International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 ISSN

Size: px
Start display at page:

Download "International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 ISSN"

Transcription

1 1510 A Cayley graphs for Symmtric group on Degree four S.V IJAY AKUMAR C.V.R.HARINARAY ANAN Research Scholar Department of Mathematics PRIST University ThanjavurTamilnadu India. Research Supervisor Assistant ProfessorDepartment of Mathematics Government Arts College ParamakudiTamilnaduIndia. July Abstract In this paper we determine all of subgroups of symmetric group S 4. First we observe the multiplication table of S 4 then we determine all possibilities of every subgroup of order n with n is the factor of order S 4. We found 30 subgroups of S 4. The diagram of Cayley graphs of S 4 is then presented. Keywords Perumutation - symmetric Group - Cayley graph. 1 Introduction For an arbitrary nonempty set S define A(S) to be the set of all one-to-one mapping of the set S onto itself. The set A(S) with composition function operation is a group.if the set S contains n elements then group A(S) are denoted by S n. Group S n has n! elements and will be called the symmetric group.there are many references on subgroups of S 2 and S 3. In this paper we determine all subgroups of S 4 and then draw diagram of Cayley graphs of S 4. The number of subgroup of cyclic groups of order p n where p is a prime number and this subgroups are finite cyclic groups. The subgroups of non abelian symmetric groups are S 2 S 3 S 4 and etc

2 1511 Thereforethe result of this paper that is a diagram of cayley graphs of S 4 is very important to determine the number of subgroup of S 4. 2 Preliminary Definition 2.1 A nonempty subset H of a group G is said to be a subgroupof G if under the product in G H itself forms a group. Theorem 2.2 If G is a finite group and H is a sub-group of G then order of H is a divisor of order G. Theorem 2.3 If G is a finite group and a G then order of a is a divisor of order G. Theorem 2.4 Let G be a finite group and let G = p n m where n 1 p is a prime number and (p m) = 1. Then G contains a subgroup of order p i for each i where 1 i n. Definition 2.5 Let G be a finite group and let G = p n m where n 1 p is a prime number and (p m) = 1. The subgroup of G of order p n is called the sylow p subgroup of G. Theorem 2.6 Let G be a finite group and let G = p n m where n 1 p is a prime number and (p m) = 1. Then the number of Sylow p subgroup is of the form (1 + kp) where k is a non-negative integer and (1 + kp) divides the order of G

3 1512 Definition 2.7 A subgroup N of G is said to be a normal subgroup of G if for every g G and n N gng 1 N. Theorem 2.8 There is a unique Sylow p -subgroup of the finite group G if only if it is normal. Theorem 2.9 Let G be a group of order pq where p and q are distinct primes and p < q. Then G has only one subgroup of order q. This subgroup of order q is normal in G. 3 Elements of Symmtric group Let A ( = { } Then S 4 consists of ) ( ) ( ) ( ) e = P 01 = P 02 = P 03 = P 04 = P 05 = P 06 = P 07 = P 08 = P 09 = P 10 = P 11 = P 12 = P 13 = P 14 = P 15 = P 16 = P 17 = P 18 = P 19 = P 20 = P 21 = P 22 = P 23 = In this group e is the identity element. Thus S 4 is a group containing 4! = 24 elements. 4 Cayley Table

