A Quantitative View: Delay, Throughput, Loss

Size: px
Start display at page:

Download "A Quantitative View: Delay, Throughput, Loss"

Transcription

1 A Quantitative View: Delay, Throughput, Loss Antonio Carzaniga Faculty of Informatics University of Lugano September 27, 2017

2 Outline Quantitative analysis of data transfer concepts for network applications Propagation delay and transmission rate Multi-hop scenario

3 Quantifying Data Transfer How do we measure the speed and capacity of a network connection?

4 Quantifying Data Transfer How do we measure the speed and capacity of a network connection? Intuition watermovinginapipeline carsmovingalongaroad

5 Quantifying Data Transfer How do we measure the speed and capacity of a network connection? Intuition watermovinginapipeline carsmovingalongaroad Delay or Latency thetimeittakesforonebittogothroughtheconnection(fromoneendtothe other)

6 Quantifying Data Transfer How do we measure the speed and capacity of a network connection? Intuition watermovinginapipeline carsmovingalongaroad Delay or Latency thetimeittakesforonebittogothroughtheconnection(fromoneendtothe other) Transmission rate or Throughput theamountofinformationthatcangetinto(oroutof)theconnectioninatime unit

7 Delay (Latency) and Rate (Throughput) connection

8 Delay (Latency) and Rate (Throughput) message connection

9 Delay (Latency) and Rate (Throughput) connection t 0 first bit enters

10 Delay (Latency) and Rate (Throughput) connection t 0 first bit enters t 1 first bit exists

11 Delay (Latency) and Rate (Throughput) connection t 0 first bit enters t 1 first bit exists t 2 last bit exits

12 Delay (Latency) and Rate (Throughput) connection lbits { }} { t 0 first bit enters t 1 first bit exists t 2 last bit exits

13 Delay (Latency) and Rate (Throughput) connection lbits { }} { t 0 first bit enters t 1 first bit exists t 2 last bit exits PropagationDelay d prop =t 1 t 0 sec

14 Delay (Latency) and Rate (Throughput) connection lbits { }} { t 0 first bit enters t 1 first bit exists t 2 last bit exits PropagationDelay d prop =t 1 t 0 sec Transmission Rate R = l t 2 t 1 bits/sec

15 Delay (Latency) and Rate (Throughput) connection lbits { }} { t 0 first bit enters t 1 first bit exists t 2 last bit exits PropagationDelay d prop =t 1 t 0 sec Transmission Rate R = l t 2 t 1 bits/sec Totaltransfertime d end-end =d+ l R sec

16 Howlongdoesittaketotranferafilebetween,say,LuganoandZürich? Examples

17 Examples Howlongdoesittaketotranferafilebetween,say,LuganoandZürich? Howbigisthisfile?Andhowfastisourconnection?

18 Examples Howlongdoesittaketotranferafilebetween,say,LuganoandZürich? Howbigisthisfile?Andhowfastisourconnection? E.g., a(short) message l = 4Kb d prop = 500ms R = 1Mb/s d end-end =?

19 Examples Howlongdoesittaketotranferafilebetween,say,LuganoandZürich? Howbigisthisfile?Andhowfastisourconnection? E.g., a(short) message l = 4Kb d prop = 500ms R = 1Mb/s d end-end = 500ms+4ms =504ms

20 Howaboutabigfile?(E.g.,amusiccollectionof50songs) Examples

21 Examples Howaboutabigfile?(E.g.,amusiccollectionof50songs) l = 400Mb d prop = 500ms R = 1Mb/s d end-end =?

22 Examples Howaboutabigfile?(E.g.,amusiccollectionof50songs) l = 400Mb d prop = 500ms R = 1Mb/s d end-end = 500ms+400s =400.5s =6 40

23 Examples Howaboutabigfile?(E.g.,amusiccollectionof50songs) l = 400Mb d prop = 500ms R = 1Mb/s d end-end = 500ms+400s =400.5s =6 40 Howaboutabiggerfile?(E.g.,a32GbSSD)

24 Examples Howaboutabigfile?(E.g.,amusiccollectionof50songs) l = 400Mb d prop = 500ms R = 1Mb/s d end-end = 500ms+400s =400.5s =6 40 Howaboutabiggerfile?(E.g.,a32GbSSD) l = 32Gb d prop = 500ms R = 1Mb/s d end-end =?

