [cs.it] 26 Mar 2015 Abstract In a locally recoverable or repairable

More information

arxiv: v1 [cs.it] 5 Aug 2016

arxiv: v1 [cs.it] 5 Aug 2016 A Note on Secure Minimum Storage Regenerating Codes Ankit Singh Rawat arxiv:1608.01732v1 [cs.it] 5 Aug 2016 Computer Science Department, Carnegie Mellon University, Pittsburgh, 15213. E-mail: asrawat@andrew.cmu.edu

More information

Distributed Data Storage Systems with. Opportunistic Repair

Distributed Data Storage Systems with. Opportunistic Repair Distributed Data Storage Systems with 1 Opportunistic Repair Vaneet Aggarwal, Chao Tian, Vinay A. Vaishampayan, and Yih-Farn R. Chen Abstract arxiv:1311.4096v2 [cs.it] 6 Nov 2014 The reliability of erasure-coded

More information

Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient

Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient Viveck R Cadambe, Syed A Jafar, Hamed Maleki Electrical Engineering and

More information

Linear Exact Repair Rate Region of (k + 1, k, k) Distributed Storage Systems: A New Approach

Linear Exact Repair Rate Region of (k + 1, k, k) Distributed Storage Systems: A New Approach Linear Exact Repair Rate Region of (k + 1, k, k) Distributed Storage Systems: A New Approach Mehran Elyasi Department of ECE University of Minnesota melyasi@umn.edu Soheil Mohajer Department of ECE University

More information

Fractional Repetition Codes For Repair In Distributed Storage Systems

Fractional Repetition Codes For Repair In Distributed Storage Systems Fractional Repetition Codes For Repair In Distributed Storage Systems 1 Salim El Rouayheb, Kannan Ramchandran Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley {salim,

More information

Security in Locally Repairable Storage

Security in Locally Repairable Storage 1 Security in Locally Repairable Storage Abhishek Agarwal and Arya Mazumdar Abstract In this paper we extend the notion of locally repairable codes to secret sharing schemes. The main problem we consider

More information

Regenerating Codes and Locally Recoverable. Codes for Distributed Storage Systems

Regenerating Codes and Locally Recoverable. Codes for Distributed Storage Systems Regenerating Codes and Locally Recoverable 1 Codes for Distributed Storage Systems Yongjune Kim and Yaoqing Yang Abstract We survey the recent results on applying error control coding to distributed storage

More information

arxiv: v1 [cs.it] 18 Jun 2011

arxiv: v1 [cs.it] 18 Jun 2011 On the Locality of Codeword Symbols arxiv:1106.3625v1 [cs.it] 18 Jun 2011 Parikshit Gopalan Microsoft Research parik@microsoft.com Cheng Huang Microsoft Research chengh@microsoft.com Sergey Yekhanin Microsoft

More information

Explicit MBR All-Symbol Locality Codes

Explicit MBR All-Symbol Locality Codes Explicit MBR All-Symbol Locality Codes Govinda M. Kamath, Natalia Silberstein, N. Prakash, Ankit S. Rawat, V. Lalitha, O. Ozan Koyluoglu, P. Vijay Kumar, and Sriram Vishwanath 1 Abstract arxiv:1302.0744v2

More information

A Piggybacking Design Framework for Read- and- Download- efficient Distributed Storage Codes. K. V. Rashmi, Nihar B. Shah, Kannan Ramchandran

A Piggybacking Design Framework for Read- and- Download- efficient Distributed Storage Codes. K. V. Rashmi, Nihar B. Shah, Kannan Ramchandran A Piggybacking Design Framework for Read- and- Download- efficient Distributed Storage Codes K V Rashmi, Nihar B Shah, Kannan Ramchandran Outline IntroducGon & MoGvaGon Measurements from Facebook s Warehouse

More information

Optimal binary linear locally repairable codes with disjoint repair groups

Optimal binary linear locally repairable codes with disjoint repair groups 1 Optimal binary linear locally repairable codes with disjoint repair groups Jingxue Ma and Gennian Ge arxiv:17110718v1 [csit] 20 Nov 2017 Abstract In recent years, several classes of codes are introduced

More information

Permutation Codes: Optimal Exact-Repair of a Single Failed Node in MDS Code Based Distributed Storage Systems