4 1513 e P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 e e P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P01 P01 e P03 P02 P05 P04 P07 P06 P09 P08 P11 P10 P19 P18 P21 P20 P23 P22 P13 P12 P15 P14 P17 P16 P02 P02 P05 P04 P01 e P03 P19 P18 P21 P20 P23 P22 P07 P06 P09 P08 P11 P10 P12 P13 P14 P15 P16 P17 P03 P03 P04 P05 e P01 P02 P12 P13 P14 P15 P16 P17 P06 P07 P08 P09 P10 P11 P19 P18 P21 P20 P23 P22 P04 P04 P03 e P05 P02 P01 P13 P12 P15 P14 P17 P16 P18 P19 P20 P21 P22 P23 P07 P06 P09 P08 P11 P10 P05 P05 P02 P01 P04 P03 e P18 P19 P20 P21 P22 P23 P13 P12 P15 P14 P17 P16 P06 P07 P08 P09 P10 P11 P06 P06 P07 P08 P09 P10 P11 e P01 P02 P03 P04 P05 P15 P16 P17 P12 P13 P14 P23 P20 P19 P22 P21 P18 P07 P07 P06 P09 P08 P11 P10 P01 e P03 P02 P05 P04 P20 P23 P22 P19 P18 P21 P16 P15 P12 P17 P14 P13 P08 P08 P11 P10 P07 P06 P09 P20 P23 P22 P19 P18 P21 P01 e P03 P02 P05 P04 P15 P16 P17 P12 P13 P14 P09 P09 P10 P11 P06 P07 P08 P15 P16 P17 P12 P13 P14 e P01 P02 P03 P04 P05 P20 P23 P22 P19 P18 P21 P10 P10 P09 P06 P11 P08 P07 P16 P15 P12 P17 P14 P13 P23 P20 P19 P22 P21 P18 P01 e P03 P02 P05 P04 P11 P11 P08 P07 P10 P09 P06 P23 P20 P19 P22 P21 P18 P16 P15 P12 P17 P14 P13 e P01 P02 P03 P04 P05 P12 P12 P13 P14 P15 P16 P17 P03 P04 P05 e P01 P02 P09 P10 P11 P06 P07 P08 P22 P21 P18 P23 P20 P19 P13 P13 P12 P15 P14 P17 P16 P04 P03 e P05 P02 P01 P21 P22 P23 P18 P19 P20 P10 P09 P06 P11 P08 P07 P14 P14 P17 P16 P13 P12 P15 P21 P22 P23 P18 P19 P20 P04 P03 e P05 P02 P01 P09 P10 P11 P06 P07 P08 P15 P15 P16 P17 P12 P13 P14 P09 P10 P11 P06 P07 P08 P03 P04 P05 e P01 P02 P21 P22 P23 P18 P19 P20 P16 P16 P15 P12 P17 P14 P13 P10 P09 P06 P11 P08 P07 P22 P21 P18 P23 P20 P19 P04 P03 e P05 P02 P01 P17 P17 P14 P13 P16 P15 P12 P22 P21 P18 P23 P20 P19 P10 P09 P06 P11 P08 P07 P03 P04 P05 e P01 P02 P18 P18 P19 P20 P21 P22 P23 P05 P02 P01 P04 P03 e P14 P17 P16 P13 P12 P15 P11 P08 P07 P10 P09 P06 P19 P19 P18 P21 P20 P23 P22 P02 P05 P04 P01 e P03 P08 P11 P10 P07 P06 P09 P17 P14 P13 P16 P15 P12 P20 P20 P23 P22 P19 P18 P21 P08 P11 P10 P07 P06 P09 P02 P05 P04 P01 e P03 P14 P17 P16 P13 P12 P15 P21 P21 P22 P23 P18 P19 P20 P14 P17 P16 P13 P12 P15 P05 P02 P01 P04 P03 e P08 P11 P10 P07 P06 P09 P22 P22 P21 P18 P23 P20 P19 P17 P14 P13 P16 P15 P12 P11 P08 P07 P10 P09 P06 P02 P05 P04 P01 e P03 P23 P23 P20 P19 P22 P21 P18 P11 P08 P07 P10 P09 P06 P17 P14 P13 P16 P15 P12 P05 P02 P01 P04 P01 e

5 Subgroups According to the nontrivial subgroups of S 4 must have order or 12. We will determine all of the subgroups of S 4. Clearly the subgroup of S 4 of order 1 is the trivial subgroup H 1 = {e}. Subgroups of order 2: Let H be an arbitrary subgroup of S 4 of order 2. Since 2 is a prime number then H is cyclic. Therefore H is generated by an element of S 4 of order 2. Thus all subgroups of S 4 of order 2 are H 2 = {e P 01 } H 3 = {e P 03 } H 4 = {e P 05 } H 5 = {e P 06 } H 6 = {e P 07 } H 7 = {e P 14 } H 8 = {e P 15 } H 9 = {e P 22 } H 10 = {e P 23 }. Subgroups of order 3: The subgroups of S 4 of order 3 is generated by an element of S 4 of order 3. Thus all subgroups of S 4 of order 3 are H 11 = {e P 02 P 04 } H 12 = {e P 08 P 13 } H 13 = {e P 09 P 12 } H 14 = {e P 10 P 19 } H 15 = {e P 11 P 18 } H 16 = {e P 16 P 20 } H 17 = {e P 17 P 21 }. Subgroups of order 4: Let H be an arbitrary subgroup of S 4 of order 4. then H is cyclic. Therefore H is generated by an element of S 4 of order 4. Thusall subgroups of S 4 of order 4 are H 18 = {e P 01 P 06 P 07 } H 19 = {e P 03 P 22 P 23 } H 20 = {e P 05 P 14 P 15 } H 21 = {e P 07 P 14 P 22 } H 22 = {e P 07 P 17 P 21 } H 23 = {e P 08 P 13 P 22 } H 24 = {e P 10 P 14 P 19 }. Subgroups of order 6: Let H be an arbitrary subgroup of S 4 of order 6. then H is cyclic. Therefore H is generated by an element of S 4 of order 6. Thus all subgroups of S 4 of order 6 are H 25 = {e P 01 P 02 P 03 P 04 P 05 } H 26 = {e P 01 P 15 P 16 P 20 P 23 }. Subgroups of order 8: Let H be an arbitrary subgroup of S 4 of order 8. then H is cyclic. Therefore H is generated by an element of S 4 of order 8. Thus all subgroups of S 4 of order 8 are

