Microlocal analysis and inverse problems Lecture 3 : Carleman estimates

Size: px
Start display at page:

Download "Microlocal analysis and inverse problems Lecture 3 : Carleman estimates"

Transcription

1 Microlocal analysis and inverse problems ecture 3 : Carleman estimates David Dos Santos Ferreira AGA Université de Paris 13 Monday May 16 Instituto de Ciencias Matemáticas, Madrid David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 1 / 38

2 Outline Introduction 1 Introduction 2 2 Carleman estimates 3 p Carleman estimates 4 Resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 2 / 38

3 Introduction Construction by complex geometrical optics In the former lecture, we saw that for our purpose, that is construction of solutions to the Schrödinger equation by means of complex geometrical optics with opposite exponential behaviours as in Sylvester and Uhlmann, one needs to use limiting Carleman weights. The purpose of this lecture is to indeed prove the corresponding Carleman estimates, both in the 2 setting (which corresponds to bounded potentials) and in the p setting (which corresponds to unbounded potentials). We will use alternatively h or τ = h 1 to denote the semiclassical parameter. Sorry for the change of notations! Recall that denotes the conjugated operator. P ϕ = e τϕ τ 2 2 ge τϕ David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 3 / 38

4 Introduction Construction by complex geometrical optics In the former lecture, we saw that for our purpose, that is construction of solutions to the Schrödinger equation by means of complex geometrical optics with opposite exponential behaviours as in Sylvester and Uhlmann, one needs to use limiting Carleman weights. The purpose of this lecture is to indeed prove the corresponding Carleman estimates, both in the 2 setting (which corresponds to bounded potentials) and in the p setting (which corresponds to unbounded potentials). We will use alternatively h or τ = h 1 to denote the semiclassical parameter. Sorry for the change of notations! Recall that denotes the conjugated operator. P ϕ = e τϕ τ 2 2 ge τϕ David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 3 / 38

5 Introduction Construction by complex geometrical optics In the former lecture, we saw that for our purpose, that is construction of solutions to the Schrödinger equation by means of complex geometrical optics with opposite exponential behaviours as in Sylvester and Uhlmann, one needs to use limiting Carleman weights. The purpose of this lecture is to indeed prove the corresponding Carleman estimates, both in the 2 setting (which corresponds to bounded potentials) and in the p setting (which corresponds to unbounded potentials). We will use alternatively h or τ = h 1 to denote the semiclassical parameter. Sorry for the change of notations! Recall that denotes the conjugated operator. P ϕ = e τϕ τ 2 2 ge τϕ David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 3 / 38

6 2 Carleman estimates Outline 1 Introduction 2 2 Carleman estimates 3 p Carleman estimates 4 Resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 4 / 38

7 2 Carleman estimates Carleman estimates Theorem et (U, g) be an open Riemannian manifold and (M, g) a compact Riemannian submanifold with boundary such that M U. Suppose that ϕ is a limiting Carleman weight on (U, g). et q be a smooth function on M. There exist two constants C > 0 and 0 < h 0 1 such that for all functions u C 0 (M ) and all 0 < h h 0, one has the inequality e ϕ h u H 1 scl (M) Ch e ϕ h ( + q)u 2 (M). We decompose P ϕ into its self-adjoint and skew-adjoint parts P ϕ = A+iB, A = h 2 g grad g ϕ 2, B = 2i grad g ϕ, hgrad g ih g ϕ and we have by integration by parts P ϕ v 2 = Av 2 + Bv 2 + i([a, B]v v). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 5 / 38

8 2 Carleman estimates Carleman estimates Theorem et (U, g) be an open Riemannian manifold and (M, g) a compact Riemannian submanifold with boundary such that M U. Suppose that ϕ is a limiting Carleman weight on (U, g). et q be a smooth function on M. There exist two constants C > 0 and 0 < h 0 1 such that for all functions u C 0 (M ) and all 0 < h h 0, one has the inequality e ϕ h u H 1 scl (M) Ch e ϕ h ( + q)u 2 (M). We decompose P ϕ into its self-adjoint and skew-adjoint parts P ϕ = A+iB, A = h 2 g grad g ϕ 2, B = 2i grad g ϕ, hgrad g ih g ϕ and we have by integration by parts P ϕ v 2 = Av 2 + Bv 2 + i([a, B]v v). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 5 / 38

9 2 Carleman estimates Convexification Convexification consists in replacing ϕ by ϕ = f ϕ. Add to denote all the corresponding symbols. Note that grad g (f ϕ) = (f ϕ) grad g ϕ 2 (f ϕ) = (f ϕ) dϕ dϕ + (f ϕ) 2 ϕ }{{} =0 therefore {ã, b}(x, ξ) = 4(f ϕ) (f ϕ) 2 grad g ϕ 4 + 4(f ϕ) grad g ϕ, ξ 2 = 4(f ϕ) (f ϕ) 2 + (f ϕ)(f ϕ) 2 }{{} b2. =β David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 6 / 38

10 2 Carleman estimates Convexification Convexification consists in replacing ϕ by ϕ = f ϕ. Add to denote all the corresponding symbols. Note that grad g (f ϕ) = (f ϕ) grad g ϕ 2 (f ϕ) = (f ϕ) dϕ dϕ + (f ϕ) 2 ϕ }{{} =0 therefore {ã, b}(x, ξ) = 4(f ϕ) (f ϕ) 2 grad g ϕ 4 + 4(f ϕ) grad g ϕ, ξ 2 = 4(f ϕ) (f ϕ) 2 + (f ϕ)(f ϕ) 2 }{{} b2. =β David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 6 / 38

11 2 Carleman estimates Convexification Convexification consists in replacing ϕ by ϕ = f ϕ. Add to denote all the corresponding symbols. Note that grad g (f ϕ) = (f ϕ) grad g ϕ 2 (f ϕ) = (f ϕ) dϕ dϕ + (f ϕ) 2 ϕ }{{} =0 therefore {ã, b}(x, ξ) = 4(f ϕ) (f ϕ) 2 grad g ϕ 4 + 4(f ϕ) grad g ϕ, ξ 2 = 4(f ϕ) (f ϕ) 2 + (f ϕ)(f ϕ) 2 }{{} b2. =β David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 6 / 38

12 2 Carleman estimates Convexification At the operator level, this gives i[ã, B] = 4h(f ϕ) (f ϕ) 2 + h Bβ B + h 2 R where R is a first order semiclassical differential operator. For the function f, we choose the following convex polynomial f(s) = s + h 2ε s2, f (s) = 1 + h ε s, f (s) = h ε. We choose h/ε small enough so that f > 1 2 Note that the coefficients of R, as well as β, are uniformly bounded with respect to h and ε. The estimate comes from the fact that the commutator is positive (by taking ε small enough to absorb error terms) and that e 1 h ϕ e 1 h ϕ. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 7 / 38

13 2 Carleman estimates Convexification At the operator level, this gives i[ã, B] = 4h(f ϕ) (f ϕ) 2 + h Bβ B + h 2 R where R is a first order semiclassical differential operator. For the function f, we choose the following convex polynomial f(s) = s + h 2ε s2, f (s) = 1 + h ε s, f (s) = h ε. We choose h/ε small enough so that f > 1 2 Note that the coefficients of R, as well as β, are uniformly bounded with respect to h and ε. The estimate comes from the fact that the commutator is positive (by taking ε small enough to absorb error terms) and that e 1 h ϕ e 1 h ϕ. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 7 / 38

14 p Carleman estimates Outline 1 Introduction 2 2 Carleman estimates 3 p Carleman estimates 4 Resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 8 / 38

15 p Carleman estimates Spectral cluster estimates of Sogge We denote by λ 0 = 0 < λ 1 λ 2... the sequence of eigenvalues of g0 on M 0 and (ψ j ) j 0 the corresponding sequence of eigenfunctions We denote by g0 ψ j = λ j ψ j. π j : 2 (M 0 ) 2 (M 0 ), u (u, ψ j )ψ j the projection on the linear space spanned by the eigenfunction ψ j so that π j = Id, j=0 λ j π j = g0 j=0 and by û(j) = u ψ j dv g0 M 0 the corresponding Fourier coefficients. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 9 / 38