25 Examples Howaboutabigfile?(E.g.,amusiccollectionof50songs) l = 400Mb d prop = 500ms R = 1Mb/s d end-end = 500ms+400s =400.5s =6 40 Howaboutabiggerfile?(E.g.,a32GbSSD) l = 32Gb d prop = 500ms R = 1Mb/s d end-end = ǫ s =8h53 20

26 HowaboutgoingtoZürichonaVespa? Examples

27 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack

28 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack l = 32Gb d prop =? R = d end-end =

29 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack l = 32Gb d prop = 6h R =? d end-end =

30 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack l = 32Gb d prop = 6h R = 4Tb/s d end-end =?

31 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack l = 32Gb d prop = 6h R = 4Tb/s d end-end = 6h

32 Examples HowaboutgoingtoZürichonaVespa? youcarry500,32-gbmemorycardsinyourbackpack foursecondstotakethecardsoutofyourbackpack l = 32Gb d prop = 6h R = 4Tb/s d end-end = 6h IfyouneedtotransferacoupleofSSDcardsfromLuganotoZürich,andtimeis crucial...thenyoumightbebetteroffridingyourvespatozürichratherthan using the Internet. Formorethan5cards,youmightalsopreferthePostoffice!

33 Two Hops, Stream

34 H 1 X H 2 Two Hops, Stream

35 d 1,R 1 d 2,R 2 H 1 X H 2 Two Hops, Stream

36 d x d 1,R 1 d 2,R 2 H 1 X H 2 Two Hops, Stream

37 Two Hops, Stream d x d 1,R 1 d 2,R 2 H 1 X H 2 (R 1 <R 2 ) d end-end =d 1 + l R 1

38 Two Hops, Stream d x d 1,R 1 d 2,R 2 H 1 X H 2 (R 1 <R 2 ) d end-end =d 1 + l R 1 +d x

39 Two Hops, Stream d x d 1,R 1 d 2,R 2 H 1 X H 2 (R 1 <R 2 ) d end-end =d 1 + l R 1 +d x +d 2 sec

40 Two Hops, Stream d x d 1,R 1 d 2,R 2 H 1 X H 2 (R 1 <R 2 ) d end-end =d 1 + l R 1 +d x +d 2 sec (R 1 R 2 )

41 Two Hops, Stream d x d 1,R 1 d 2,R 2 H 1 X H 2 (R 1 <R 2 ) d end-end =d 1 + l R 1 +d x +d 2 sec (R 1 R 2 ) d end-end =d 1 +d x +d 2 + l R 2 sec d end-end =d 1 +d x +d 2 + l min{r 1,R 2 } sec

42 Two Hops, Store-And-Forward

43 H 1 X H 2 Two Hops, Store-And-Forward

44 d 1,R 1 d 2,R 2 H 1 X H 2 Two Hops, Store-And-Forward

45 d x d 1,R 1 d 2,R 2 H 1 X H 2 Two Hops, Store-And-Forward

46 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1

47 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1 +d x

48 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1 +d x + l R 2

49 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1 +d x + l R 2 +d 2

50 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1 +d x + l R 2 +d 2 d d p,r x d d p,r x d d p,r x d x H 1 X 1 X 2 X 3 X N

51 Two Hops, Store-And-Forward d x d 1,R 1 d 2,R 2 H 1 X H 2 d end-end =d 1 + l R 1 +d x + l R 2 +d 2 d d p,r x d d p,r x d d p,r x d x H 1 X 1 X 2 X 3 X N ( d end-end =N d p + l ) R +d x

52 Queuing Delay ConsiderarouterwithprocessingrateR x andtotaldelayd x Whathappenswithanarrivalrateλ in >R x?

53 Queuing Delay ConsiderarouterwithprocessingrateR x andtotaldelayd x Whathappenswithanarrivalrateλ in >R x? Theroutercannotprocesspacketsfastenough,sotherouterputspacketsina queue: where d x =d cpu +d queue d queue = q /R x

54 Queuing Delay ConsiderarouterwithprocessingrateR x andtotaldelayd x Whathappenswithanarrivalrateλ in >R x? Theroutercannotprocesspacketsfastenough,sotherouterputspacketsina queue: where d x =d cpu +d queue d queue = q /R x queue length output rate