6 International Journal Of Scientific & Engineering Research Volume 7 Issue 7 July H27 = {e P01 P06 P07 P14 P17 P21 P22 } H28 = {e P03 P07 P08 P13 P14 P22 P23 } H29 = {e P05 P07 P10 P14 P15 P19 P22 }. Subgroups of order 12: Obviously the alternating group A4 = H30 = {e P02 P04 P07 P09 P11 P12 P14 P16 P18 P20 P22 }. is a subgroup of S4 of order 12. We will prove that A4 is the unique subgroup of S4 of order 12. According to this result we have the diagram of cayley graphs diagram is figure 1 below. Figure 1: Cayley graphs of S4 References [1] I.N.Herstein. Topic in Algebra ( John Wiley and SonsNew York1975). [2] J.B.Fraleigh. A First Course in WesleyLondon1992) Abstract Algebra (Addison-

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Lagrange s Theorem Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Introduction In this chapter, we develop new tools which will allow us to extend

More information

GROUPS AS GRAPHS. W. B. Vasantha Kandasamy Florentin Smarandache

GROUPS AS GRAPHS. W. B. Vasantha Kandasamy Florentin Smarandache GROUPS AS GRAPHS W. B. Vasantha Kandasamy Florentin Smarandache 009 GROUPS AS GRAPHS W. B. Vasantha Kandasamy e-mail: vasanthakandasamy@gmail.com web: http://mat.iitm.ac.in/~wbv www.vasantha.in Florentin

More information

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

More information

Modern Algebra Homework 9b Chapter 9 Read Complete 9.21, 9.22, 9.23 Proofs

Modern Algebra Homework 9b Chapter 9 Read Complete 9.21, 9.22, 9.23 Proofs Modern Algebra Homework 9b Chapter 9 Read 9.1-9.3 Complete 9.21, 9.22, 9.23 Proofs Megan Bryant November 20, 2013 First Sylow Theorem If G is a group and p n is the highest power of p dividing G, then

More information

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ).

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ). CHAPTEER - TWO SUBGROUPS Definition 2-1. Let (G, ) be a group and H G be a nonempty subset of G. The pair ( H, ) is said to be a SUBGROUP of (G, ) if ( H, ) is group. Example. ( Z, + ) is subgroup of (

More information

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson On almost every Friday of the semester, we will have a brief quiz to make sure you have memorized the definitions encountered in our studies.

More information

arxiv: v2 [math.gr] 17 Dec 2017

arxiv: v2 [math.gr] 17 Dec 2017 The complement of proper power graphs of finite groups T. Anitha, R. Rajkumar arxiv:1601.03683v2 [math.gr] 17 Dec 2017 Department of Mathematics, The Gandhigram Rural Institute Deemed to be University,

More information

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications 1 Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair Corrections and clarifications Note: Some corrections were made after the first printing of the text. page 9, line 8 For of the

More information

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Modern Algebra June 22, 2017 Midterm Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of

More information

List of topics for the preliminary exam in algebra

List of topics for the preliminary exam in algebra List of topics for the preliminary exam in algebra 1 Basic concepts 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.

More information

7. Let K = 15 be the subgroup of G = Z generated by 15. (a) List the elements of K = 15. Answer: K = 15 = {15k k Z} (b) Prove that K is normal subgroup of G. Proof: (Z +) is Abelian group and any subgroup

More information

Rohit Garg Roll no Dr. Deepak Gumber

Rohit Garg Roll no Dr. Deepak Gumber FINITE -GROUPS IN WHICH EACH CENTRAL AUTOMORPHISM FIXES THE CENTER ELEMENTWISE Thesis submitted in partial fulfillment of the requirement for the award of the degree of Masters of Science In Mathematics

More information

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is

More information

MATH 420 FINAL EXAM J. Beachy, 5/7/97

MATH 420 FINAL EXAM J. Beachy, 5/7/97 MATH 420 FINAL EXAM J. Beachy, 5/7/97 1. (a) For positive integers a and b, define gcd(a, b). (b) Compute gcd(1776, 1492). (c) Show that if a, b, c are positive integers, then gcd(a, bc) = 1 if and only

More information

Quiz 2 Practice Problems

Quiz 2 Practice Problems Quiz 2 Practice Problems Math 332, Spring 2010 Isomorphisms and Automorphisms 1. Let C be the group of complex numbers under the operation of addition, and define a function ϕ: C C by ϕ(a + bi) = a bi.