16 p Carleman estimates Spectral cluster estimates of Sogge We denote by λ 0 = 0 < λ 1 λ 2... the sequence of eigenvalues of g0 on M 0 and (ψ j ) j 0 the corresponding sequence of eigenfunctions We denote by g0 ψ j = λ j ψ j. π j : 2 (M 0 ) 2 (M 0 ), u (u, ψ j )ψ j the projection on the linear space spanned by the eigenfunction ψ j so that π j = Id, j=0 λ j π j = g0 j=0 and by û(j) = u ψ j dv g0 M 0 the corresponding Fourier coefficients. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 9 / 38

17 p Carleman estimates Spectral cluster estimates of Sogge We denote by λ 0 = 0 < λ 1 λ 2... the sequence of eigenvalues of g0 on M 0 and (ψ j ) j 0 the corresponding sequence of eigenfunctions We denote by g0 ψ j = λ j ψ j. π j : 2 (M 0 ) 2 (M 0 ), u (u, ψ j )ψ j the projection on the linear space spanned by the eigenfunction ψ j so that π j = Id, j=0 λ j π j = g0 j=0 and by û(j) = u ψ j dv g0 M 0 the corresponding Fourier coefficients. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 9 / 38

18 p Carleman estimates Spectral cluster estimates of Sogge We define the spectral clusters as χ k = k λ j <k+1 π j, k N. Note that these are projection operators, χ 2 k = χ k, and they constitute a decomposition of the identity Id = χ k. k=0 The spectral cluster estimates of Sogge are χ k u 2n n 2 (M 0 ) C(1 + k) n u 2 (M 0 ), χ k u 2 (M 0 ) C(1 + k) n u 2n n+2 (M 0 ). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 10 / 38

19 p Carleman estimates Spectral cluster estimates of Sogge We define the spectral clusters as χ k = k λ j <k+1 π j, k N. Note that these are projection operators, χ 2 k = χ k, and they constitute a decomposition of the identity Id = χ k. k=0 The spectral cluster estimates of Sogge are χ k u 2n n 2 (M 0 ) C(1 + k) n u 2 (M 0 ), χ k u 2 (M 0 ) C(1 + k) n u 2n n+2 (M 0 ). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 10 / 38

20 p Carleman estimates Spectral cluster estimates of Sogge We define the spectral clusters as χ k = k λ j <k+1 π j, k N. Note that these are projection operators, χ 2 k = χ k, and they constitute a decomposition of the identity Id = χ k. k=0 The spectral cluster estimates of Sogge are χ k u 2n n 2 (M 0 ) C(1 + k) n u 2 (M 0 ), χ k u 2 (M 0 ) C(1 + k) n u 2n n+2 (M 0 ). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 10 / 38

21 p Carleman estimates Carleman estimates Theorem et (M 0, g 0 ) be an (n 1)-dimensional compact manifold without boundary, and equip R M 0 with the metric g = e g 0 where e is the Euclidean metric. The Euclidean coordinate is denoted by x 1. For any compact interval I R there exists a constant C I > 0 such that if τ 4 and τ 2 / Spec( g0 ) then we have when u C 0 (I M 0). e τx 1 u 2n n 2 (R M 0 ) C I e τx 1 g u 2n n+2 (R M 0 ) David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 11 / 38

22 p Carleman estimates Short bibliography on p Carleman estimates on elliptic operators These works are in relation with unique continuation of solutions to Schrödinger equation with unbounded potentials Jerison-Kenig: first p Carleman estimates, logarithmic weights 1986 Jerison: simplification of the proof using spectral cluster estimates (see also Sogge s book) 1987 Kenig-Ruiz-Sogge: Elliptic operators with constant coefficients, linear weights 1989 Sogge: Elliptic operators with variable coefficients, non CW 2001 Shen: aplace operator on the torus 2005 Koch-Tataru: construction of parametrices in general context David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 12 / 38

23 p Carleman estimates Remarks 1 In unique continuation problems, one traditionally uses weights for which one has { Re p ϕ, Im p ϕ } > 0 on p 1 ϕ (0), i.e. of the form x 1 + x 2 1 /2. 2 These estimates can be seen as the anisotropic analogue of the estimates of Jerison and Kenig (with x 1 = s = log r see ecture 1). 3 These estimates can also be seen as the anisotropic analogue of the estimates of Kenig, Ruiz and Sogge (who proved p Carleman estimates for linear weights). 4 There are two proofs of those estimates: the first follows ideas of Jerison (see also Sogge, Shen) in relation with spectral cluster estimates, the second ideas of Kenig, Ruiz and Sogge in relation with resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 13 / 38

24 p Carleman estimates Remarks 1 In unique continuation problems, one traditionally uses weights for which one has { Re p ϕ, Im p ϕ } > 0 on p 1 ϕ (0), i.e. of the form x 1 + x 2 1 /2. 2 These estimates can be seen as the anisotropic analogue of the estimates of Jerison and Kenig (with x 1 = s = log r see ecture 1). 3 These estimates can also be seen as the anisotropic analogue of the estimates of Kenig, Ruiz and Sogge (who proved p Carleman estimates for linear weights). 4 There are two proofs of those estimates: the first follows ideas of Jerison (see also Sogge, Shen) in relation with spectral cluster estimates, the second ideas of Kenig, Ruiz and Sogge in relation with resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 13 / 38

25 p Carleman estimates Remarks 1 In unique continuation problems, one traditionally uses weights for which one has { Re p ϕ, Im p ϕ } > 0 on p 1 ϕ (0), i.e. of the form x 1 + x 2 1 /2. 2 These estimates can be seen as the anisotropic analogue of the estimates of Jerison and Kenig (with x 1 = s = log r see ecture 1). 3 These estimates can also be seen as the anisotropic analogue of the estimates of Kenig, Ruiz and Sogge (who proved p Carleman estimates for linear weights). 4 There are two proofs of those estimates: the first follows ideas of Jerison (see also Sogge, Shen) in relation with spectral cluster estimates, the second ideas of Kenig, Ruiz and Sogge in relation with resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 13 / 38

26 p Carleman estimates Remarks 1 In unique continuation problems, one traditionally uses weights for which one has { Re p ϕ, Im p ϕ } > 0 on p 1 ϕ (0), i.e. of the form x 1 + x 2 1 /2. 2 These estimates can be seen as the anisotropic analogue of the estimates of Jerison and Kenig (with x 1 = s = log r see ecture 1). 3 These estimates can also be seen as the anisotropic analogue of the estimates of Kenig, Ruiz and Sogge (who proved p Carleman estimates for linear weights). 4 There are two proofs of those estimates: the first follows ideas of Jerison (see also Sogge, Shen) in relation with spectral cluster estimates, the second ideas of Kenig, Ruiz and Sogge in relation with resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 13 / 38

27 p Carleman estimates Remarks 1 In unique continuation problems, one traditionally uses weights for which one has { Re p ϕ, Im p ϕ } > 0 on p 1 ϕ (0), i.e. of the form x 1 + x 2 1 /2. 2 These estimates can be seen as the anisotropic analogue of the estimates of Jerison and Kenig (with x 1 = s = log r see ecture 1). 3 These estimates can also be seen as the anisotropic analogue of the estimates of Kenig, Ruiz and Sogge (who proved p Carleman estimates for linear weights). 4 There are two proofs of those estimates: the first follows ideas of Jerison (see also Sogge, Shen) in relation with spectral cluster estimates, the second ideas of Kenig, Ruiz and Sogge in relation with resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 13 / 38