Permutation Codes: Optimal Exact-Repair of a Single Failed Node in MDS Code Based Distributed Storage Systems Permutation Codes: Optimal Exact-Repair of a Single Failed Node in MDS Code Based Distributed Storage Systems Viveck R Cadambe Electrical Engineering and Computer Science University of California Irvine,

More information

On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage

On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage Changho Suh Kannan Ramchandran Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report

More information

Analysis and Construction of Functional Regenerating Codes with Uncoded Repair for Distributed Storage Systems

Analysis and Construction of Functional Regenerating Codes with Uncoded Repair for Distributed Storage Systems Analysis and Construction of Functional Regenerating Codes with Uncoded Repair for Distributed Storage Systems Yuchong Hu, Patrick P. C. Lee, and Kenneth W. Shum Institute of Network Coding, The Chinese

More information

Linear Programming Bounds for Robust Locally Repairable Storage Codes

Linear Programming Bounds for Robust Locally Repairable Storage Codes Linear Programming Bounds for Robust Locally Repairable Storage Codes M. Ali Tebbi, Terence H. Chan, Chi Wan Sung Institute for Telecommunications Research, University of South Australia Email: {ali.tebbi,

More information

Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions

Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions Nihar B Shah, K V Rashmi, P Vijay Kumar, Fellow, IEEE, and Kannan Ramchandran, Fellow, IEEE Abstract

More information

Maximally Recoverable Codes: the Bounded Case

Maximally Recoverable Codes: the Bounded Case Maximally Recoverable Codes: the Bounded Case Venkata Gandikota Elena Grigorescu Clayton Thomas Minshen Zhu Abstract Modern distributed storage systems employ Maximally Recoverable codes that aim to balance

More information

XORing Elephants: Novel Erasure Codes for Big Data

XORing Elephants: Novel Erasure Codes for Big Data XORing Elephants: Novel Erasure Codes for Big Data Maheswaran Sathiamoorthy University of Southern California msathiam@uscedu Alexandros G Dimais University of Southern California dimais@uscedu Megasthenis

More information

On MBR codes with replication

On MBR codes with replication On MBR codes with replication M. Nikhil Krishnan and P. Vijay Kumar, Fellow, IEEE Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore. Email: nikhilkrishnan.m@gmail.com,

More information

Product-matrix Construction

Product-matrix Construction IERG60 Coding for Distributed Storage Systems Lecture 0-9//06 Lecturer: Kenneth Shum Product-matrix Construction Scribe: Xishi Wang In previous lectures, we have discussed about the minimum storage regenerating

More information

Minimum Repair Bandwidth for Exact Regeneration in Distributed Storage

Minimum Repair Bandwidth for Exact Regeneration in Distributed Storage 1 Minimum Repair andwidth for Exact Regeneration in Distributed Storage Vivec R Cadambe, Syed A Jafar, Hamed Malei Electrical Engineering and Computer Science University of California Irvine, Irvine, California,

More information

Cooperative Repair of Multiple Node Failures in Distributed Storage Systems

Cooperative Repair of Multiple Node Failures in Distributed Storage Systems Cooperative Repair of Multiple Node Failures in Distributed Storage Systems Kenneth W. Shum Institute of Network Coding The Chinese University of Hong Kong Junyu Chen Department of Information Engineering

More information

Binary MDS Array Codes with Optimal Repair

Binary MDS Array Codes with Optimal Repair IEEE TRANSACTIONS ON INFORMATION THEORY 1 Binary MDS Array Codes with Optimal Repair Hanxu Hou, Member, IEEE, Patric P. C. Lee, Senior Member, IEEE Abstract arxiv:1809.04380v1 [cs.it] 12 Sep 2018 Consider

More information

Beyond the MDS Bound in Distributed Cloud Storage

Beyond the MDS Bound in Distributed Cloud Storage Beyond the MDS Bound in Distributed Cloud Storage Jian Li Tongtong Li Jian Ren Department of ECE, Michigan State University, East Lansing, MI 48824-1226 Email: {lijian6, tongli, renjian}@msuedu Abstract

More information

Secure RAID Schemes from EVENODD and STAR Codes

Secure RAID Schemes from EVENODD and STAR Codes Secure RAID Schemes from EVENODD and STAR Codes Wentao Huang and Jehoshua Bruck California Institute of Technology, Pasadena, USA {whuang,bruck}@caltechedu Abstract We study secure RAID, ie, low-complexity