55 Queuing Delay ConsiderarouterwithprocessingrateR x andtotaldelayd x Whathappenswithanarrivalrateλ in >R x? Theroutercannotprocesspacketsfastenough,sotherouterputspacketsina queue: where d x =d cpu +d queue d queue = q /R x queue length output rate...r x isalsotherateatwhichpacketsgetoutofthequeue

56 Queuing Delay

57 Queuing Delay Ideal case: constant input data rate λ in <R x Inthiscasethed queue =0,because q =0

58 Queuing Delay Ideal case: constant input data rate λ in <R x Inthiscasethed queue =0,because q =0 Extreme case: constant input data rate λ in >R x Inthiscase q = (λ in R x )tandtherefore d queue = λ in R x R x t

59 Queuing Delay

60 Queuing Delay Steady-state queuing delay d queue = 0 λ in <R x λ in R x R x t λ in >R x

61 Queuing Delay Steady-state queuing delay d queue = 0 λ in <R x λ in R x R x t λ in >R x d queue λ in R x ideal input flow λ in constant

62 Queuing Delay Steady-state queuing delay d queue = 0 λ in <R x λ in R x R x t λ in >R x d queue d queue λ in R x ideal input flow λ in constant λ in R x realistic input flow λ in variable

63 Queuing Delay

64 Queuing Delay Conclusion:astheinputrateλ in approachesthemaximumthroughputr x, packets will experience very long delays

65 Queuing Delay Conclusion:astheinputrateλ in approachesthemaximumthroughputr x, packets will experience very long delays More realistic assumptions and models finite queue length(buffers) in routers packets are dropped

66 Queuing Delay Conclusion:astheinputrateλ in approachesthemaximumthroughputr x, packets will experience very long delays More realistic assumptions and models finite queue length(buffers) in routers packets are dropped R x λ out λ in

67 Queuing Delay Conclusion:astheinputrateλ in approachesthemaximumthroughputr x, packets will experience very long delays More realistic assumptions and models finite queue length(buffers) in routers packets are dropped λ out R x congestion λ in

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018 Congestion Control In The Internet Part 1: Theory JY Le Boudec 2018 1 Contents 1. What is the problem; congestion collapse 2. Efficiency versus Fairness 3. Definitions of fairness 4. Additive Increase

More information

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control Saurabh Jain Joint work with Dr. Dmitri Loguinov June 21, 2007 1 Agenda Introduction Analysis of RCP QI-RCP PIQI-RCP Comparison Wrap

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

ATM VP-Based Ring Network Exclusive Video or Data Traffics

ATM VP-Based Ring Network Exclusive Video or Data Traffics ATM VP-Based Ring Network Exclusive Video or Data Traffics In this chapter, the performance characteristic of the proposed ATM VP-Based Ring Network exclusive video or data traffic is studied. The maximum

More information

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min JetMax: Scalable Max-Min Min Congestion Control for High- Speed Heterogeneous Networks Yueping Zhang Joint work with Derek Leonard and Dmitri Loguinov Internet Research Lab Department of Computer Science

More information

Quiz 1 EE 549 Wednesday, Feb. 27, 2008

Quiz 1 EE 549 Wednesday, Feb. 27, 2008 UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2008 1 Quiz 1 EE 549 Wednesday, Feb. 27, 2008 INSTRUCTIONS This quiz lasts for 85 minutes. This quiz is closed book and closed notes. No Calculators or laptops

More information

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks

Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks Julien Herzen joint work with Adel Aziz, Ruben Merz, Seva Shneer and Patrick Thiran September 5th, 2011 1/20 Context

More information

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

A Mathematical Model of the Skype VoIP Congestion Control Algorithm A Mathematical Model of the Skype VoIP Congestion Control Algorithm Luca De Cicco, S. Mascolo, V. Palmisano Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 47th IEEE Conference on Decision

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Queuing Networks. - Outline of queuing networks. - Mean Value Analisys (MVA) for open and closed queuing networks

Queuing Networks. - Outline of queuing networks. - Mean Value Analisys (MVA) for open and closed queuing networks Queuing Networks - Outline of queuing networks - Mean Value Analisys (MVA) for open and closed queuing networks 1 incoming requests Open queuing networks DISK CPU CD outgoing requests Closed queuing networks

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

Fairness comparison of FAST TCP and TCP Vegas

Fairness comparison of FAST TCP and TCP Vegas Fairness comparison of FAST TCP and TCP Vegas Lachlan L. H. Andrew, Liansheng Tan, Tony Cui, and Moshe Zukerman ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), an affiliated

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma School of Computing National University of Singapore Allerton Conference 2011 Outline Characterize Congestion Equilibrium Modeling

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

Processor Sharing Flows in the Internet

Processor Sharing Flows in the Internet STANFORD HPNG TECHNICAL REPORT TR4-HPNG4 Processor Sharing Flows in the Internet Nandita Dukkipati, Nick McKeown Computer Systems Laboratory Stanford University Stanford, CA 9434-93, USA nanditad, nickm

More information

Is Information-Centric Multi-Tree Routing Feasible?