28 p Carleman estimates Proof of Carleman estimates Main goal: when u C 0 (I M 0) and with D x1 = i x1. u 2n n 2 (R M 0 ) C I f 2n n+2 (R M 0 ) D 2 x 1 u + 2iτD x1 u g0 u τ 2 u = f (D 2 x 1 + 2iτD x1 τ 2 + λ j )π j u = π j f Symbol of the operator: ξ iτξ 1 τ 2 + λ j 0 if τ 2 λ j Inverse operator: G τ f(x 1, x ( ) = m τ x1 y 1, ) λ j πj f(y 1, x ) dy 1 m τ (t, µ) = 1 2π j=0 e itη η 2 + 2iτη τ 2 dη, µ > 0. + µ 2 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 14 / 38

29 p Carleman estimates Proof of Carleman estimates Main goal: when u C 0 (I M 0) and with D x1 = i x1. u 2n n 2 (R M 0 ) C I f 2n n+2 (R M 0 ) D 2 x 1 u + 2iτD x1 u g0 u τ 2 u = f (D 2 x 1 + 2iτD x1 τ 2 + λ j )π j u = π j f Symbol of the operator: ξ iτξ 1 τ 2 + λ j 0 if τ 2 λ j Inverse operator: G τ f(x 1, x ( ) = m τ x1 y 1, ) λ j πj f(y 1, x ) dy 1 m τ (t, µ) = 1 2π j=0 e itη η 2 + 2iτη τ 2 dη, µ > 0. + µ 2 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 14 / 38

30 p Carleman estimates Proof of Carleman estimates Main goal: when u C 0 (I M 0) and with D x1 = i x1. u 2n n 2 (R M 0 ) C I f 2n n+2 (R M 0 ) D 2 x 1 u + 2iτD x1 u g0 u τ 2 u = f (D 2 x 1 + 2iτD x1 τ 2 + λ j )π j u = π j f Symbol of the operator: ξ iτξ 1 τ 2 + λ j 0 if τ 2 λ j Inverse operator: G τ f(x 1, x ( ) = m τ x1 y 1, ) λ j πj f(y 1, x ) dy 1 m τ (t, µ) = 1 2π j=0 e itη η 2 + 2iτη τ 2 dη, µ > 0. + µ 2 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 14 / 38

31 p Carleman estimates Proof of Carleman estimates Main goal: when u C 0 (I M 0) and with D x1 = i x1. u 2n n 2 (R M 0 ) C I f 2n n+2 (R M 0 ) D 2 x 1 u + 2iτD x1 u g0 u τ 2 u = f (D 2 x 1 + 2iτD x1 τ 2 + λ j )π j u = π j f Symbol of the operator: ξ iτξ 1 τ 2 + λ j 0 if τ 2 λ j Inverse operator: G τ f(x 1, x ( ) = m τ x1 y 1, ) λ j πj f(y 1, x ) dy 1 m τ (t, µ) = 1 2π j=0 e itη η 2 + 2iτη τ 2 dη, µ > 0. + µ 2 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 14 / 38

32 p Carleman estimates Proof of Carleman estimates emma If τ > 0, µ > 0, τ µ and t R then m τ (t, µ) 1 µ e τ µ t, m τ (t, 0) t e τ t. Proof. This follows by writing 1 (iη (τ + µ))(iη (τ µ)) = 1 2µ [ ] 1 iη (τ + µ) 1 iη (τ µ) and by noting that for α > 0 F 1 η { 1 iη + α } { 0, t < 0 (t) = e αt, t > 0,. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 15 / 38

33 p Carleman estimates Proof of Carleman estimates emma If τ > 0, µ > 0, τ µ and t R then m τ (t, µ) 1 µ e τ µ t, m τ (t, 0) t e τ t. Proof. This follows by writing 1 (iη (τ + µ))(iη (τ µ)) = 1 2µ [ ] 1 iη (τ + µ) 1 iη (τ µ) and by noting that for α > 0 F 1 η { 1 iη + α } { 0, t < 0 (t) = e αt, t > 0,. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 15 / 38

34 p Carleman estimates Proof of Carleman estimates Using the spectral cluster estimates we get u 2n = χ 2 n 2 k u (M 0 ) 2n n 2 k=0 (M 0 ) (1 + k) n χk u 2 (M 0 ). k=0 Apply the estimate to u = G τ f(x 1, ), G τ f(x 1, ) 2n (1 + k) n n 2 (M 0 ) ( k λ j <k+1 k=0 m τ ( x1 y 1, λ j ) f(y1, j) dy 1 2) 1 2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 16 / 38

35 p Carleman estimates Proof of Carleman estimates Using the spectral cluster estimates we get u 2n = χ 2 n 2 k u (M 0 ) 2n n 2 k=0 (M 0 ) (1 + k) n χk u 2 (M 0 ). k=0 Apply the estimate to u = G τ f(x 1, ), G τ f(x 1, ) 2n (1 + k) n n 2 (M 0 ) ( k λ j <k+1 k=0 m τ ( x1 y 1, λ j ) f(y1, j) dy 1 2) 1 2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 16 / 38

36 p Carleman estimates Proof of Carleman estimate By Minkowski s inequality, we have G τ f(x 1, ) 2n (1 + k) n n 2 (M 0 ) and since k λ j <k+1 ( k=0 k λ j <k+1 ( m τ x1 y 1, ) λ j f(y1, j) ( m τ x1 y 1, ) λ j f(y1, j) 2) 1 2 dy1 sup mτ (x 1 y 1, ) λ j 2 χk f(y 1, ) 2 2 (M 0 ) k λ j <k+1 2 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 17 / 38

37 p Carleman estimates Proof of Carleman estimate using once again the spectral cluster estimate we finally get G τ f(x 1, ) 2n (1 + k) 1 2 n n 2 (M 0 ) k=0 sup m τ (x 1 y 1, ) λ j f(y 1, ) 2n dy 1. n+2 (M 0 ) k λ j <k+1 Using the emma, we estimate sup m τ (t, ) λ j 1 k k λ j <k+1 with k > 0. e (k τ) t when τ < k 1 when k τ < k + 1 e (τ k 1) t when τ k + 1 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 18 / 38

38 p Carleman estimates Proof of Carleman estimate using once again the spectral cluster estimate we finally get G τ f(x 1, ) 2n (1 + k) 1 2 n n 2 (M 0 ) k=0 sup m τ (x 1 y 1, ) λ j f(y 1, ) 2n dy 1. n+2 (M 0 ) k λ j <k+1 Using the emma, we estimate sup m τ (t, ) λ j 1 k k λ j <k+1 with k > 0. e (k τ) t when τ < k 1 when k τ < k + 1 e (τ k 1) t when τ k + 1 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 18 / 38

39 p Carleman estimates Proof of Carleman estimate This allows us to estimate the series (1 + k) 1 2 n sup k=0 Whence 1 k τ 2 τ 2 0 k λ j <k+1 m τ (t, λ j ) k 2 n e (τ k 1) t + τ 2 n + r 2 n e (τ r 2) t dr (1 + k) 1 2 n sup k=0 k λ j <k+1 k>τ+1 τ k 2 n e (k τ) t + e (τ/2) t r 2 n e (r τ) t dr. m τ (t, λ j ) 1 + t 1+ 2 n. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 19 / 38

40 p Carleman estimates Proof of Carleman estimate This allows us to estimate the series (1 + k) 1 2 n sup k=0 Whence 1 k τ 2 τ 2 0 k λ j <k+1 m τ (t, λ j ) k 2 n e (τ k 1) t + τ 2 n + r 2 n e (τ r 2) t dr (1 + k) 1 2 n sup k=0 k λ j <k+1 k>τ+1 τ k 2 n e (k τ) t + e (τ/2) t r 2 n e (r τ) t dr. m τ (t, λ j ) 1 + t 1+ 2 n. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 19 / 38

41 p Carleman estimates Proof of Carleman estimate We obtain G τ f(x 1, ) 2n n 2 (M 0 ) ( 1 + x 1 y n ) f(y1, ) 2n n+2 (M 0 ) dy 1 x 1 y n f(y1, ) 2n dy 1 + I n f 2n n+2 (M 0 ) n+2 (I M 0 ) and we conclude using the Hardy-ittlewood-Sobolev inequality G τ f 2n n 2 (I M 0 ) f 2n n+2 (I M 0 ). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 20 / 38