More information

Distributed Storage Systems with Secure and Exact Repair - New Results

Distributed Storage Systems with Secure and Exact Repair - New Results Distributed torage ystems with ecure and Exact Repair - New Results Ravi Tandon, aidhiraj Amuru, T Charles Clancy, and R Michael Buehrer Bradley Department of Electrical and Computer Engineering Hume Center

More information

Update-Efficient Error-Correcting. Product-Matrix Codes

Update-Efficient Error-Correcting. Product-Matrix Codes Update-Efficient Error-Correcting 1 Product-Matrix Codes Yunghsiang S Han, Fellow, IEEE, Hung-Ta Pai, Senior Member IEEE, Rong Zheng, Senior Member IEEE, Pramod K Varshney, Fellow, IEEE arxiv:13014620v2

More information

Explicit Maximally Recoverable Codes with Locality

Explicit Maximally Recoverable Codes with Locality 1 Explicit Maximally Recoverable Codes with Locality Parikshit Gopalan Cheng Huang Bob Jenkins Sergey Yekhanin Abstract Consider a systematic linear code where some local) parity symbols depend on few

More information

The MDS Queue: Analysing the Latency Performance of Erasure Codes

The MDS Queue: Analysing the Latency Performance of Erasure Codes The MDS Queue: Analysing the Latency Performance of Erasure Codes Nihar B. Shah, Kangwook Lee, Kannan Ramchandran Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

arxiv: v1 [cs.it] 16 Jan 2013

arxiv: v1 [cs.it] 16 Jan 2013 XORing Elephants: Novel Erasure Codes for Big Data arxiv:13013791v1 [csit] 16 Jan 2013 ABSTRACT Maheswaran Sathiamoorthy University of Southern California msathiam@uscedu Alexandros G Dimais University

More information

A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes

A Piggybacking Design Framework for Read-and Download-efficient Distributed Storage Codes A Piggybacing Design Framewor for Read-and Download-efficient Distributed Storage Codes K V Rashmi, Nihar B Shah, Kannan Ramchandran, Fellow, IEEE Department of Electrical Engineering and Computer Sciences

More information

Distributed storage systems from combinatorial designs

Distributed storage systems from combinatorial designs Distributed storage systems from combinatorial designs Aditya Ramamoorthy November 20, 2014 Department of Electrical and Computer Engineering, Iowa State University, Joint work with Oktay Olmez (Ankara

More information

Explicit Code Constructions for Distributed Storage Minimizing Repair Bandwidth

Explicit Code Constructions for Distributed Storage Minimizing Repair Bandwidth Explicit Code Constructions for Distributed Storage Minimizing Repair Bandwidth A Project Report Submitted in partial fulfilment of the requirements for the Degree of Master of Engineering in Telecommunication

More information

On the Tradeoff Region of Secure Exact-Repair Regenerating Codes

On the Tradeoff Region of Secure Exact-Repair Regenerating Codes 1 On the Tradeoff Region of Secure Exact-Repair Regenerating Codes Shuo Shao, Tie Liu, Chao Tian, and Cong Shen any k out of the total n storage nodes; 2 when a node failure occurs, the failed node can

More information

VHDL Implementation of Reed Solomon Improved Encoding Algorithm

VHDL Implementation of Reed Solomon Improved Encoding Algorithm VHDL Implementation of Reed Solomon Improved Encoding Algorithm P.Ravi Tej 1, Smt.K.Jhansi Rani 2 1 Project Associate, Department of ECE, UCEK, JNTUK, Kakinada A.P. 2 Assistant Professor, Department of

More information

Batch and PIR Codes and Their Connections to Locally Repairable Codes

Batch and PIR Codes and Their Connections to Locally Repairable Codes Batch and PIR Codes and Their Connections to Locally Repairable Codes Vitaly Skachek Abstract Two related families of codes are studied: batch codes and codes for private information retrieval. These two

More information

About One way of Encoding Alphanumeric and Symbolic Information

About One way of Encoding Alphanumeric and Symbolic Information Int. J. Open Problems Compt. Math., Vol. 3, No. 4, December 2010 ISSN 1998-6262; Copyright ICSRS Publication, 2010 www.i-csrs.org About One way of Encoding Alphanumeric and Symbolic Information Mohammed

More information

IEEE TRANSACTIONS ON INFORMATION THEORY 1

IEEE TRANSACTIONS ON INFORMATION THEORY 1 IEEE TRANSACTIONS ON INFORMATION THEORY 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Proxy-Assisted Regenerating Codes With Uncoded Repair for Distributed Storage Systems Yuchong Hu,