More information

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups MTHSC 412 Section 3.4 Cyclic Groups Definition If G is a cyclic group and G =< a > then a is a generator of G. Definition If G is a cyclic group and G =< a > then a is a generator of G. Example 1 Z is

More information

Algebra Exercises in group theory

Algebra Exercises in group theory Algebra 3 2010 Exercises in group theory February 2010 Exercise 1*: Discuss the Exercises in the sections 1.1-1.3 in Chapter I of the notes. Exercise 2: Show that an infinite group G has to contain a non-trivial

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

x 2 = xn xn = x 2 N = N = 0

x 2 = xn xn = x 2 N = N = 0 Potpourri. Spring 2010 Problem 2 Let G be a finite group with commutator subgroup G. Let N be the subgroup of G generated by the set {x 2 : x G}. Then N is a normal subgroup of G and N contains G. Proof.

More information

The Class Equation X = Gx. x X/G

The Class Equation X = Gx. x X/G The Class Equation 9-9-2012 If X is a G-set, X is partitioned by the G-orbits. So if X is finite, X = x X/G ( x X/G means you should take one representative x from each orbit, and sum over the set of representatives.

More information

2-GENERATED CAYLEY DIGRAPHS ON NILPOTENT GROUPS HAVE HAMILTONIAN PATHS

2-GENERATED CAYLEY DIGRAPHS ON NILPOTENT GROUPS HAVE HAMILTONIAN PATHS Volume 7, Number 1, Pages 41 47 ISSN 1715-0868 2-GENERATED CAYLEY DIGRAPHS ON NILPOTENT GROUPS HAVE HAMILTONIAN PATHS DAVE WITTE MORRIS Abstract. Suppose G is a nilpotent, finite group. We show that if

More information

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 25 Finite Fields Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 25, 2014 2 / 25 Fields Definition A set F together

More information

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis PART B: GROUPS GROUPS 1. ab The binary operation a * b is defined by a * b = a+ b +. (a) Prove that * is associative.

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

) = 1, ) = 2, and o( [ 11]

) = 1, ) = 2, and o( [ 11] True/False Questions 1. The order of the identity element in any group is 1. True. n = 1 is the least positive integer such that e n = e. 2. Every cyclic group is abelian. True. Let G be a cyclic group.

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Selected exercises from Abstract Algebra by Dummit Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 4.1 Exercise 1. Let G act on the set A. Prove that if a, b A b = ga for some g G, then G b = gg

More information

MATH 430 PART 2: GROUPS AND SUBGROUPS

MATH 430 PART 2: GROUPS AND SUBGROUPS MATH 430 PART 2: GROUPS AND SUBGROUPS Last class, we encountered the structure D 3 where the set was motions which preserve an equilateral triangle and the operation was function composition. We determined

More information

A Curious Connection Between Fermat Numbers and Finite Groups

A Curious Connection Between Fermat Numbers and Finite Groups A Curious Connection Between Fermat Numbers and Finite Groups Carrie E. Finch and Lenny Jones 1. INTRODUCTION. In the seventeenth century, Fermat defined the sequence of numbers F n = 2 2n + 1 for n 0,

More information

May 6, Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work.

May 6, Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work. Math 236H May 6, 2008 Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work. 1. (15 points) Prove that the symmetric group S 4 is generated

More information

Examples: The (left or right) cosets of the subgroup H = 11 in U(30) = {1, 7, 11, 13, 17, 19, 23, 29} are

Examples: The (left or right) cosets of the subgroup H = 11 in U(30) = {1, 7, 11, 13, 17, 19, 23, 29} are Cosets Let H be a subset of the group G. (Usually, H is chosen to be a subgroup of G.) If a G, then we denote by ah the subset {ah h H}, the left coset of H containing a. Similarly, Ha = {ha h H} is the

More information

EVOLVING GROUPS. Mima Stanojkovski. Università degli Studi di Padova Universiteit Leiden July Master thesis supervised by

EVOLVING GROUPS. Mima Stanojkovski. Università degli Studi di Padova Universiteit Leiden July Master thesis supervised by EVOLVING GROUPS Mima Stanojkovski Università degli Studi di Padova Universiteit Leiden 7-8-9 July 2013 Master thesis supervised by Prof. Dr. Hendrik W. Lenstra Jr. Definition of an evolving group Let G

More information

EXAM 3 MAT 423 Modern Algebra I Fall c d a + c (b + d) d c ad + bc ac bd

EXAM 3 MAT 423 Modern Algebra I Fall c d a + c (b + d) d c ad + bc ac bd EXAM 3 MAT 23 Modern Algebra I Fall 201 Name: Section: I All answers must include either supporting work or an explanation of your reasoning. MPORTANT: These elements are considered main part of the answer

More information

Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems

Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems Group Theory Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems Groups Definition : A non-empty set ( G,*)