42 p Carleman estimates Proof of Carleman estimate We obtain G τ f(x 1, ) 2n n 2 (M 0 ) ( 1 + x 1 y n ) f(y1, ) 2n n+2 (M 0 ) dy 1 x 1 y n f(y1, ) 2n dy 1 + I n f 2n n+2 (M 0 ) n+2 (I M 0 ) and we conclude using the Hardy-ittlewood-Sobolev inequality G τ f 2n n 2 (I M 0 ) f 2n n+2 (I M 0 ). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 20 / 38

43 Outline Resolvent estimates 1 Introduction 2 2 Carleman estimates 3 p Carleman estimates 4 Resolvent estimates David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 21 / 38

44 Resolvent estimates Relation Carleman estimates / Resolvent estimates Here we follow Kenig, Ruiz and Sogge and relate our Carleman estimates in the product context to resolvent estimates by freezing derivatives. Inspired by Hähner s proof, we further conjugate the operator by an harmless oscillating factor e τx 1 i 2 x 1 P e τx 1+ i 2 x 1 = ( D x ( + 2iτ D x1 + 2) 1 ) τ 2 g0. 2 After translation and scaling I = [0, 2π] and use Fourier series. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 22 / 38

45 Resolvent estimates Relation Carleman estimates / Resolvent estimates Here we follow Kenig, Ruiz and Sogge and relate our Carleman estimates in the product context to resolvent estimates by freezing derivatives. Inspired by Hähner s proof, we further conjugate the operator by an harmless oscillating factor e τx 1 i 2 x 1 P e τx 1+ i 2 x 1 = ( D x ( + 2iτ D x1 + 2) 1 ) τ 2 g0. 2 After translation and scaling I = [0, 2π] and use Fourier series. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 22 / 38

46 Resolvent estimates Kenig-Ruiz-Sogge approach We denote by λ 0 = 0 < λ 1 λ 2... the sequence of eigenvalues of g0 on M 0 and (ψ k ) k 0 the corresponding sequence of eigenfunctions g0 ψ k = λ k ψ k. We denote by π k : 2 (M 0 ) 2 (M 0 ) the projection on the linear space spanned by the eigenfunction ψ k so that π k = Id, k=0 λ k π k = g0. k=0 Eigenvalues of the aplacian g : (j 2 + λ k ) Eigenfunctions: e ijx 1 ψ k. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 23 / 38

47 Resolvent estimates Kenig-Ruiz-Sogge approach We denote by λ 0 = 0 < λ 1 λ 2... the sequence of eigenvalues of g0 on M 0 and (ψ k ) k 0 the corresponding sequence of eigenfunctions g0 ψ k = λ k ψ k. We denote by π k : 2 (M 0 ) 2 (M 0 ) the projection on the linear space spanned by the eigenfunction ψ k so that π k = Id, k=0 λ k π k = g0. k=0 Eigenvalues of the aplacian g : (j 2 + λ k ) Eigenfunctions: e ijx 1 ψ k. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 23 / 38

48 Resolvent estimates Kenig-Ruiz-Sogge approach Denote by π j,k : 2 (M) 2 (M) the projection on the linear space spanned by e ijx 1 ψ k : ( 2π ) π j,k f(x) = e ijy 1 π k f(y 1, x ) dy 1 e ijx 1, and define the spectral clusters as χ m = 0 m j 2 +λ k <m+1 Note that these are projectors χ 2 m = χ m. Spectral cluster estimates of Sogge: π j,k, m N. χ m u 2n n 2 (M) C(1 + m) 1 2 u 2 (M) χ m u 2 (M) C(1 + m) 1 2 u 2n n+2 (M). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 24 / 38

49 Resolvent estimates Kenig-Ruiz-Sogge approach Denote by π j,k : 2 (M) 2 (M) the projection on the linear space spanned by e ijx 1 ψ k : ( 2π ) π j,k f(x) = e ijy 1 π k f(y 1, x ) dy 1 e ijx 1, and define the spectral clusters as χ m = 0 m j 2 +λ k <m+1 Note that these are projectors χ 2 m = χ m. Spectral cluster estimates of Sogge: π j,k, m N. χ m u 2n n 2 (M) C(1 + m) 1 2 u 2 (M) χ m u 2 (M) C(1 + m) 1 2 u 2n n+2 (M). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 24 / 38

50 Resolvent estimates Kenig-Ruiz-Sogge approach We are now ready to reduce the proof of Carleman estimates to resolvent estimates. u 2n n 2 (M) C f 2n n+2 (M) when ( D x1 + 2) 1 2 ( u + 2iτ D x1 + 1 ) u g0 u τ 2 u = f. 2 Inverse operator: G τ f = j= k=0 ( j π j,k f ) 2 ( + 2i j ) τ + λk τ 2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 25 / 38

51 Resolvent estimates Kenig-Ruiz-Sogge approach We are now ready to reduce the proof of Carleman estimates to resolvent estimates. u 2n n 2 (M) C f 2n n+2 (M) when ( D x1 + 2) 1 2 ( u + 2iτ D x1 + 1 ) u g0 u τ 2 u = f. 2 Inverse operator: G τ f = j= k=0 ( j π j,k f ) 2 ( + 2i j ) τ + λk τ 2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 25 / 38

52 Resolvent estimates Kenig-Ruiz-Sogge approach Use ittlewood-paley theory to localize in frequency with respect to the Euclidean variable x 1 ; u = u ν, f = with ν=0 ( 2π u 0 = u(y 1, x ) dy 1 ), u ν = 0 2 ν 1 j <2 ν and similarly for f. It suffices to prove ν=0 ( 2π ) e ijy 1 u(y 1, x ) dy 1 e ijx 1, ν > 0 0 u ν 2n n 2 f ν C f ν 2n n+2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 26 / 38

53 Resolvent estimates Kenig-Ruiz-Sogge approach Use ittlewood-paley theory to localize in frequency with respect to the Euclidean variable x 1 ; u = u ν, f = with ν=0 ( 2π u 0 = u(y 1, x ) dy 1 ), u ν = 0 2 ν 1 j <2 ν and similarly for f. It suffices to prove ν=0 ( 2π ) e ijy 1 u(y 1, x ) dy 1 e ijx 1, ν > 0 0 u ν 2n n 2 f ν C f ν 2n n+2. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 26 / 38

54 Resolvent estimates Kenig-Ruiz-Sogge approach The conjugated operator and the localization in frequency commute u ν = G τ f ν. We denote R(z) = (( D x1 + 1 ) 2 ) 1 g0 2 + z the resolvent. The error made by replacing G τ with the resolvent is ( R( τ 2 + i(2 ν + 1)τ) G τ ) fν = a ν jk (τ) = j= k=1 a ν jk (τ) π j,kf ν iτ(2 ν 2j)1 [2 ν 1,2 ν )(j) ( j 2 + 2iτ j τ 2 + λ k )( j 2 + i(2 ν + 1)τ τ 2 + λ k ). with j = j David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 27 / 38

55 Resolvent estimates Kenig-Ruiz-Sogge approach The conjugated operator and the localization in frequency commute u ν = G τ f ν. We denote R(z) = (( D x1 + 1 ) 2 ) 1 g0 2 + z the resolvent. The error made by replacing G τ with the resolvent is ( R( τ 2 + i(2 ν + 1)τ) G τ ) fν = a ν jk (τ) = j= k=1 a ν jk (τ) π j,kf ν iτ(2 ν 2j)1 [2 ν 1,2 ν )(j) ( j 2 + 2iτ j τ 2 + λ k )( j 2 + i(2 ν + 1)τ τ 2 + λ k ). with j = j David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 27 / 38

56 Resolvent estimates Kenig-Ruiz-Sogge approach Using the spectral cluster estimates ( R( τ 2 + i2 ν τ) G ) τ fν n 2 2n (M) ( (1 + m) 1 2 χ m R( τ 2 + i(2 ν + 1)τ) G ) τ fν 2 (M) m=0 (1 + m) 1 2 sup m=0 and furthermore m=0 m j 2 +λ k <m+1 m j 2 +λ k <m+1 a ν jk (τ) χ m f ν 2 2 (M) ( R( τ 2 + i(2 ν + 1)τ) G ) τ fν n 2 2n (M) ( (1 + m) sup a ν jk (τ) ) f ν 2n n+2 (M). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 28 / 38