More information

Maximally Recoverable Codes with Hierarchical Locality

Maximally Recoverable Codes with Hierarchical Locality Maximally Recoverable Codes with Hierarchical Locality Aaditya M Nair V Lalitha SPCRC International Institute of Information Technology Hyderabad India Email: aadityamnair@researchiiitacin lalithav@iiitacin

More information

Private Information Retrieval from Coded Databases

Private Information Retrieval from Coded Databases Private Information Retrieval from Coded Databases arim Banawan Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 kbanawan@umdedu ulukus@umdedu

More information

Weakly Secure Regenerating Codes for Distributed Storage

Weakly Secure Regenerating Codes for Distributed Storage Weakly Secure Regenerating Codes for Distributed Storage Swanand Kadhe and Alex Sprintson 1 arxiv:1405.2894v1 [cs.it] 12 May 2014 Abstract We consider the problem of secure distributed data storage under

More information

Synchronizing Edits in Distributed Storage Networks

Synchronizing Edits in Distributed Storage Networks Synchronizing Edits in Distributed Storage Networks Salim El Rouayheb, Sreechakra Goparaju, Han Mao Kiah, Olgica Milenkovic Department of Electrical and Computer Engineering, Illinois Institute of Technology,

More information

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes S-723410 BCH and Reed-Solomon Codes 1 S-723410 BCH and Reed-Solomon Codes 3 Background The algebraic structure of linear codes and, in particular, cyclic linear codes, enables efficient encoding and decoding

More information

BDR: A Balanced Data Redistribution Scheme to Accelerate the Scaling Process of XOR-based Triple Disk Failure Tolerant Arrays

BDR: A Balanced Data Redistribution Scheme to Accelerate the Scaling Process of XOR-based Triple Disk Failure Tolerant Arrays BDR: A Balanced Data Redistribution Scheme to Accelerate the Scaling Process of XOR-based Triple Disk Failure Tolerant Arrays Yanbing Jiang 1, Chentao Wu 1, Jie Li 1,2, and Minyi Guo 1 1 Department of

More information

Piggybacked Erasure Codes for Distributed Storage Findings from the Facebook Warehouse Cluster

Piggybacked Erasure Codes for Distributed Storage Findings from the Facebook Warehouse Cluster Piggybacked Erasure Codes for Distributed Storage & Findings from the Facebook Warehouse Cluster K. V. Rashmi, Nihar Shah, D. Gu, H. Kuang, D. Borthakur, K. Ramchandran Piggybacked Erasure Codes for Distributed

More information

Coding with Constraints: Minimum Distance. Bounds and Systematic Constructions

Coding with Constraints: Minimum Distance. Bounds and Systematic Constructions Coding with Constraints: Minimum Distance 1 Bounds and Systematic Constructions Wael Halbawi, Matthew Thill & Babak Hassibi Department of Electrical Engineering arxiv:1501.07556v2 [cs.it] 19 Feb 2015 California

More information

Coding for loss tolerant systems

Coding for loss tolerant systems Coding for loss tolerant systems Workshop APRETAF, 22 janvier 2009 Mathieu Cunche, Vincent Roca INRIA, équipe Planète INRIA Rhône-Alpes Mathieu Cunche, Vincent Roca The erasure channel Erasure codes Reed-Solomon

More information

Information redundancy

Information redundancy Information redundancy Information redundancy add information to date to tolerate faults error detecting codes error correcting codes data applications communication memory p. 2 - Design of Fault Tolerant

More information

Correcting Bursty and Localized Deletions Using Guess & Check Codes

Correcting Bursty and Localized Deletions Using Guess & Check Codes Correcting Bursty and Localized Deletions Using Guess & Chec Codes Serge Kas Hanna, Salim El Rouayheb ECE Department, Rutgers University serge..hanna@rutgers.edu, salim.elrouayheb@rutgers.edu Abstract

More information

Linear time list recovery via expander codes

Linear time list recovery via expander codes Linear time list recovery via expander codes Brett Hemenway and Mary Wootters June 7 26 Outline Introduction List recovery Expander codes List recovery of expander codes Conclusion Our Results One slide

More information

Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads

Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads 1 Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads Rawad Bitar, Student Member, IEEE and Salim El Rouayheb, Member, IEEE Abstract We study the communication efficient secret