More information

PERMUTABILITY GRAPH OF CYCLIC SUBGROUPS

PERMUTABILITY GRAPH OF CYCLIC SUBGROUPS Palestine Journal of Mathematics Vol. 5(2) (2016), 228 239 Palestine Polytechnic University-PPU 2016 PERMUTABILITY GRAPH OF CYCLIC SUBGROUPS R. Rajkumar and P. Devi Communicated by Ayman Badawi MSC 2010

More information

CHARACTERISTIC OF GROUP OF MATRIX 3X3 MODULO P, P A PRIME NUMBER. Ibnu Hadi, Yudi Mahatma

CHARACTERISTIC OF GROUP OF MATRIX 3X3 MODULO P, P A PRIME NUMBER. Ibnu Hadi, Yudi Mahatma Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014 M - 5 CHARACTERISTIC OF GROUP OF MATRIX X

More information

Unit Graph of Some Finite Group Z n, C n and D n

Unit Graph of Some Finite Group Z n, C n and D n Unit Graph of Some Finite Group Z n, C n and D n A. D. Godase Department of Mathematics, V. P. College, Vaijapur, Aurangabad - 423701. (Maharashtra, India) ashokgodse2012@gmail.com Abstract We represent

More information

CONSEQUENCES OF THE SYLOW THEOREMS

CONSEQUENCES OF THE SYLOW THEOREMS CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.

More information

Self-complementary circulant graphs

Self-complementary circulant graphs Self-complementary circulant graphs Brian Alspach Joy Morris Department of Mathematics and Statistics Burnaby, British Columbia Canada V5A 1S6 V. Vilfred Department of Mathematics St. Jude s College Thoothoor

More information

Maximal perpendicularity in certain Abelian groups

Maximal perpendicularity in certain Abelian groups Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 235 247 DOI: 10.1515/ausm-2017-0016 Maximal perpendicularity in certain Abelian groups Mika Mattila Department of Mathematics, Tampere University of Technology,

More information

arxiv: v1 [math.gr] 31 May 2016

arxiv: v1 [math.gr] 31 May 2016 FINITE GROUPS OF THE SAME TYPE AS SUZUKI GROUPS SEYED HASSAN ALAVI, ASHRAF DANESHKHAH, AND HOSEIN PARVIZI MOSAED arxiv:1606.00041v1 [math.gr] 31 May 2016 Abstract. For a finite group G and a positive integer

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions p 83, #16. In order to find a chain a 1 a 2 a n of subgroups of Z 240 with n as large as possible, we start at the top with a n = 1 so that a n = Z 240. In general, given a i we will

More information

HOMEWORK Graduate Abstract Algebra I May 2, 2004

HOMEWORK Graduate Abstract Algebra I May 2, 2004 Math 5331 Sec 121 Spring 2004, UT Arlington HOMEWORK Graduate Abstract Algebra I May 2, 2004 The required text is Algebra, by Thomas W. Hungerford, Graduate Texts in Mathematics, Vol 73, Springer. (it

More information

Section II.1. Free Abelian Groups

Section II.1. Free Abelian Groups II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

More information

Journal of Young Investigators Peer-reviewed, Undergraduate Science Journal

Journal of Young Investigators Peer-reviewed, Undergraduate Science Journal Page 1 of 5 Journal of Young Investigators Peer-reviewed, Undergraduate Science Journal Journal of Young Investigators, Issue Three Physical Sciences & Mathematics Finite Boolean Algebras and Subgroup

More information

Fixed Point Theorems for a Family of Self-Map on Rings

Fixed Point Theorems for a Family of Self-Map on Rings International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 9, September 2014, PP 750-756 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Fixed

More information

On some numerical invariants of finite groups. Jan Krempa Institute of Mathematics, University of Warsaw

On some numerical invariants of finite groups. Jan Krempa Institute of Mathematics, University of Warsaw On some numerical invariants of finite groups Jan Krempa Institute of Mathematics, University of Warsaw ul. Banacha 2, 02-097 Warszawa, Poland jkrempa@mimuw.edu.pl (with Agnieszka Stocka) References [1]

More information

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S.