57 Resolvent estimates Kenig-Ruiz-Sogge approach Using the spectral cluster estimates ( R( τ 2 + i2 ν τ) G ) τ fν n 2 2n (M) ( (1 + m) 1 2 χ m R( τ 2 + i(2 ν + 1)τ) G ) τ fν 2 (M) m=0 (1 + m) 1 2 sup m=0 and furthermore m=0 m j 2 +λ k <m+1 m j 2 +λ k <m+1 a ν jk (τ) χ m f ν 2 2 (M) ( R( τ 2 + i(2 ν + 1)τ) G ) τ fν n 2 2n (M) ( (1 + m) sup a ν jk (τ) ) f ν 2n n+2 (M). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 28 / 38

58 Resolvent estimates Kenig-Ruiz-Sogge approach The above series converge and is uniformly bounded with respect to τ and ν sup a ν jk (τ) 2 ν τ (m 2 τ 2 ) ν+1 τ 2 as well as m=0 m j 2 +λ k <m+1 2 ν τ (1 + m) (m 2 τ 2 ) ν+1 τ 2 2 ν τ t 0 (t 2 τ 2 ) ν+1 τ 2 dt and if we perform the change of variables s = 4 ν 1 τ 2 (t 2 τ 2 ) in the right-hand side integral, we obtain the bound m=0 2 ν τ (1 + m) (m 2 τ 2 ) ν+1 τ 2 ds s David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 29 / 38

59 Resolvent estimates Kenig-Ruiz-Sogge approach Summing up our computations, we have the error estimate ( R( τ 2 + i(2 ν + 1)τ) G τ ) fν 2n n 2 (M) f ν 2n n+2 (M), this means that it is enough to prove the resolvent estimate R( τ 2 + i(2 ν + 1)τ)f ν n 2 2n f ν 2n. (M) n+2 (M) Carleman estimates reduce to resolvent estimates of the form u 2n ((D n ) 2 ) g0 (M) 2 + z u 2n with z = τ 2 + iϱτ (ϱ 1). n+2 (M) David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 30 / 38

60 Resolvent estimates Kenig-Ruiz-Sogge approach Summing up our computations, we have the error estimate ( R( τ 2 + i(2 ν + 1)τ) G τ ) fν 2n n 2 (M) f ν 2n n+2 (M), this means that it is enough to prove the resolvent estimate R( τ 2 + i(2 ν + 1)τ)f ν n 2 2n f ν 2n. (M) n+2 (M) Carleman estimates reduce to resolvent estimates of the form u 2n ((D n ) 2 ) g0 (M) 2 + z u 2n with z = τ 2 + iϱτ (ϱ 1). n+2 (M) David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 30 / 38

61 Resolvent estimates Resolvent estimates Theorem et (M, g) be a compact Riemannian manifold (without boundary) of dimension n 3, and let δ be a positive number. There exists a constant C > 0 such that for all u C (M) and all z C : Re z + z δ the following resolvent estimate holds u 2n n 2 (M) C ( g z)u 2n n+2 (M). David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 31 / 38

62 Hadamard s parametrix Resolvent estimates Fundamental solution F 0 of the flat aplacian + z on R n : For a radial function F 0 ( x, z) = (2π) n R n g f(r) = f (r) dr 2 g + f (r) g r with dv g = r n 1 J(r, θ) dr dθ. Hence e ix ξ ξ 2 + z dξ, = f (r) + n 1 f (r) + rj r J f (r). ( g + z)f 0 = δ 0 2 rj 2J rf 0 }{{} error term David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 32 / 38

63 Hadamard s parametrix Resolvent estimates Fundamental solution F 0 of the flat aplacian + z on R n : For a radial function F 0 ( x, z) = (2π) n R n g f(r) = f (r) dr 2 g + f (r) g r with dv g = r n 1 J(r, θ) dr dθ. Hence e ix ξ ξ 2 + z dξ, = f (r) + n 1 f (r) + rj r J f (r). ( g + z)f 0 = δ 0 2 rj 2J rf 0 }{{} error term David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 32 / 38

64 Hadamard s parametrix Resolvent estimates Fundamental solution F 0 of the flat aplacian + z on R n : For a radial function F 0 ( x, z) = (2π) n R n g f(r) = f (r) dr 2 g + f (r) g r with dv g = r n 1 J(r, θ) dr dθ. Hence e ix ξ ξ 2 + z dξ, = f (r) + n 1 f (r) + rj r J f (r). ( g + z)f 0 = δ 0 2 rj 2J rf 0 }{{} error term David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 32 / 38

65 Hadamard s parametrix Resolvent estimates We now take r = d g (x, y). The Hadamard parametrix looks like ( T Had (z)u = χ(x, y)f 0 dg (x, y), z ) u(y) dv g (y) with χ a localizing function and one has M ( g + z)t Had (z)u = χ(x, x)u + S(z)u where S(z) is an error term. In fact, the construction has to be slightly refined. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 33 / 38

66 Hadamard s parametrix Resolvent estimates We now take r = d g (x, y). The Hadamard parametrix looks like ( T Had (z)u = χ(x, y)f 0 dg (x, y), z ) u(y) dv g (y) with χ a localizing function and one has M ( g + z)t Had (z)u = χ(x, x)u + S(z)u where S(z) is an error term. In fact, the construction has to be slightly refined. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 33 / 38

67 Hadamard s parametrix Resolvent estimates We now take r = d g (x, y). The Hadamard parametrix looks like ( T Had (z)u = χ(x, y)f 0 dg (x, y), z ) u(y) dv g (y) with χ a localizing function and one has M ( g + z)t Had (z)u = χ(x, x)u + S(z)u where S(z) is an error term. In fact, the construction has to be slightly refined. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 33 / 38

68 Hadamard s parametrix Resolvent estimates Theorem The Hadamard parametrix is a bounded operator z s 2 THad (z) : p (M) q (M) with a norm uniform with respect to the spectral parameter z C, z 1 when s 2, q p 2 1 p 1 q + s n = 2 n, and ( 1 min p 1 2, 1 q 1 ) 2 > 1 2n, 1 p 1 q < 1 n 1. David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 34 / 38

69 Hadamard s parametrix Resolvent estimates Theorem The Hadamard parametrix is a bounded operator when 1 p 2 q and with a norm bounded by T Had (z) : p (M) q (M) 1 p 1 q < 1 n 1, n 1 n + 1 T Had (z) ( p, q ) C z n p 1 q n + 1 n 1 ( ) 1 p 1 1 q 2. 1 p, David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 35 / 38

70 Resolvent estimates Hadamard s parametrix: admissible exponents 1 q = 1 1 = 1 q p q p F E E D C C 1 q = 1 p 2 n B n B A n 1 p David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 36 / 38

71 Resolvent estimates Decay of Hadamard s parametrix The combination of the two Theorems gives the following bound on the parametrix T Had (z)u ( p, q ) C z σ where the order σ is a piecewise linear function of δ = 1/p 1/q n 1 δ + 1 when δ 2 σ = 4 2 n + 1 n 2 δ + 1 when 2. n + 1 < 2 1 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 37 / 38

72 Resolvent estimates Decay of the parametrix: T Had (z)u (p, q ) = O( z σ ) σ 1 1 n 1 2 n n+1 1 p 1 q 1 n 2 1 n+1 2 n+1 David Dos Santos Ferreira (AGA) Inverse Problems 3 ICMAT 38 / 38

On L p resolvent and Carleman estimates on compacts manifolds

On L p resolvent and Carleman estimates on compacts manifolds On L p resolvent and Carleman estimates on compacts manifolds David Dos Santos Ferreira Institut Élie Cartan Université de Lorraine Three days on Analysis and PDEs ICMAT, Tuesday June 3rd Collaborators

