I. Elastic collisions of 2 particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions

Size: px
Start display at page:

Download "I. Elastic collisions of 2 particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions"

Transcription

1 I. Elastic collisions of particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions 49

2 I. Elastic collisions of particles "Elastic": KE is conserved (as well as E tot and momentum p). i.e., the colliding objects are not deformed or reconfigured in a way that would change the potential energy. Issue: Many physical laws are expressed most simply in the CM frame. But measurements are made in the LAB frame. Goal: Relate lab system measurements (especially angles) to the CM reference frame. 50

3 Consider a system in the lab frame. Define the notation here: Before collision After collision moving m stationary u 1 u = 0 In the LAB frame: ψ ζ v v 1 u 1 = initial velocity of v 1 = final velocity of u = initial velocity of m v = final velocity of m (u = 0) v 0 ψ = deflection of ζ = deflection of m V = velocity of the CM in the LAB frame. It is constant, same before and after the collision. V 51

4 Same system but in the CM frame. Symbols for velocities have primes. Before collision After collision v 1 ' m θ u 1 ' u ' v ' Now, compared to V, m is moving leftward. By definition, V = 0 in the CM frame. So also, p tot = MV = 0. To maintain p tot = 0, the particles exit back-to-back. u 1 ' = initial velocity of v 1 ' = final velocity of u ' = initial velocity of m v ' = final velocity of m θ = deflection angle of ( π θ ) = deflection angle of m 5

5 II. Relate ψ to θ Recall the definition of center of mass: R 1 M m ir i i For particles, R 1 M m 1r 1 r ( ) Take derivatives of both sides wrt time: R 1 ( M m 1r 1 r ) V = 1 ( M u 1 u ) but u = 0 So V = u 1 'Eq 0' 53

6 Relationships among the outgoing vectors: V v 1 ' v 1 θ ψ Notice: v 1 sinψ = v 1 'sinθ 'Eq 1' and: v 1 cosψ = v 1 'cosθ + V 'Eq ' Divide Eq 1 Eq : v 1 sinψ v 1 cosψ = tanψ = v 1 'sinθ v 1 'cosθ + V sinθ cosθ + V v 1 ' Now plug in V = u 1 54

7 tanψ = sinθ cosθ + u 1 v 1 ' 'Eq 3' Consider an elastic scatter: kinetic energy is conserved. In the CM: m u 1( ' 1 ) = ( v ' 1 ) So u 1 ' = v 1 ' from the definition of elastic 'Eq 4' But also u 1 ' = u 1 V = u 1 u 1 = u 1( ) u 1 from the definition CM u 1 ' = u 1 m 'Eq 5' Now compare Eq 4 to Eq 5. LHS's are equal, so RHS's must be equal: 55

8 v 1 ' = u 1m Plug this into Eq. 3 to get: tanψ = sinθ m u 1 1 m cosθ + 1 u 1 m tanψ = sinθ cosθ + m for elastic scatters 56

9 Notice special cases: 1) when << m, m 0, then tanψ sinθ cosθ = tanθ i.e., ψ θ for << m. ) when = m, tanψ = sinθ cosθ +1 = tanθ i.e., ψ = θ for = m 57

10 III. Relate ψ and ζ We apply an analysis similar to the one above. Notice: v V ζ θ v ' v 1 ' θ v sinζ = v 'sinθ 'Eq 6' and v cosζ = V v 'cosθ 'Eq 7' Divide Eq 6 Eq 7 : v sinζ v cosζ = v 'sinθ V v 'cosθ 58

11 sinθ tanζ = V v ' cosθ Find V v ' : ( u ' ) because KE is conserved, m u ' = v ' But u ' = V : So u ' = V V = v ' i.e, V v ' = 1. = m v ( ' ) if m is stationary in the LAB, it must move backward with magnitude V in the CM frame. Thus tanζ = sinθ 1 cosθ = cotθ = tan π θ 59

12 i.e., ζ = π θ ζ = π θ. Special case: when = m, ψ = θ [slide 56] θ = ψ Then ζ = π ψ ζ + ψ = π ζ +ψ = π 60

13 IV. Kinematics of elastic collisions Kinematics: relationships among energies of particles before and after To begin, combine 3 facts we derived previously: 1) elastic: u 1 ' = v 1 ' and u ' = v ' ) from the def. of CM (this was Eq 5): u 1 ' = u 1m 3) also from elastic, we just showed that v ' = V [slide 58] but V = u 1 [this was Eq 0] so v ' = u 1 We will use all of these. so also u ' = u 1 call this 'Eq B' 61