More information

Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication

Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication 1 Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication Qian Yu, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr Department of Electrical Engineering, University of Southern

More information

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission P.Mozhiarasi, C.Gayathri, V.Deepan Master of Engineering, VLSI design, Sri Eshwar College of Engineering, Coimbatore- 641 202,

More information

Locally Encodable and Decodable Codes for Distributed Storage Systems

Locally Encodable and Decodable Codes for Distributed Storage Systems Locally Encodable and Decodable Codes for Distributed Storage Systems Son Hoang Dau, Han Mao Kiah, Wentu Song, Chau Yuen Singapore University of Technology and Design, Nanyang Technological University,

More information

Codes between MBR and MSR Points with Exact Repair Property

Codes between MBR and MSR Points with Exact Repair Property Codes between MBR and MSR Points with Exact Repair Property 1 Toni Ernva arxiv:1312.5106v1 [cs.it] 18 Dec 2013 Abstract In this paper distributed storage systems with exact repair are studied. A construction

More information

t-private Information Retrieval Schemes Using

t-private Information Retrieval Schemes Using 1 t-private Information Retrieval Schemes Using Transitive Codes Ragnar Frei-Hollanti, Oliver W. Gnilke, Camilla Hollanti, Member, IEEE, Anna-Lena Horlemann-Trautmann, David Karpuk, Ivo Kubas arxiv:1712.02850v1

More information

Towards Green Distributed Storage Systems

Towards Green Distributed Storage Systems Towards Green Distributed Storage Systems Abdelrahman M. Ibrahim, Ahmed A. Zewail, and Aylin Yener Wireless Communications and Networking Laboratory (WCAN) Electrical Engineering Department The Pennsylania

More information

Codes With Hierarchical Locality

Codes With Hierarchical Locality 1 Codes With Hierarchical Locality Birenjith Sasidharan, Gaurav Kumar Agarwal, and P. Vijay Kumar Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore. Email: biren,

More information

Local Graph Coloring and Index Coding

Local Graph Coloring and Index Coding 1 Local Graph Coloring and Index Coding Karthikeyan Shanmugam, Alexandros G. Dimakis and Michael Langberg Department of Electrical and Computer Engineering University of Texas at Austin Austin, TX 78712-1684

More information

An Algorithm for a Two-Disk Fault-Tolerant Array with (Prime 1) Disks

An Algorithm for a Two-Disk Fault-Tolerant Array with (Prime 1) Disks An Algorithm for a Two-Disk Fault-Tolerant Array with (Prime 1) Disks Sanjeeb Nanda and Narsingh Deo School of Computer Science University of Central Florida Orlando, Florida 32816-2362 sanjeeb@earthlink.net,

More information

Optimal Index Codes via a Duality between Index Coding and Network Coding

Optimal Index Codes via a Duality between Index Coding and Network Coding Optimal Index Codes via a Duality between Index Coding and Network Coding Ashok Choudhary, Vamsi Krishna Gummadi, Prasad Krishnan Signal Processing and Communications Research Centre, International Institute

More information

Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities

Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities Junyu Chen Department of Information Engineering The Chinese University of Hong Kong Email: cj0@alumniiecuhkeduhk Kenneth W Shum

More information

Error Correction Methods

Error Correction Methods Technologies and Services on igital Broadcasting (7) Error Correction Methods "Technologies and Services of igital Broadcasting" (in Japanese, ISBN4-339-06-) is published by CORONA publishing co., Ltd.

More information

Rack-Aware Regenerating Codes for Data Centers

Rack-Aware Regenerating Codes for Data Centers IEEE TRANSACTIONS ON INFORMATION THEORY 1 Rack-Aware Regenerating Codes for Data Centers Hanxu Hou, Patrick P. C. Lee, Kenneth W. Shum and Yuchong Hu arxiv:1802.04031v1 [cs.it] 12 Feb 2018 Abstract Erasure

More information

LDPC Code Design for Distributed Storage: Balancing Repair Bandwidth, Reliability and Storage Overhead

LDPC Code Design for Distributed Storage: Balancing Repair Bandwidth, Reliability and Storage Overhead LDPC Code Design for Distributed Storage: 1 Balancing Repair Bandwidth, Reliability and Storage Overhead arxiv:1710.05615v1 [cs.dc] 16 Oct 2017 Hyegyeong Park, Student Member, IEEE, Dongwon Lee, and Jaekyun