More information

ON L p RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS

ON L p RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS ON p RESOVENT ESTIMATES FOR APACE-BETRAMI OPERATORS ON COMPACT MANIFODS DAVID DOS SANTOS FERREIRA, CAROS E. KENIG, AND MIKKO SAO Abstract. In this article we prove p estimates for resolvents of aplace-beltrami

More information

Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries

Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries David Dos Santos Ferreira LAGA Université de Paris 13 Wednesday May 18 Instituto de Ciencias Matemáticas,

More information

Endpoint resolvent estimates for compact Riemannian manifolds

Endpoint resolvent estimates for compact Riemannian manifolds Endpoint resolvent estimates for compact Riemannian manifolds joint work with R. L. Frank to appear in J. Funct. Anal. (arxiv:6.00462) Lukas Schimmer California Institute of Technology 3 February 207 Schimmer

More information

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO HART F. SMITH AND MACIEJ ZWORSKI Abstract. We prove optimal pointwise bounds on quasimodes of semiclassical Schrödinger

More information

CARLEMAN ESTIMATES AND ABSENCE OF EMBEDDED EIGENVALUES

CARLEMAN ESTIMATES AND ABSENCE OF EMBEDDED EIGENVALUES CARLEMAN ESTIMATES AND ABSENCE OF EMBEDDED EIGENVALUES HERBERT KOCH AND DANIEL TATARU Abstract. Let L = W be a Schrödinger operator with a potential W L n+1 2 (R n ), n 2. We prove that there is no positive

More information

COMPLEX SPHERICAL WAVES AND INVERSE PROBLEMS IN UNBOUNDED DOMAINS

COMPLEX SPHERICAL WAVES AND INVERSE PROBLEMS IN UNBOUNDED DOMAINS COMPLEX SPHERICAL WAVES AND INVERSE PROBLEMS IN UNBOUNDED DOMAINS MIKKO SALO AND JENN-NAN WANG Abstract. This work is motivated by the inverse conductivity problem of identifying an embedded object in

More information

Strichartz Estimates in Domains

Strichartz Estimates in Domains Department of Mathematics Johns Hopkins University April 15, 2010 Wave equation on Riemannian manifold (M, g) Cauchy problem: 2 t u(t, x) gu(t, x) =0 u(0, x) =f (x), t u(0, x) =g(x) Strichartz estimates:

More information

On L p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds

On L p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds On p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds Chris Sogge (Johns Hopkins University) Joint work with: Jean Bourgain (IAS) Peng Shao (JHU) Xiaohua Yao (JHU, Huazhong

More information

A local estimate from Radon transform and stability of Inverse EIT with partial data

A local estimate from Radon transform and stability of Inverse EIT with partial data A local estimate from Radon transform and stability of Inverse EIT with partial data Alberto Ruiz Universidad Autónoma de Madrid U. California, Irvine.June 2012 w/ P. Caro (U. Helsinki) and D. Dos Santos

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Strong uniqueness for second order elliptic operators with Gevrey coefficients

Strong uniqueness for second order elliptic operators with Gevrey coefficients Strong uniqueness for second order elliptic operators with Gevrey coefficients Ferruccio Colombini, Cataldo Grammatico, Daniel Tataru Abstract We consider here the problem of strong unique continuation

More information

Dispersive Equations and Hyperbolic Orbits

Dispersive Equations and Hyperbolic Orbits Dispersive Equations and Hyperbolic Orbits H. Christianson Department of Mathematics University of California, Berkeley 4/16/07 The Johns Hopkins University Outline 1 Introduction 3 Applications 2 Main

More information

Wave operators with non-lipschitz coefficients: energy and observability estimates

Wave operators with non-lipschitz coefficients: energy and observability estimates Wave operators with non-lipschitz coefficients: energy and observability estimates Institut de Mathématiques de Jussieu-Paris Rive Gauche UNIVERSITÉ PARIS DIDEROT PARIS 7 JOURNÉE JEUNES CONTRÔLEURS 2014

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

Hyperbolic inverse problems and exact controllability

Hyperbolic inverse problems and exact controllability Hyperbolic inverse problems and exact controllability Lauri Oksanen University College London An inverse initial source problem Let M R n be a compact domain with smooth strictly convex boundary, and let

More information

Strichartz Estimates for the Schrödinger Equation in Exterior Domains

Strichartz Estimates for the Schrödinger Equation in Exterior Domains Strichartz Estimates for the Schrödinger Equation in University of New Mexico May 14, 2010 Joint work with: Hart Smith (University of Washington) Christopher Sogge (Johns Hopkins University) The Schrödinger

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur.

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur. Luc Miller Université Paris Ouest Nanterre La Défense, France Pde s, Dispersion, Scattering

More information

A new class of pseudodifferential operators with mixed homogenities

A new class of pseudodifferential operators with mixed homogenities A new class of pseudodifferential operators with mixed homogenities Po-Lam Yung University of Oxford Jan 20, 2014 Introduction Given a smooth distribution of hyperplanes on R N (or more generally on a

More information

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping H. Christianson partly joint work with J. Wunsch (Northwestern) Department of Mathematics University of North

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY. 1. Introduction

ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY. 1. Introduction ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY MATTHEW D. BLAIR, HART F. SMITH, AND CHRISTOPHER D. SOGGE 1. Introduction Let (M, g) be a Riemannian manifold of dimension

More information

A local estimate from Radon transform and stability of Inverse EIT with partial data

A local estimate from Radon transform and stability of Inverse EIT with partial data A local estimate from Radon transform and stability of Inverse EIT with partial data Alberto Ruiz Universidad Autónoma de Madrid ge Joint work with P. Caro (U. Helsinki) and D. Dos Santos Ferreira (Paris

More information

On the bang-bang property of time optimal controls for infinite dimensional linear systems

On the bang-bang property of time optimal controls for infinite dimensional linear systems On the bang-bang property of time optimal controls for infinite dimensional linear systems Marius Tucsnak Université de Lorraine Paris, 6 janvier 2012 Notation and problem statement (I) Notation: X (the

More information

Wave equation on manifolds and finite speed of propagation

Wave equation on manifolds and finite speed of propagation Wave equation on manifolds and finite speed of propagation Ethan Y. Jaffe Let M be a Riemannian manifold (without boundary), and let be the (negative of) the Laplace-Beltrami operator. In this note, we

More information

RANDOM PROPERTIES BENOIT PAUSADER

RANDOM PROPERTIES BENOIT PAUSADER RANDOM PROPERTIES BENOIT PAUSADER. Quasilinear problems In general, one consider the following trichotomy for nonlinear PDEs: A semilinear problem is a problem where the highest-order terms appears linearly

More information

arxiv: v3 [math.ap] 1 Sep 2017

arxiv: v3 [math.ap] 1 Sep 2017 arxiv:1603.0685v3 [math.ap] 1 Sep 017 UNIQUE CONTINUATION FOR THE SCHRÖDINGER EQUATION WITH GRADIENT TERM YOUNGWOO KOH AND IHYEOK SEO Abstract. We obtain a unique continuation result for the differential

More information

Inégalités de dispersion via le semi-groupe de la chaleur

Inégalités de dispersion via le semi-groupe de la chaleur Inégalités de dispersion via le semi-groupe de la chaleur Valentin Samoyeau, Advisor: Frédéric Bernicot. Laboratoire de Mathématiques Jean Leray, Université de Nantes January 28, 2016 1 Introduction Schrödinger

More information

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 9, Number 2, pp. 227 237 (2014) http://campus.mst.edu/adsa Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

More information

Magnetic wells in dimension three

Magnetic wells in dimension three Magnetic wells in dimension three Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015 Yuri A. Kordyukov (Ufa) Magnetic

More information

Spectral Geometry of Riemann Surfaces

Spectral Geometry of Riemann Surfaces Spectral Geometry of Riemann Surfaces These are rough notes on Spectral Geometry and their application to hyperbolic riemann surfaces. They are based on Buser s text Geometry and Spectra of Compact Riemann