14 LAB frame CM frame Define: T 0 = total KE T 0 ' = total KE T 1 = KE of T 1 ' = KE of T = KE of m T ' = KE of m Goals: Express T o ' as a function of T 0 Express T 1 as a function of T 0 Express T as a function of T 0 Express T 1 ' as a function of T 0 Express T ' as a function of T 0 Begin: 6

15 T 0 = u 1 T 0 ' = 1 ( m u 1 1 ' u ' ) T 0 ' = 1 = 1 u 1 m u 1 m Subst. Eq 0 and Eq B: u 1 ( ) + m m 1 ( ) ( ) ( ) = 1 u 1 m T 0 m T 0 ' = T 0 63

16 T 1 ' = 1 v 1 ' = 1 m m 1u 1 m T 1 ' = T 0 Similarly, T ' = 1 m v ' Substitute v 1 ' = u 1 ' = u 1m = 1 m 1u 1 Substitute v ' = u ' = u 1 m ( ) T 1 ' = T 0 m ( ) 64

17 To find T 1 as a function of T 0, recall: T 1 = 1 v 1 1 T 0 u v 1 1 u 1 Recall from slide 53: v 1 ' θ ψ V ψ v 1 Notice v 1 ' = v 1 + V v 1 V cosψ So v 1 = v 1 V + v 1 V cosψ Then T 1 = v 1 T 0 u 1 V u 1 + v 1V cosψ u 1 Ter Term Term 3 65

18 Ter: Recall v 1 ' = u 1m So v 1 u = m 1 Term : Recall V = v ' = u ' = u 1 So V u = 1 66

19 Term 3: Recall v 1 'sinθ = v 1 sinψ So v 1 = v 1 'sinθ sinψ so v 1 V cosψ u 1 = V cosψ u 1 v 1 'sinθ sinψ = v 1 ' u 1 V u 1 sinθ tanψ Recall tanψ == sinθ So sinθ tanψ = cosθ + m cosθ + m [slide 55] = m cosθ + m Plug Terms 1,, and 3 into T 1 T 0 : 67

20 T 1 T 0 = = = = = = m 1 ( ) m 1 ( ) m 1 m 1 m ( ) 1 1 ( ) 1 + m ( ) cosθ + m m 1 + m cosθ + m 1 m m 1 + m cosθ + + m m + m m cosθ 1 0 ( ) ( + m ) m 1 cosθ ( m ( ) 1 ) m 1 cosθ ( ) 68

21 ( ) T 1 = 1 m 1 cosθ T 0 ( ) This is not ideal, because θ is measured in the CM frame T 1 T 0 = cosψ ± ( ) while T 1 and T 0 are defined in the LAB frame. To convert the angle to the LAB frame, use tanψ == m sinθ cosθ + m sin ψ [slide 55] to get: Similarly, T = 4m T 0 ( ) cos ζ 69

22 Special case of = m : T 1 T 0 cos ψ and T T 0 sin ψ Please read Thornton chapter 8, sections 8.4, 8.5, and 8.6 only. 70

23 I. Inelastic collision terminology II. Scattering angle 71

24 I. Inelastic collision terminology Inelastic: KE is not conserved. For a general collision, E final = E initial : v 1 + m v = m u m u + Q Subscripts "1" and "" refer to the participants in the collision. The "Q value" PE final PE initial Q = 0 elastic Q > 0 'exoergic' Q < 0 'endoergic' 7

25 Consider a head-on collision (all motion is in 1-dimension) Define ε v v 1 u u 1 The coefficient of restitution. These are magnitudes, not vectors. ε = 1 elastic [u 1 = v 1 and u = v ] ε 0 totally inelastic [v = v 1 ] If the collision is NOT head-on, then ε applies only to the components in the 'head-on' direction. 73

26 II. Scattering angle The path taken by a particle scattering from a force center is the same as a hyperbolic orbit, so equations that we use for central-force orbital motion can be adapted for scattering problems. Thornton has a useful equation (8.17) that is not in Taylor. We will take a moment here to derive this equation of motion for the angle θ swept by an orbiting particle, as a function of its distance r from the force center. 74