Is Information-Centric Multi-Tree Routing Feasible? Is Information-Centric Multi-Tree Routing Feasible? ICN workshop 2013 Michele Papalini (University of Lugano) joint work with: Antonio Carzaniga (University of Lugano) Koorosh Khazaei (University of Lugano)

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it?

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it? Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

Decodability Analysis of Finite Memory Random Linear Coding in Line Networks

Decodability Analysis of Finite Memory Random Linear Coding in Line Networks Decodability Analysis of Finite Memory Random Linear Coding in Line Networks Nima Torabkhani, Faramarz Fekri School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta GA 30332,

More information

Part 2: Random Routing and Load Balancing

Part 2: Random Routing and Load Balancing 1 Part 2: Random Routing and Load Balancing Sid C-K Chau Chi-Kin.Chau@cl.cam.ac.uk http://www.cl.cam.ac.uk/~ckc25/teaching Problem: Traffic Routing 2 Suppose you are in charge of transportation. What do

More information

CS276 Homework 1: ns-2

CS276 Homework 1: ns-2 CS276 Homework 1: ns-2 Erik Peterson October 28, 2006 1 Part 1 - Fairness between TCP variants 1.1 Method After learning ns-2, I wrote a script (Listing 3) that runs a simulation of one or two tcp flows

More information

Strong Performance Guarantees for Asynchronous Buffered Crossbar Schedulers

Strong Performance Guarantees for Asynchronous Buffered Crossbar Schedulers Strong Performance Guarantees for Asynchronous Buffered Crossbar Schedulers Jonathan Turner Washington University jon.turner@wustl.edu January 30, 2008 Abstract Crossbar-based switches are commonly used

More information

E8 TCP. Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione

E8 TCP. Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione E8 TP Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Exercises o onsider the connection in the figure A =80 kbit/s τ =0 ms R =? τ =? B o o o Host A wants to know the capacity

More information

An Admission Control Mechanism for Providing Service Differentiation in Optical Burst-Switching Networks

An Admission Control Mechanism for Providing Service Differentiation in Optical Burst-Switching Networks An Admission Control Mechanism for Providing Service Differentiation in Optical Burst-Switching Networks Igor M. Moraes, Daniel de O. Cunha, Marco D. D. Bicudo, Rafael P. Laufer, and Otto Carlos M. B.

More information

queue KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology

queue KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology Analysis of the Packet oss Process in an MMPP+M/M/1/K queue György Dán, Viktória Fodor KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology {gyuri,viktoria}@imit.kth.se

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

CSE 123: Computer Networks

CSE 123: Computer Networks CSE 123: Computer Networks Total points: 40 Homework 1 - Solutions Out: 10/4, Due: 10/11 Solutions 1. Two-dimensional parity Given below is a series of 7 7-bit items of data, with an additional bit each

More information

Impact of Cross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis

Impact of Cross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis Impact of ross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis Rebecca Lovewell and Jasleen Kaur Technical Report # TR11-007 Department of omputer Science University of North arolina

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals CHAPTER 4 Networks of queues. Open networks Suppose that we have a network of queues as given in Figure 4.. Arrivals Figure 4.. An open network can occur from outside of the network to any subset of nodes.