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S. Appendix A Number Axioms P. Danziger 1 Number Axioms 1.1 Groups Definition 1 A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b and c S 0. (Closure) 1. (Associativity)

More information

Math 210A: Algebra, Homework 5

Math 210A: Algebra, Homework 5 Math 210A: Algebra, Homework 5 Ian Coley November 5, 2013 Problem 1. Prove that two elements σ and τ in S n are conjugate if and only if type σ = type τ. Suppose first that σ and τ are cycles. Suppose

More information

Automorphisms of strongly regular graphs and PDS in Abelian groups

Automorphisms of strongly regular graphs and PDS in Abelian groups Automorphisms of strongly regular graphs and PDS in Abelian groups Zeying Wang Department of Mathematical Sciences Michigan Technological University Joint work with Stefaan De Winter and Ellen Kamischke

More information

CHAPTER III NORMAL SERIES

CHAPTER III NORMAL SERIES CHAPTER III NORMAL SERIES 1. Normal Series A group is called simple if it has no nontrivial, proper, normal subgroups. The only abelian simple groups are cyclic groups of prime order, but some authors

More information

Solutions to Assignment 4

Solutions to Assignment 4 1. Let G be a finite, abelian group written additively. Let x = g G g, and let G 2 be the subgroup of G defined by G 2 = {g G 2g = 0}. (a) Show that x = g G 2 g. (b) Show that x = 0 if G 2 = 2. If G 2

More information

QUALIFYING EXAM IN ALGEBRA August 2011

QUALIFYING EXAM IN ALGEBRA August 2011 QUALIFYING EXAM IN ALGEBRA August 2011 1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories. I. Linear Algebra 1 problem II. Group Theory 3 problems III. Ring

More information

Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I.

Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I. Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I. 24. We basically know already that groups of order p 2 are abelian. Indeed, p-groups have non-trivial

More information

Algebra SEP Solutions

Algebra SEP Solutions Algebra SEP Solutions 17 July 2017 1. (January 2017 problem 1) For example: (a) G = Z/4Z, N = Z/2Z. More generally, G = Z/p n Z, N = Z/pZ, p any prime number, n 2. Also G = Z, N = nz for any n 2, since

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

7 Semidirect product. Notes 7 Autumn Definition and properties

7 Semidirect product. Notes 7 Autumn Definition and properties MTHM024/MTH74U Group Theory Notes 7 Autumn 20 7 Semidirect product 7. Definition and properties Let A be a normal subgroup of the group G. A complement for A in G is a subgroup H of G satisfying HA = G;

More information

The Number of Fuzzy Subgroups of Group Defined by A Presentation

The Number of Fuzzy Subgroups of Group Defined by A Presentation International Journal of Algebra, Vol 5, 2011, no 8, 375-382 The Number of Fuzzy Subgroups of Group Defined by A Presentation Raden Sulaiman Department of Mathematics, Faculty of Mathematics and Sciences

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 6, ISSN: COSET CAYLEY DIGRAPH STRUCTURES

Available online at   J. Math. Comput. Sci. 2 (2012), No. 6, ISSN: COSET CAYLEY DIGRAPH STRUCTURES Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1766-1784 ISSN: 1927-5307 COSET CAYLEY DIGRAPH STRUCTURES ANIL KUMAR V 1, PARAMESWARAN ASHOK NAIR 2, 1 Department of Mathematics,

More information

Extra exercises for algebra

Extra exercises for algebra Extra exercises for algebra These are extra exercises for the course algebra. They are meant for those students who tend to have already solved all the exercises at the beginning of the exercise session

More information

Stab(t) = {h G h t = t} = {h G h (g s) = g s} = {h G (g 1 hg) s = s} = g{k G k s = s} g 1 = g Stab(s)g 1.

Stab(t) = {h G h t = t} = {h G h (g s) = g s} = {h G (g 1 hg) s = s} = g{k G k s = s} g 1 = g Stab(s)g 1. 1. Group Theory II In this section we consider groups operating on sets. This is not particularly new. For example, the permutation group S n acts on the subset N n = {1, 2,...,n} of N. Also the group

More information

Order divisor graphs of finite groups

Order divisor graphs of finite groups Malaya J. Mat. 5(2)(2017) 464 474 Order divisor graphs of finite groups T. Chalapathi a and R. V M S S Kiran Kumar b, a Department of Mathematics, Sree Vidyanikethan Engineering College, Tirupati-517502,

More information

The L 3 (4) near octagon

The L 3 (4) near octagon The L 3 (4) near octagon A. Bishnoi and B. De Bruyn October 8, 206 Abstract In recent work we constructed two new near octagons, one related to the finite simple group G 2 (4) and another one as a sub-near-octagon

More information

Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector

Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector Maximum exponent of boolean circulant matrices with constant number of nonzero entries in its generating vector MI Bueno, Department of Mathematics and The College of Creative Studies University of California,

More information

3.4 Isomorphisms. 3.4 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair

3.4 Isomorphisms. 3.4 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 3.4 J.A.Beachy 1 3.4 Isomorphisms from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 29. Show that Z 17 is isomorphic to Z 16. Comment: The introduction

More information

MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes.

MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes. MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes. Subgroups Definition. A group H is a called a subgroup of a group G if H is a subset of G and the

More information

Molecular Spectroscopy. January 24, 2008 Introduction to Group Theory and Molecular Groups

Molecular Spectroscopy. January 24, 2008 Introduction to Group Theory and Molecular Groups Molecular Spectroscopy January 24, 2008 Introduction to Group Theory and Molecular Groups Properties that define a group A group is a collection of elements that are interrelated based on certain rules

More information

Finite groups determined by an inequality of the orders of their subgroups

Finite groups determined by an inequality of the orders of their subgroups Finite groups determined by an inequality of the orders of their subgroups Tom De Medts Marius Tărnăuceanu November 5, 2007 Abstract In this article we introduce and study two classes of finite groups

More information

Math 581 Problem Set 8 Solutions

Math 581 Problem Set 8 Solutions Math 581 Problem Set 8 Solutions 1. Prove that a group G is abelian if and only if the function ϕ : G G given by ϕ(g) g 1 is a homomorphism of groups. In this case show that ϕ is an isomorphism. Proof:

More information

B Sc MATHEMATICS ABSTRACT ALGEBRA

B Sc MATHEMATICS ABSTRACT ALGEBRA UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc MATHEMATICS (0 Admission Onwards) V Semester Core Course ABSTRACT ALGEBRA QUESTION BANK () Which of the following defines a binary operation on Z

More information

NON-NILPOTENT GROUPS WITH THREE CONJUGACY CLASSES OF NON-NORMAL SUBGROUPS. Communicated by Alireza Abdollahi. 1. Introduction

NON-NILPOTENT GROUPS WITH THREE CONJUGACY CLASSES OF NON-NORMAL SUBGROUPS. Communicated by Alireza Abdollahi. 1. Introduction International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 3 No. 2 (2014), pp. 1-7. c 2014 University of Isfahan www.theoryofgroups.ir www.ui.ac.ir NON-NILPOTENT GROUPS

More information

Converse to Lagrange s Theorem Groups

Converse to Lagrange s Theorem Groups Converse to Lagrange s Theorem Groups Blain A Patterson Youngstown State University May 10, 2013 History In 1771 an Italian mathematician named Joseph Lagrange proved a theorem that put constraints on

More information

Kevin James. p-groups, Nilpotent groups and Solvable groups

Kevin James. p-groups, Nilpotent groups and Solvable groups p-groups, Nilpotent groups and Solvable groups Definition A maximal subgroup of a group G is a proper subgroup M G such that there are no subgroups H with M < H < G. Definition A maximal subgroup of a

More information

Lecture 4.1: Homomorphisms and isomorphisms

Lecture 4.1: Homomorphisms and isomorphisms Lecture 4.: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4, Modern Algebra M. Macauley (Clemson) Lecture

More information

Do not open this exam until you are told to begin. You will have 75 minutes for the exam.

Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Math 2603 Midterm 1 Spring 2018 Your Name Student ID # Section Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Check that you have a complete exam. There are 5

More information

Section II.2. Finitely Generated Abelian Groups

Section II.2. Finitely Generated Abelian Groups II.2. Finitely Generated Abelian Groups 1 Section II.2. Finitely Generated Abelian Groups Note. In this section we prove the Fundamental Theorem of Finitely Generated Abelian Groups. Recall that every

More information

INTRODUCTION TO THE GROUP THEORY

INTRODUCTION TO THE GROUP THEORY Lecture Notes on Structure of Algebra INTRODUCTION TO THE GROUP THEORY By : Drs. Antonius Cahya Prihandoko, M.App.Sc e-mail: antoniuscp.fkip@unej.ac.id Mathematics Education Study Program Faculty of Teacher

More information

MATH EXAMPLES: GROUPS, SUBGROUPS, COSETS

MATH EXAMPLES: GROUPS, SUBGROUPS, COSETS MATH 370 - EXAMPLES: GROUPS, SUBGROUPS, COSETS DR. ZACHARY SCHERR There seemed to be a lot of confusion centering around cosets and subgroups generated by elements. The purpose of this document is to supply

More information

Most rank two finite groups act freely on a homotopy product of two spheres

Most rank two finite groups act freely on a homotopy product of two spheres Most rank two finite groups act freely on a homotopy product of two spheres Michael A. Jackson University of Rochester mjackson@math.rochester.edu Conference on Pure and Applied Topology Isle of Skye,

More information

Cyclic Group Supplement. g = g k : k Z.