27 The energy of an orbiting object E = µ r + +U 'Eq 1' (Taylor Eq. 8.35) µr Here = µr θ is angular momentum 'Eq ' (Taylor Eq. 8.3, Thornton Eq. 8.10) µ = reduced mass = m is called "centrifugal potential energy" (Taylor Eq. 8.8, Thornton Eq. 8.3) µr µ r is the translational KE U is the physical potential. Solve Eq 1 for r: r = ± µ E U µr 1 'Eq 3' Notice we can also invert Eq to get: θ = 'Eq 4' µr 75

28 Notice dθ = dθ dt dt dr dr = θ 1 r dr dθ = µr 1 ± 1 dr E U µ µr r θ = ± 1 dr 'Eq 5' µ E U µr 76

29 Now consider a particle of mass µ approaching a force center F (which may be another particle fixed in space). Particle "µ" has initial velocity v 0. If F is repulsive, particle "µ" will be deflected away: F v 0 µ Clarify the notation about the angles: 77

30 Compare the definitions of ellipse The set of points defined such that the sum of their distance from foci is constant: r'+ r = a r ' r hyperbola The set of points defined such that the difference of their distances from foci is constant: There are branches: r '- r = a and r'- r = -a a a r r ' Consider the physical situation in which the source of the potential is located at the focus indicated by. r = radial coordinate θ = angle subtended as particle travels. Eq 5 still holds. a 78

31 Thus for a hyperbola, as for an ellipse, we can show the relation between r and θ as: r θ r 1 The only adjustment we have to make is to note that traditionally, this angle is given a different symbol: Θ, so θ Θ. Thus for hyperbolas, Eq 5 becomes: r Θ = ± 1 dr 'Eq 6' µ E U µr 79

32 The symbol θ is instead used to indicate the angle through which the path is deflected: this would be the undeflected path θ asymptote of the deflected path so "θ" means different things for the ellipse and the hyperbola. 80

33 The problem is: angle Θ and angular momentum magnitude are not typically measured in an experiment, which makes it hard to use Eq. 6 in a scattering problem. We need to transform them into the usual observables. Impact parameter b is the distance by which the projectile would miss the force center if it did NOT deflect: Force center that is causing the deflection b Trajectory of the deflecting particle 81

34 Recall angular momentum L = r p. p = µv : reduced mass times velocity Recall that the force center defines the origin of r. Notice that if the particle DID NOT deflect, r would be to p when r = r min : at r = r min, r p = rp. On the undeflected trajectory, r min = b. Thus L = r p = bµv But also: kinetic energy T 0 ' = µv [Notice that the use of "µ" tells us that we are in the CM frame, and we use primes to indicate observables in that frame.] 8

35 So µv = T 0 ' ( ) = µ T 0 ' µ µv ( µv) = µt 0 ' µv = µt 0 ' ( ) Then = b µt 0 '. Plug this into Eq. 6: Θ = b µt 0 ' r 1 dr = µ E U b µt 0 ' µr ( b / r ) E T 0 ' U T 0 ' b r dr 83

36 Recall E is conserved. Also for elastic collisions, KE is conserved. Furthermore E = T 0 '+U 0 ' For r, U 0 ' 0 for classical fundamental forces. Then E = T 0 '. Thus set E T 0 ' Then : Θ = ( b / r ) = 1 for the asymptotic trajectory. 1 U T 0 ' b r dr 84

37 The maximum angle that a track can subtend is defined by: r b / r max ( ) Θ max = dr r min 1 U T 0 ' b r [Thornton calls this "ΔΘ"] r max = (asymptote) r min Redraw, labeling all angles: 85

38 β + γ +θ = π. By symmetry, β=γ. By parallel lines, Θ max = β. Thus Θ max +θ = π. Θ max θ β γ So θ = π Θ max Note: θ is the observable, measurable scattering angle. θ = π Θ max = π Call this 'Eq 7', but r min we need to find r min... ( b / r ) 1 U T 0 ' b r 86 dr

39 To find r min, we need to find the roots of 1 U T 0 ' b for the given U and T 0 '. r Why the roots? r = r min at the turning point ("apside") of the orbit. At the turning point, r = 0 instantaneously. Recall Eq 3 (slide 74): r = µ E U µr 1 These are different forms of the the same expression. 87

40 Procedure: Choose U and T 0 '. Set 1 U T 0 ' b r = 0. Solve for r = r min. Plug r min into the lower limit of the integral in Eq 7 and compute the integral (may be challenging). The answer has the form θ ( b,u,t 0 '). Invert the answer to get b( θ,u,t 0 '). Why do we want to know b? To predict the cross section, which depends functionally upon U. Then we measure the cross section and adjust the U function in the prediction, until the prediction matches the data. From this we infer the nature of the fundamental potential that produced the deflection. The next section explains cross section. 88