More information

Computer Networks ( Classroom Practice Booklet Solutions)

Computer Networks ( Classroom Practice Booklet Solutions) Computer Networks ( Classroom Practice Booklet Solutions). Concept Of Layering 0. Ans: (b) Sol: Data Link Layer is responsible for decoding bit stream into frames. 0. Ans: (c) Sol: Network Layer has the

More information

Outline Network structure and objectives Routing Routing protocol protocol System analysis Results Conclusion Slide 2

Outline Network structure and objectives Routing Routing protocol protocol System analysis Results Conclusion Slide 2 2007 Radio and Wireless Symposium 9 11 January 2007, Long Beach, CA. Lifetime-Aware Hierarchical Wireless Sensor Network Architecture with Mobile Overlays Maryam Soltan, Morteza Maleki, and Massoud Pedram

More information

Performance Analysis of Priority Queueing Schemes in Internet Routers

Performance Analysis of Priority Queueing Schemes in Internet Routers Conference on Information Sciences and Systems, The Johns Hopkins University, March 8, Performance Analysis of Priority Queueing Schemes in Internet Routers Ashvin Lakshmikantha Coordinated Science Lab

More information

Any Work-conserving Policy Stabilizes the Ring with Spatial Reuse

Any Work-conserving Policy Stabilizes the Ring with Spatial Reuse Any Work-conserving Policy Stabilizes the Ring with Spatial Reuse L. assiulas y Dept. of Electrical Engineering Polytechnic University Brooklyn, NY 20 leandros@olympos.poly.edu L. Georgiadis IBM. J. Watson

More information

These are special traffic patterns that create more stress on a switch

These are special traffic patterns that create more stress on a switch Myths about Microbursts What are Microbursts? Microbursts are traffic patterns where traffic arrives in small bursts. While almost all network traffic is bursty to some extent, storage traffic usually

More information

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers UNIVERSITY OF OKLAHOMA GENERAL EXAM REPORT A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers Prepared by HUSNU SANER NARMAN husnu@ou.edu based on the papers 1) F. S.

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits Peter Jacko YEQT III November 20, 2009 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain Example: Congestion

More information

Operational Laws 33-1

Operational Laws 33-1 Operational Laws Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings are available

More information

A Different Kind of Flow Analysis. David M Nicol University of Illinois at Urbana-Champaign

A Different Kind of Flow Analysis. David M Nicol University of Illinois at Urbana-Champaign A Different Kind of Flow Analysis David M Nicol University of Illinois at Urbana-Champaign 2 What Am I Doing Here??? Invite for ICASE Reunion Did research on Peformance Analysis Supporting Supercomputing

More information

Chapter 5. Elementary Performance Analysis

Chapter 5. Elementary Performance Analysis Chapter 5 Elementary Performance Analysis 1 5.0 2 5.1 Ref: Mischa Schwartz Telecommunication Networks Addison-Wesley publishing company 1988 3 4 p t T m T P(k)= 5 6 5.2 : arrived rate : service rate 7

More information

Signalling Analysis for Adaptive TCD Routing in ISL Networks *

Signalling Analysis for Adaptive TCD Routing in ISL Networks * COST 272 Packet-Oriented Service delivery via Satellite Signalling Analysis for Adaptive TCD Routing in ISL Networks * Ales Svigelj, Mihael Mohorcic, Gorazd Kandus Jozef Stefan Institute, Ljubljana, Slovenia

More information

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

Operational Laws Raj Jain

Operational Laws Raj Jain Operational Laws 33-1 Overview What is an Operational Law? 1. Utilization Law 2. Forced Flow Law 3. Little s Law 4. General Response Time Law 5. Interactive Response Time Law 6. Bottleneck Analysis 33-2

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

SAMPLING AND INVERSION

SAMPLING AND INVERSION SAMPLING AND INVERSION Darryl Veitch dveitch@unimelb.edu.au CUBIN, Department of Electrical & Electronic Engineering University of Melbourne Workshop on Sampling the Internet, Paris 2005 A TALK WITH TWO

More information

Stochastic Optimization for Undergraduate Computer Science Students

Stochastic Optimization for Undergraduate Computer Science Students Stochastic Optimization for Undergraduate Computer Science Students Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Reference 2 Outline

More information

Modeling and Stability of PERT

Modeling and Stability of PERT Modeling Stability of PET Yueping Zhang yueping@cs.tamu.edu I. SYSTEM MODEL Our modeling of PET is composed of three parts: window adjustment ED emulation queuing behavior. We start with the window dynamics.