More information

Optimal Deterministic Compressed Sensing Matrices

Optimal Deterministic Compressed Sensing Matrices Optimal Deterministic Compressed Sensing Matrices Arash Saber Tehrani email: saberteh@usc.edu Alexandros G. Dimakis email: dimakis@usc.edu Giuseppe Caire email: caire@usc.edu Abstract We present the first

More information

Cauchy MDS Array Codes With Efficient Decoding Method

Cauchy MDS Array Codes With Efficient Decoding Method IEEE TRANSACTIONS ON COMMUNICATIONS Cauchy MDS Array Codes With Efficient Decoding Method Hanxu Hou and Yunghsiang S Han, Fellow, IEEE Abstract arxiv:609968v [csit] 30 Nov 206 Array codes have been widely

More information

Optimal Locally Repairable and Secure Codes for Distributed Storage Systems

Optimal Locally Repairable and Secure Codes for Distributed Storage Systems Optimal Locally Repairable and Secure Codes for Distributed Storage Systems Ankit Singh Rawat, O. Ozan Koyluoglu, Natalia Silberstein, and Sriram Vishwanath arxiv:0.6954v [cs.it] 6 Aug 03 Abstract This

More information

,

, -.., 2017. 23.03.03 «-» «,.»,..,,..,,.., 2017 ... 4 1... 6 1.1... 6 1.2... 6 1.3 -... 9 1.4... 10 1.5 -... 11 1.6... 12 1.7... 15 1.7.1... 15 1.7.2... 15 1.8,... 16 2... 18 2.1... 18 2.2... 20 2.3....

More information

Weakly Secure Data Exchange with Generalized Reed Solomon Codes

Weakly Secure Data Exchange with Generalized Reed Solomon Codes Weakly Secure Data Exchange with Generalized Reed Solomon Codes Muxi Yan, Alex Sprintson, and Igor Zelenko Department of Electrical and Computer Engineering, Texas A&M University Department of Mathematics,

More information

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION EE229B PROJECT REPORT STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION Zhengya Zhang SID: 16827455 zyzhang@eecs.berkeley.edu 1 MOTIVATION Permutation matrices refer to the square matrices with

More information

MULTI-SYMBOL LOCALLY REPAIRABLE CODES

MULTI-SYMBOL LOCALLY REPAIRABLE CODES NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Faculty of Information Technology, Mathematics and Electrical Engineering Department of Telematics UNIVERSITY OF TARTU Faculty of Mathematics and Computer

More information

Duality between Erasures and Defects

Duality between Erasures and Defects Duality between Erasures and Defects Yongjune Kim and B. V. K. Vijaya Kumar Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA Email: yongjunekim@cmu.edu, kumar@ece.cmu.edu

More information

New Bounds for Distributed Storage Systems with Secure Repair

New Bounds for Distributed Storage Systems with Secure Repair New Bouns for Distribute Storage Systems with Secure Repair Ravi Tanon 1 an Soheil Mohajer 1 Discovery Analytics Center & Department of Computer Science, Virginia Tech, Blacksburg, VA Department of Electrical

More information

Linear Programming Bounds for Distributed Storage Codes

Linear Programming Bounds for Distributed Storage Codes 1 Linear Programming Bounds for Distributed Storage Codes Ali Tebbi, Terence H. Chan, Chi Wan Sung Department of Electronic Engineering, City University of Hong Kong arxiv:1710.04361v1 [cs.it] 12 Oct 2017

More information

IBM Research Report. Construction of PMDS and SD Codes Extending RAID 5

IBM Research Report. Construction of PMDS and SD Codes Extending RAID 5 RJ10504 (ALM1303-010) March 15, 2013 Computer Science IBM Research Report Construction of PMDS and SD Codes Extending RAID 5 Mario Blaum IBM Research Division Almaden Research Center 650 Harry Road San

More information

Private Information Retrieval from MDS Coded Data in Distributed Storage Systems

Private Information Retrieval from MDS Coded Data in Distributed Storage Systems Private Information Retrieval from MDS Coded Data in Distributed Storage Systems Joint work with Razane Tajeddine Salim El Rouayheb ECE Department Illinois Institute of Technology Motivation 1 Secure Multiparty