Cyclic Group Supplement. g = g k : k Z. Theorem 1. Let g be an element of a group G and write { } g = g k : k Z. Then g is a subgroup of G. Proof. Since 1 = g 0, 1 g. Suppose a, b g. Then a = g k, b = g m and ab = g k g m = g k+m. Hence ab g

More information

Arc-transitive pentavalent graphs of order 4pq

Arc-transitive pentavalent graphs of order 4pq Arc-transitive pentavalent graphs of order 4pq Jiangmin Pan Bengong Lou Cuifeng Liu School of Mathematics and Statistics Yunnan University Kunming, Yunnan, 650031, P.R. China Submitted: May 22, 2012; Accepted:

More information

Recognition of Some Symmetric Groups by the Set of the Order of Their Elements

Recognition of Some Symmetric Groups by the Set of the Order of Their Elements Recognition of Some Symmetric Groups by the Set of the Order of Their Elements A. R. Moghaddamfar, M. R. Pournaki * Abstract For a finite group G, let π e (G) be the set of order of elements in G and denote

More information

Locally maximal product-free sets of size 3

Locally maximal product-free sets of size 3 Locally maximal product-free sets of size 3 By Chimere S. Anabanti and Sarah B. Hart Birkbeck Pure Mathematics Preprint Series Preprint Number 10 www.bbk.ac.uk/ems/research/pure/preprints Locally maximal

More information

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS CARRIE E. FINCH AND LENNY JONES Abstract. Let G be a finite group and let x G. Define the order subset of G determined by x to be the set of all elements in

More information

Exercises on chapter 1

Exercises on chapter 1 Exercises on chapter 1 1. Let G be a group and H and K be subgroups. Let HK = {hk h H, k K}. (i) Prove that HK is a subgroup of G if and only if HK = KH. (ii) If either H or K is a normal subgroup of G

More information

3.3 Equivalence Relations and Partitions on Groups

3.3 Equivalence Relations and Partitions on Groups 84 Chapter 3. Groups 3.3 Equivalence Relations and Partitions on Groups Definition 3.3.1. Let (G, ) be a group and let H be a subgroup of G. Let H be the relation on G defined by a H b if and only if ab

More information

Spectra of Semidirect Products of Cyclic Groups

Spectra of Semidirect Products of Cyclic Groups Spectra of Semidirect Products of Cyclic Groups Nathan Fox 1 University of Minnesota-Twin Cities Abstract The spectrum of a graph is the set of eigenvalues of its adjacency matrix A group, together with

More information

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno 3.1. The denition. 3. G Groups, as men, will be known by their actions. - Guillermo Moreno D 3.1. An action of a group G on a set X is a function from : G X! X such that the following hold for all g, h

More information

Chapter 25 Finite Simple Groups. Chapter 25 Finite Simple Groups

Chapter 25 Finite Simple Groups. Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that A n is simple for n 5 in 1831. It is an important

More information

MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN

MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN NAME: MATH 28A MIDTERM 2 INSTRUCTOR: HAROLD SULTAN 1. INSTRUCTIONS (1) Timing: You have 80 minutes for this midterm. (2) Partial Credit will be awarded. Please show your work and provide full solutions,

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science On the maximal cycle and transient lengths of circular cellular automata Kim Weyns, Bart Demoen Report CW 375, December 2003 Katholieke Universiteit Leuven Department of Computer Science Celestijnenlaan

More information

arxiv: v3 [math.co] 4 Apr 2011

arxiv: v3 [math.co] 4 Apr 2011 Also available on http://amc.imfm.si ARS MATHEMATICA CONTEMPORANEA x xxxx) 1 x Hamiltonian cycles in Cayley graphs whose order has few prime factors arxiv:1009.5795v3 [math.co] 4 Apr 2011 K. Kutnar University

More information

Assigment 1. 1 a b. 0 1 c A B = (A B) (B A). 3. In each case, determine whether G is a group with the given operation.

Assigment 1. 1 a b. 0 1 c A B = (A B) (B A). 3. In each case, determine whether G is a group with the given operation. 1. Show that the set G = multiplication. Assigment 1 1 a b 0 1 c a, b, c R 0 0 1 is a group under matrix 2. Let U be a set and G = {A A U}. Show that G ia an abelian group under the operation defined by

More information

TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS

TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS Journal of Algebra and Related Topics Vol. 2, No 2, (2014), pp 1-9 TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS A. GHARIBKHAJEH AND H. DOOSTIE Abstract. The triple factorization

More information

Group Theory (Math 113), Summer 2014

Group Theory (Math 113), Summer 2014 Group Theory (Math 113), Summer 2014 George Melvin University of California, Berkeley (July 8, 2014 corrected version) Abstract These are notes for the first half of the upper division course Abstract

More information

Groups and Symmetries

Groups and Symmetries Groups and Symmetries Definition: Symmetry A symmetry of a shape is a rigid motion that takes vertices to vertices, edges to edges. Note: A rigid motion preserves angles and distances. Definition: Group

More information

Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian

Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 1 28 Odd-order Cayley graphs with commutator subgroup of order

More information

Pseudo Sylow numbers

Pseudo Sylow numbers Pseudo Sylow numbers Benjamin Sambale May 16, 2018 Abstract One part of Sylow s famous theorem in group theory states that the number of Sylow p- subgroups of a finite group is always congruent to 1 modulo

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information