More information

Estimation of clock offset from one-way delay measurement on asymmetric paths

Estimation of clock offset from one-way delay measurement on asymmetric paths Estimation of clock offset from one-way delay measurement on asymmetric paths Masato TSURU 1, Tetsuya TAKINE 2 and Yuji OIE 3 1 Telecommunications Advancement Organization of Japan. 2 Graduate School of

More information

Stochastic Network Calculus

Stochastic Network Calculus Stochastic Network Calculus Assessing the Performance of the Future Internet Markus Fidler joint work with Amr Rizk Institute of Communications Technology Leibniz Universität Hannover April 22, 2010 c

More information

On a Theory of Interacting Queues

On a Theory of Interacting Queues On a Theory of Interacting Queues Alexander Stepanenko, Costas C Constantinou, Theodoros N Arvanitis, and Kevin Baughan School of Electrical, Electronic and Computer Engineering, University of Birmingham,

More information

Approximate Queueing Model for Multi-rate Multi-user MIMO systems.

Approximate Queueing Model for Multi-rate Multi-user MIMO systems. An Approximate Queueing Model for Multi-rate Multi-user MIMO systems Boris Bellalta,Vanesa Daza, Miquel Oliver Abstract A queueing model for Multi-rate Multi-user MIMO systems is presented. The model is

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

Operational Laws. Operational Laws. Overview. Operational Quantities

Operational Laws. Operational Laws. Overview. Operational Quantities Operational Laws Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu Mini-Course offered at UC erkeley, Sept-Oct 2012 These slides and audio/video recordings are available

More information

Concise Paper: Deconstructing MPTCP Performance

Concise Paper: Deconstructing MPTCP Performance 04 IEEE nd International Conference on Network Protocols Concise Paper: Deconstructing MPTCP Performance Behnaz Arzani, Alexander Gurney, Sitian Cheng, Roch Guerin and Boon Thau Loo University Of Pennsylvania

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

Technion - Computer Science Department - Technical Report CS On Centralized Smooth Scheduling

Technion - Computer Science Department - Technical Report CS On Centralized Smooth Scheduling On Centralized Smooth Scheduling Ami Litman January 25, 2005 Abstract Shiri Moran-Schein This paper studies evenly distributed sets of natural numbers and their applications to scheduling in a centralized

More information

Optimization and Stability of TCP/IP with Delay-Sensitive Utility Functions

Optimization and Stability of TCP/IP with Delay-Sensitive Utility Functions Optimization and Stability of TCP/IP with Delay-Sensitive Utility Functions Thesis by John Pongsajapan In Partial Fulfillment of the Requirements for the Degree of Master of Science California Institute

More information

A Data Communication Reliability and Trustability Study for Cluster Computing

A Data Communication Reliability and Trustability Study for Cluster Computing A Data Communication Reliability and Trustability Study for Cluster Computing Speaker: Eduardo Colmenares Midwestern State University Wichita Falls, TX HPC Introduction Relevant to a variety of sciences,

More information

CSM: Operational Analysis

CSM: Operational Analysis CSM: Operational Analysis 2016-17 Computer Science Tripos Part II Computer Systems Modelling: Operational Analysis by Ian Leslie Richard Gibbens, Ian Leslie Operational Analysis Based on the idea of observation

More information

Analysis of Software Artifacts

Analysis of Software Artifacts Analysis of Software Artifacts System Performance I Shu-Ngai Yeung (with edits by Jeannette Wing) Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 2001 by Carnegie Mellon University

More information

Modelling, Simulation & Computing Laboratory (msclab) Faculty of Engineering, Universiti Malaysia Sabah, Malaysia

Modelling, Simulation & Computing Laboratory (msclab) Faculty of Engineering, Universiti Malaysia Sabah, Malaysia 1.0 Introduction Intelligent Transportation Systems (ITS) Long term congestion solutions Advanced technologies Facilitate complex transportation systems Dynamic Modelling of transportation (on-road traffic):

More information

Burst Scheduling Based on Time-slotting and Fragmentation in WDM Optical Burst Switched Networks

Burst Scheduling Based on Time-slotting and Fragmentation in WDM Optical Burst Switched Networks Burst Scheduling Based on Time-slotting and Fragmentation in WDM Optical Burst Switched Networks G. Mohan, M. Ashish, and K. Akash Department of Electrical and Computer Engineering National University

More information

Divide and Conquer Algorithms

Divide and Conquer Algorithms Divide and Conquer Algorithms Antonio Carzaniga Faculty of Informatics University of Lugano October 3, 2007 c 2005, 2006 Antonio Carzaniga 1 Merging Searching Sorting Multiplying Computing the median Outline