More information

np n p n, where P (E) denotes the

np n p n, where P (E) denotes the Mathematical Research Letters 1, 263 268 (1994) AN ISOPERIMETRIC INEQUALITY AND THE GEOMETRIC SOBOLEV EMBEDDING FOR VECTOR FIELDS Luca Capogna, Donatella Danielli, and Nicola Garofalo 1. Introduction The

More information

Carleman estimates for the Euler Bernoulli plate operator

Carleman estimates for the Euler Bernoulli plate operator Electronic Journal of Differential Equations, Vol. 000(000), No. 53, pp. 1 13. ISSN: 107-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS WITH A NON-SMOOTH MAGNETIC POTENTIAL. Michael Goldberg. (Communicated by the associate editor name)

STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS WITH A NON-SMOOTH MAGNETIC POTENTIAL. Michael Goldberg. (Communicated by the associate editor name) STICHATZ ESTIMATES FO SCHÖDINGE OPEATOS WITH A NON-SMOOTH MAGNETIC POTENTIA Michael Goldberg Department of Mathematics Johns Hopkins University 3400 N. Charles St. Baltimore, MD 228, USA Communicated by

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

MICROLOCAL ANALYSIS METHODS

MICROLOCAL ANALYSIS METHODS MICROLOCAL ANALYSIS METHODS PLAMEN STEFANOV One of the fundamental ideas of classical analysis is a thorough study of functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is analysis

More information

Focal points and sup-norms of eigenfunctions

Focal points and sup-norms of eigenfunctions Focal points and sup-norms of eigenfunctions Chris Sogge (Johns Hopkins University) Joint work with Steve Zelditch (Northwestern University)) Chris Sogge Focal points and sup-norms of eigenfunctions 1

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

LOW ENERGY BEHAVIOUR OF POWERS OF THE RESOLVENT OF LONG RANGE PERTURBATIONS OF THE LAPLACIAN

LOW ENERGY BEHAVIOUR OF POWERS OF THE RESOLVENT OF LONG RANGE PERTURBATIONS OF THE LAPLACIAN LOW ENERGY BEHAVIOUR OF POWERS OF THE RESOLVENT OF LONG RANGE PERTURBATIONS OF THE LAPLACIAN JEAN-MARC BOUCLET Abstract. For long range perturbations of the Laplacian in divergence form, we prove low frequency

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

Quantum decay rates in chaotic scattering

Quantum decay rates in chaotic scattering Quantum decay rates in chaotic scattering S. Nonnenmacher (Saclay) + M. Zworski (Berkeley) National AMS Meeting, New Orleans, January 2007 A resonant state for the partially open stadium billiard, computed

More information

Introduction to Spectral Theory

Introduction to Spectral Theory P.D. Hislop I.M. Sigal Introduction to Spectral Theory With Applications to Schrodinger Operators Springer Introduction and Overview 1 1 The Spectrum of Linear Operators and Hilbert Spaces 9 1.1 TheSpectrum

More information

A class of non-convex polytopes that admit no orthonormal basis of exponentials

A class of non-convex polytopes that admit no orthonormal basis of exponentials A class of non-convex polytopes that admit no orthonormal basis of exponentials Mihail N. Kolountzakis and Michael Papadimitrakis 1 Abstract A conjecture of Fuglede states that a bounded measurable set

More information

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION HANS CHRISTIANSON Abstract. This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation.

More information

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Laurent Saloff-Coste Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L p -norm control

More information

Large data local solutions for the derivative NLS equation

Large data local solutions for the derivative NLS equation J. Eur. Math. Soc. 1, 957 985 c European Mathematical Society 8 Ioan Bejenaru Daniel Tataru Large data local solutions for the derivative NLS equation Received May 9, 7 Abstract. We consider the derivative

More information

Microlocal Methods in X-ray Tomography

Microlocal Methods in X-ray Tomography Microlocal Methods in X-ray Tomography Plamen Stefanov Purdue University Lecture I: Euclidean X-ray tomography Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Methods

More information

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n.

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. Elliptic Regularity Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. 1 Review of Hodge Theory In this note I outline the proof of the following Fundamental

More information

INVERSE BOUNDARY VALUE PROBLEMS FOR THE MAGNETIC SCHRÖDINGER EQUATION

INVERSE BOUNDARY VALUE PROBLEMS FOR THE MAGNETIC SCHRÖDINGER EQUATION INVERSE BOUNDARY VALUE PROBLEMS FOR THE MAGNETIC SCHRÖDINGER EQUATION MIKKO SALO Abstract. We survey recent results on inverse boundary value problems for the magnetic Schrödinger equation. 1. Introduction

More information

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary New Proof of Hörmander multiplier Theorem on compact manifolds without boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D, 21218, USA xxu@math.jhu.edu Abstract On compact

More information

Analysis in weighted spaces : preliminary version

Analysis in weighted spaces : preliminary version Analysis in weighted spaces : preliminary version Frank Pacard To cite this version: Frank Pacard. Analysis in weighted spaces : preliminary version. 3rd cycle. Téhéran (Iran, 2006, pp.75.

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

Fractal Weyl Laws and Wave Decay for General Trapping

Fractal Weyl Laws and Wave Decay for General Trapping Fractal Weyl Laws and Wave Decay for General Trapping Jeffrey Galkowski McGill University July 26, 2017 Joint w/ Semyon Dyatlov The Plan The setting and a brief review of scattering resonances Heuristic

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

The Schrödinger propagator for scattering metrics

The Schrödinger propagator for scattering metrics The Schrödinger propagator for scattering metrics Andrew Hassell (Australian National University) joint work with Jared Wunsch (Northwestern) MSRI, May 5-9, 2003 http://arxiv.org/math.ap/0301341 1 Schrödinger

More information

A Limiting Absorption Principle for the three-dimensional Schrödinger equation with L p potentials

A Limiting Absorption Principle for the three-dimensional Schrödinger equation with L p potentials A Limiting Absorption Principle for the three-dimensional Schrödinger equation with L p potentials M. Goldberg, W. Schlag 1 Introduction Agmon s fundamental work [Agm] establishes the bound, known as the

More information

A review: The Laplacian and the d Alembertian. j=1

A review: The Laplacian and the d Alembertian. j=1 Chapter One A review: The Laplacian and the d Alembertian 1.1 THE LAPLACIAN One of the main goals of this course is to understand well the solution of wave equation both in Euclidean space and on manifolds

More information

Sharp Gårding inequality on compact Lie groups.

Sharp Gårding inequality on compact Lie groups. 15-19.10.2012, ESI, Wien, Phase space methods for pseudo-differential operators Ville Turunen, Aalto University, Finland (ville.turunen@aalto.fi) M. Ruzhansky, V. Turunen: Sharp Gårding inequality on compact

More information

NOTES FOR CARDIFF LECTURES ON MICROLOCAL ANALYSIS

NOTES FOR CARDIFF LECTURES ON MICROLOCAL ANALYSIS NOTES FOR CARDIFF LECTURES ON MICROLOCAL ANALYSIS JARED WUNSCH Note that these lectures overlap with Alex s to a degree, to ensure a smooth handoff between lecturers! Our notation is mostly, but not completely,

More information

Research Statement. Yakun Xi

Research Statement. Yakun Xi Research Statement Yakun Xi 1 Introduction My research interests lie in harmonic and geometric analysis, and in particular, the Kakeya- Nikodym family of problems and eigenfunction estimates on compact

More information

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Index theory on singular manifolds I p. 1/4 Index theory on singular manifolds I Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Paul Loya Index theory on singular manifolds I

More information

DETERMINING A MAGNETIC SCHRÖDINGER OPERATOR FROM PARTIAL CAUCHY DATA

DETERMINING A MAGNETIC SCHRÖDINGER OPERATOR FROM PARTIAL CAUCHY DATA DETERMINING A MAGNETIC SCHRÖDINGER OPERATOR FROM PARTIAL CAUCHY DATA DAVID DOS SANTOS FERREIRA, CARLOS E. KENIG, JOHANNES SJÖSTRAND, GUNTHER UHLMANN Abstract. In this paper we show, in dimension n 3, that