More information

Gradient Coding from Cyclic MDS Codes and Expander Graphs

Gradient Coding from Cyclic MDS Codes and Expander Graphs Gradient Coding from Cyclic MDS Codes and Expander Graphs Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros G. Dimakis Department of Electrical Engineering, California Institute of Technology,

More information

Zigzag Codes: MDS Array Codes with Optimal Rebuilding

Zigzag Codes: MDS Array Codes with Optimal Rebuilding 1 Zigzag Codes: MDS Array Codes with Optimal Rebuilding Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck Electrical Engineering Department, California Institute of Technology, Pasadena, CA 91125, USA Electrical

More information

Index Coding Algorithms for Constructing Network Codes. Salim El Rouayheb. Illinois Institute of Technology, Chicago

Index Coding Algorithms for Constructing Network Codes. Salim El Rouayheb. Illinois Institute of Technology, Chicago Index Coding Algorithms for Constructing Network Codes Salim El Rouayheb Illinois Institute of Technology, Chicago Matlab Code with GUI for Constructing Linear Network Codes Matlab outputs network code

More information

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Thomas R. Halford and Keith M. Chugg Communication Sciences Institute University of Southern California Los Angeles, CA 90089-2565 Abstract

More information

5.0 BCH and Reed-Solomon Codes 5.1 Introduction

5.0 BCH and Reed-Solomon Codes 5.1 Introduction 5.0 BCH and Reed-Solomon Codes 5.1 Introduction A. Hocquenghem (1959), Codes correcteur d erreurs; Bose and Ray-Chaudhuri (1960), Error Correcting Binary Group Codes; First general family of algebraic

More information

All-to-All Gradecast using Coding with Byzantine Failures

All-to-All Gradecast using Coding with Byzantine Failures All-to-All Gradecast using Coding with Byzantine Failures John Bridgman Vijay Garg Parallel and Distributed Systems Lab (PDSL) at The University of Texas at Austin email: johnfbiii@utexas.edu Presented

More information

JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY Vol. 51 No. 1 Feb : (2016) DOI: / j. issn

JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY Vol. 51 No. 1 Feb : (2016) DOI: / j. issn 51 1 2016 2 JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY Vo. 51 No. 1 Feb. 2016 :0258 2724(2016)01 0188 06 DOI:10. 3969 / j. issn. 0258 2724. 2016. 01. 026!"#(k + 2,k)Hadamard MSR $,, ( 015 67 8,9: ; 610031)

More information

arxiv: v1 [cs.it] 9 Jan 2019

arxiv: v1 [cs.it] 9 Jan 2019 Private Information Retrieval from Locally Repairable Databases with Colluding Servers Umberto Martínez-Peñas 1 1 Dept. of Electrical & Computer Engineering, University of Toronto, Canada arxiv:1901.02938v1

More information

Correcting Localized Deletions Using Guess & Check Codes

Correcting Localized Deletions Using Guess & Check Codes 55th Annual Allerton Conference on Communication, Control, and Computing Correcting Localized Deletions Using Guess & Check Codes Salim El Rouayheb Rutgers University Joint work with Serge Kas Hanna and

More information

Part III Advanced Coding Techniques

Part III Advanced Coding Techniques Part III Advanced Coding Techniques José Vieira SPL Signal Processing Laboratory Departamento de Electrónica, Telecomunicações e Informática / IEETA Universidade de Aveiro, Portugal 2010 José Vieira (IEETA,

More information

The Complete Hierarchical Locality of the Punctured Simplex Code

The Complete Hierarchical Locality of the Punctured Simplex Code The Complete Hierarchical Locality of the Punctured Simplex Code Matthias Grezet and Camilla Hollanti Department of Mathematics and Systems Analysis Aalto University Finland Emails: firstname.lastname@aalto.fi

More information

Turbo Codes for xdsl modems

Turbo Codes for xdsl modems Turbo Codes for xdsl modems Juan Alberto Torres, Ph. D. VOCAL Technologies, Ltd. (http://www.vocal.com) John James Audubon Parkway Buffalo, NY 14228, USA Phone: +1 716 688 4675 Fax: +1 716 639 0713 Email:

More information

Which Codes Have 4-Cycle-Free Tanner Graphs?

Which Codes Have 4-Cycle-Free Tanner Graphs? Which Codes Have 4-Cycle-Free Tanner Graphs? Thomas R. Halford Communication Sciences Institute University of Southern California Los Angeles, CA 90089-565 USA Alex J. Grant Institute for Telecommunications

More information