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

Packet Scale Rate Guarantee

Packet Scale Rate Guarantee Packet Scale Rate Guaantee fo non-fifo Nodes J.-Y. Le Boudec (EPFL) oint wok with A. Chany (Cisco) 0 What is PSRG (Packet Scale Rate Guaantee)? Defines how a node compaes to Genealized Pocesso Shaing (GPS)

More information

Discrete-event simulations

Discrete-event simulations Discrete-event simulations Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Why do we need simulations? Step-by-step simulations; Classifications;

More information

384Y Project June 5, Stability of Congestion Control Algorithms Using Control Theory with an application to XCP

384Y Project June 5, Stability of Congestion Control Algorithms Using Control Theory with an application to XCP 384Y Project June 5, 00 Stability of Congestion Control Algorithms Using Control Theory with an application to XCP . Introduction During recent years, a lot of work has been done towards the theoretical

More information

MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution

MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution Ramin Khalili, Nicolas Gast, Miroslav Popovic, Jean-Yves Le Boudec To cite this version: Ramin Khalili, Nicolas Gast, Miroslav Popovic,

More information

Large Deviations for Channels with Memory

Large Deviations for Channels with Memory Large Deviations for Channels with Memory Santhosh Kumar Jean-Francois Chamberland Henry Pfister Electrical and Computer Engineering Texas A&M University September 30, 2011 1/ 1 Digital Landscape Delay

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Nonlinear Instabilities in TCP-RED

Nonlinear Instabilities in TCP-RED Nonlinear Instabilities in TCP-RED Priya Ranjan, Eyad H. Abed and Richard J. La Abstract This work develops a discrete time feedback system model for a simplified TCP (Transmission Control Protocol) network

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

Performance Effects of Two-way FAST TCP

Performance Effects of Two-way FAST TCP Performance Effects of Two-way FAST TCP Fei Ge a, Sammy Chan b, Lachlan L. H. Andrew c, Fan Li b, Liansheng Tan a, Moshe Zukerman b a Dept. of Computer Science, Huazhong Normal University, Wuhan, P.R.China

More information

The Timing Capacity of Single-Server Queues with Multiple Flows

The Timing Capacity of Single-Server Queues with Multiple Flows The Timing Capacity of Single-Server Queues with Multiple Flows Xin Liu and R. Srikant Coordinated Science Laboratory University of Illinois at Urbana Champaign March 14, 2003 Timing Channel Information

More information

I. INTRODUCTION. This work was supported by a Wakerly Stanford Graduate Fellowship and by the Powell Foundation.

I. INTRODUCTION. This work was supported by a Wakerly Stanford Graduate Fellowship and by the Powell Foundation. Analysis of scheduling algorithms that provide 100% throughput in input-queued switches Isaac Keslassy, Nick McKeown Computer Systems Laboratory, Stanford University Stanford, CA 94305-9030 {keslassy,

More information

ABSTRACT. We investigate the routing and performance of sparse crossbar packet concentrators

ABSTRACT. We investigate the routing and performance of sparse crossbar packet concentrators ABSTRACT Title of Thesis: ON ROUTING AND PERFORMANCE EVALUATION OF BUFFERED SPARSE CROSSBAR CONCENTRA- TORS Degree candidate: Rahul Ratan Degree and year: Master of Science, 2002 Thesis directed by: Professor

More information

Utility Analysis of Simple FEC Schemes for VoIP

Utility Analysis of Simple FEC Schemes for VoIP Utility Analysis of Simple FEC Schemes for VoIP Parijat Dube and Eitan Altman,2 INRIA, BP93, 692 Sophia-Antipolis, France{pdube,altman}@sophiainriafr 2 CESIMO, Facultad de Ingeneria, Universidad de Los

More information

A Retrial Queueing model with FDL at OBS core node

A Retrial Queueing model with FDL at OBS core node A Retrial Queueing model with FDL at OBS core node Chuong Dang Thanh a, Duc Pham Trung a, Thang Doan Van b a Faculty of Information Technology, College of Sciences, Hue University, Hue, Viet Nam. E-mail:

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation Karim G. Seddik and Amr A. El-Sherif 2 Electronics and Communications Engineering Department, American University in Cairo, New