More information

RESOLVENT ESTIMATES FOR ELLIPTIC OPERATORS ON COMPACT MANIFOLDS

RESOLVENT ESTIMATES FOR ELLIPTIC OPERATORS ON COMPACT MANIFOLDS ON p RESOVENT ESTIMATES FOR EIPTIC OPERATORS ON COMPACT MANIFODS KATSIARYNA KRUPCHYK AND GUNTHER UHMANN Abstract. We prove uniform p estimates for resolvents of higher order elliptic self-adjoint differential

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Strauss conjecture for nontrapping obstacles

Strauss conjecture for nontrapping obstacles Chengbo Wang Joint work with: Hart Smith, Christopher Sogge Department of Mathematics Johns Hopkins University Baltimore, Maryland 21218 wangcbo@jhu.edu November 3, 2010 1 Problem and Background Problem

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 21 (Day 1) 1. (CA) Evaluate sin 2 x x 2 dx Solution. Let C be the curve on the complex plane from to +, which is along

More information

2 A Model, Harmonic Map, Problem

2 A Model, Harmonic Map, Problem ELLIPTIC SYSTEMS JOHN E. HUTCHINSON Department of Mathematics School of Mathematical Sciences, A.N.U. 1 Introduction Elliptic equations model the behaviour of scalar quantities u, such as temperature or

More information

Average theorem, Restriction theorem and Strichartz estimates

Average theorem, Restriction theorem and Strichartz estimates Average theorem, Restriction theorem and trichartz estimates 2 August 27 Abstract We provide the details of the proof of the average theorem and the restriction theorem. Emphasis has been placed on the

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature

Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature Melissa Tacy Department of Mathematics Australian National University melissa.tacy@anu.edu.au July 2010 Joint with Andrew Hassell

More information

TD 1: Hilbert Spaces and Applications

TD 1: Hilbert Spaces and Applications Université Paris-Dauphine Functional Analysis and PDEs Master MMD-MA 2017/2018 Generalities TD 1: Hilbert Spaces and Applications Exercise 1 (Generalized Parallelogram law). Let (H,, ) be a Hilbert space.

More information

Variations on Quantum Ergodic Theorems. Michael Taylor

Variations on Quantum Ergodic Theorems. Michael Taylor Notes available on my website, under Downloadable Lecture Notes 8. Seminar talks and AMS talks See also 4. Spectral theory 7. Quantum mechanics connections Basic quantization: a function on phase space

More information

Stochastic completeness of Markov processes

Stochastic completeness of Markov processes Stochastic completeness of arkov processes Alexander Grigor yan Lecture course at CUHK, February-arch 211 Contents Introduction 1 1 Brownian motion on Riemannian manifolds 3 1.1 Laplace-Beltrami operator........................

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

Introduction to the Baum-Connes conjecture

Introduction to the Baum-Connes conjecture Introduction to the Baum-Connes conjecture Nigel Higson, John Roe PSU NCGOA07 Nigel Higson, John Roe (PSU) Introduction to the Baum-Connes conjecture NCGOA07 1 / 15 History of the BC conjecture Lecture

More information

Control from an Interior Hypersurface

Control from an Interior Hypersurface Control from an Interior Hypersurface Matthieu Léautaud École Polytechnique Joint with Jeffrey Galkowski Murramarang, microlocal analysis on the beach March, 23. 2018 Outline General questions Eigenfunctions

More information

Semigroup Growth Bounds

Semigroup Growth Bounds Semigroup Growth Bounds First Meeting on Asymptotics of Operator Semigroups E.B. Davies King s College London Oxford, September 2009 E.B. Davies (KCL) Semigroup Growth Bounds Oxford, September 2009 1 /

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Inverse problems for hyperbolic PDEs

Inverse problems for hyperbolic PDEs Inverse problems for hyperbolic PDEs Lauri Oksanen University College London Example: inverse problem for the wave equation Let c be a smooth function on Ω R n and consider the wave equation t 2 u c 2

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Reproducing formulas associated with symbols

Reproducing formulas associated with symbols Reproducing formulas associated with symbols Filippo De Mari Ernesto De Vito Università di Genova, Italy Modern Methods of Time-Frequency Analysis II Workshop on Applied Coorbit space theory September

More information

Conservation law equations : problem set

Conservation law equations : problem set Conservation law equations : problem set Luis Silvestre For Isaac Neal and Elia Portnoy in the 2018 summer bootcamp 1 Method of characteristics For the problems in this section, assume that the solutions

More information

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law:

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law: Introduction Functions of bounded variation, usually denoted by BV, have had and have an important role in several problems of calculus of variations. The main features that make BV functions suitable

More information

YAIZA CANZANI AND BORIS HANIN

YAIZA CANZANI AND BORIS HANIN C SCALING ASYMPTOTICS FOR THE SPECTRAL PROJECTOR OF THE LAPLACIAN YAIZA CANZANI AND BORIS HANIN Abstract. This article concerns new off-diagonal estimates on the remainder and its derivatives in the pointwise

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

Connected sum constructions in geometry and nonlinear analysis. Frank Pacard

Connected sum constructions in geometry and nonlinear analysis. Frank Pacard Connected sum constructions in geometry and nonlinear analysis Frank Pacard January 19, 2008 2 Contents 1 Laplace-Beltrami operator 5 1.1 Definition................................ 5 1.2 Spectrum of the

More information

THE VORTEX EQUATION ON AFFINE MANIFOLDS. 1. Introduction

THE VORTEX EQUATION ON AFFINE MANIFOLDS. 1. Introduction THE VORTEX EQUATION ON AFFINE MANIFOLDS INDRANIL BISWAS, JOHN LOFTIN, AND MATTHIAS STEMMLER Abstract. Let M be a compact connected special affine manifold equipped with an affine Gauduchon metric. We show

More information

On a class of pseudodifferential operators with mixed homogeneities

On a class of pseudodifferential operators with mixed homogeneities On a class of pseudodifferential operators with mixed homogeneities Po-Lam Yung University of Oxford July 25, 2014 Introduction Joint work with E. Stein (and an outgrowth of work of Nagel-Ricci-Stein-Wainger,

More information

On the observability of time-discrete conservative linear systems

On the observability of time-discrete conservative linear systems On the observability of time-discrete conservative linear systems Sylvain Ervedoza, Chuang Zheng and Enrique Zuazua Abstract. We consider various time discretization schemes of abstract conservative evolution

More information

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS DAN-ANDREI GEBA Abstract. We obtain a sharp local well-posedness result for an equation of wave maps type with variable coefficients.

More information

Complex geometrical optics solutions for Lipschitz conductivities

Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 19 (2003), 57 72 Complex geometrical optics solutions for Lipschitz conductivities Lassi Päivärinta, Alexander Panchenko and Gunther Uhlmann Abstract We prove the existence of

More information

Strichartz estimates for the Schrödinger equation on polygonal domains

Strichartz estimates for the Schrödinger equation on polygonal domains estimates for the Schrödinger equation on Joint work with Matt Blair (UNM), G. Austin Ford (Northwestern U) and Sebastian Herr (U Bonn and U Düsseldorf)... With a discussion of previous work with Andrew

More information

AALBORG UNIVERSITY. Compactly supported curvelet type systems. Kenneth N. Rasmussen and Morten Nielsen. R November 2010

AALBORG UNIVERSITY. Compactly supported curvelet type systems. Kenneth N. Rasmussen and Morten Nielsen. R November 2010 AALBORG UNIVERSITY Compactly supported curvelet type systems by Kenneth N Rasmussen and Morten Nielsen R-2010-16 November 2010 Department of Mathematical Sciences Aalborg University Fredrik Bajers Vej

More information

Recovery of anisotropic metrics from travel times

Recovery of anisotropic metrics from travel times Purdue University The Lens Rigidity and the Boundary Rigidity Problems Let M be a bounded domain with boundary. Let g be a Riemannian metric on M. Define the scattering relation σ and the length (travel

More information