More information

End-to-end Estimation of the Available Bandwidth Variation Range

End-to-end Estimation of the Available Bandwidth Variation Range 1 End-to-end Estimation of the Available Bandwidth Variation Range Manish Jain Georgia Tech jain@cc.gatech.edu Constantinos Dovrolis Georgia Tech dovrolis@cc.gatech.edu Abstract The available bandwidth

More information

A Signal Processing Approach to the Analysis of Chemical Networking Protocols

A Signal Processing Approach to the Analysis of Chemical Networking Protocols Laurea Specialistica 19 July 2010 A Signal Processing Approach to the Analysis of Chemical Networking Protocols Author Supervisors Prof. Marco Luise Prof. Filippo Giannetti (University of Pisa) (University

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Worst-case delay control in multigroup overlay networks. Tu, Wanqing; Sreenan, Cormac J.; Jia, Weijia. Article (peer-reviewed)

Worst-case delay control in multigroup overlay networks. Tu, Wanqing; Sreenan, Cormac J.; Jia, Weijia. Article (peer-reviewed) Title Author(s) Worst-case delay control in multigroup overlay networks Tu, Wanqing; Sreenan, Cormac J.; Jia, Weijia Publication date 2007-0 Original citation Type of publication Link to publisher's version

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Agenda Internetworking n Routing across LANs, layer2-layer3 n DHCP n NAT Transport layer

More information

Effective Bandwidth for Traffic Engineering

Effective Bandwidth for Traffic Engineering Brigham Young University BYU ScholarsArchive All Faculty Publications 2-5- Effective Bandwidth for Traffic Engineering Mark J. Clement clement@cs.byu.edu Rob Kunz See next page for additional authors Follow

More information

Local and Global Stability of Symmetric Heterogeneously-Delayed Control Systems

Local and Global Stability of Symmetric Heterogeneously-Delayed Control Systems Local and Global Stability of Symmetric Heterogeneously-Delayed Control Systems Yueping Zhang and Dmitri Loguinov Texas A&M University, College Station, TX 77843 Email: {yueping, dmitri}@cs.tamu.edu Abstract

More information

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Min Dai Electrical Engineering, Texas A&M University Dmitri Loguinov Computer Science, Texas A&M University

More information

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009.

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009. Capacity management for packet-switched networks with heterogeneous sources Linda de Jonge Master Thesis July 29, 2009 Supervisors Dr. Frank Roijers Prof. dr. ir. Sem Borst Dr. Andreas Löpker Industrial

More information

Modelling the Arrival Process for Packet Audio

Modelling the Arrival Process for Packet Audio Modelling the Arrival Process for Packet Audio Ingemar Kaj and Ian Marsh 2 Dept. of Mathematics, Uppsala University, Sweden ikaj@math.uu.se 2 SICS AB, Stockholm, Sweden ianm@sics.se Abstract. Packets in

More information

CHAPTER 3 STOCHASTIC MODEL OF A GENERAL FEED BACK QUEUE NETWORK

CHAPTER 3 STOCHASTIC MODEL OF A GENERAL FEED BACK QUEUE NETWORK CHAPTER 3 STOCHASTIC MODEL OF A GENERAL FEED BACK QUEUE NETWORK 3. INTRODUCTION: Considerable work has been turned out by Mathematicians and operation researchers in the development of stochastic and simulation

More information

TCP over Cognitive Radio Channels

TCP over Cognitive Radio Channels 1/43 TCP over Cognitive Radio Channels Sudheer Poojary Department of ECE, Indian Institute of Science, Bangalore IEEE-IISc I-YES seminar 19 May 2016 2/43 Acknowledgments The work presented here was done

More information

Window Size. Window Size. Window Size. Time. Time. Time

Window Size. Window Size. Window Size. Time. Time. Time A Spectrum of TCP-friendly Window-based Congestion Control Algorithms Λ Shudong Jin Liang Guo Ibrahim Matta Azer Bestavros Computer Science Department Boston University Boston, MA 5 fjins, guol, matta,

More information

Understanding TCP Vegas: A Duality Model

Understanding TCP Vegas: A Duality Model Understanding TCP Vegas: A Duality Model Steven Low Departments of CS and EE, Caltech, USA slow@caltech.edu Larry Peterson Limin Wang Department of CS, Princeton University, USA {llp,lmwang}@cs.princeton.edu

More information

AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis

AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis Ioan Raicu Distributed Systems Laboratory Computer Science Department University of Chicago Joint work with: Ian Foster: Univ. of

More information