41 I. Cross sections II. Cross section formulas in the center of mass and in the lab frame III. Rutherford scattering Please read Thornton Chapter

42 I. Cross sections Consider a stream of particles directed at a target. Each particle's interaction with the target is one instance of a series of identical experiments. Different particles approach the target with slightly different and unknowable impact parameters b. We expect that deflection angle θ is related to: 1) impact parameter ) kinetic energy T 0 ', which can be controlled 3) details about the form of the potential U that is causing the deflection. We measure θ to infer U. To infer U, we have to eliminate b in favor of something that is actually measurable: cross section. 90

43 Consider N incident particles striking a target per unit area. Call N /area = intensity I. Suppose dn of them are scattered at angles ( θ,φ). Since those angles cannot be known with perfect precision, we must actually say that they are scattered into the ranges: ( θ to θ+dθ ) and ( φ to φ+dφ) The combination of these ranges is called solid angle dω' = sinθdθdφ. Define "cross section": dσ dn I dn is unitless. So the units of dσ are area. Normalize by solid angle: I has units of #/area "Differential cross section": σ ( θ ) dσ dω' = 1 I dn dω' 91

44 Notice that the particles that are scattered in range dθ were incident in range db: So dn = ( intensity of total area) ( fraction of total area contributing to the scatter ) = # area = I πbdb ( area covered by ring of width db) Notice also that scattering in angle φ is uniform, so dφ = π. Then dω' = dφ sinθdθ = π sinθdθ. Assemble σ ( θ ) 1 I dn dω' = 1 I πbdb I π sinθdθ = bdb sinθdθ 9

45 By convention, cross section is positive. But db dθ by convention, take the absolute value: σ ( θ ) b sinθ db dθ. is negative. So Now recall that we can predict θ from θ ( b) = ( b / r ) E T 0 ' U dr, for various possible potentials U. T 0 ' b r Invert it to get b( θ ). Take derivatives to get b sinθ Then also measure σ ( θ ) = 1 I db dθ. dn dω by counting deflected particles. Match the measurement to the predictions to infer the most correct form of 93 U.

Elastic Collisions. Chapter Center of Mass Frame

Elastic Collisions. Chapter Center of Mass Frame Chapter 11 Elastic Collisions 11.1 Center of Mass Frame A collision or scattering event is said to be elastic if it results in no change in the internal state of any of the particles involved. Thus, no

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1)

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1) PHY 546: Theoretical Dynamics, Fall 05 Assignment # 7, Solutions Graded Problems Problem ψ ψ ψ Θ b (.a) The scattering angle satisfies the relation Θ π ψ, () where ψ is the angle between the direction

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

16. Elastic Scattering Michael Fowler

16. Elastic Scattering Michael Fowler 6 Elastic Scattering Michael Fowler Billiard Balls Elastic means no internal energy modes of the scatterer or of the scatteree are excited so total kinetic energy is conserved As a simple first exercise,

More information

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology PHY49: Nuclear & Particle Physics Lecture 3 Homework 1 Nuclear Phenomenology Measuring cross sections in thin targets beam particles/s n beam m T = ρts mass of target n moles = m T A n nuclei = n moles

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Thoughts concerning on-orbit injection of calibration electrons through thin-target elastic scattering inside the Mu2e solenoid

Thoughts concerning on-orbit injection of calibration electrons through thin-target elastic scattering inside the Mu2e solenoid Thoughts concerning on-orbit injection of calibration electrons through thin-target elastic tering inside the Mue solenoid George Gollin a Department of Physics University of Illinois at Urbana-Champaign

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 5 Collision Theory 5 Introduction 5 Reference Frames and Relative Velocities 5 Relative Velocities 3 5 Center-of-mass Reference Frame 4 53 Kinetic Energy in the Center-of-Mass Reference Frame 5

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

Physics Dec The Maxwell Velocity Distribution

Physics Dec The Maxwell Velocity Distribution Physics 301 7-Dec-2005 29-1 The Maxwell Velocity Distribution The beginning of chapter 14 covers some things we ve already discussed. Way back in lecture 6, we calculated the pressure for an ideal gas

More information

Question. Why are oscillations not observed experimentally? ( is the same as but with spin-1 instead of spin-0. )

Question. Why are oscillations not observed experimentally? ( is the same as but with spin-1 instead of spin-0. ) Phy489 Lecture 11 Question K *0 K *0 Why are oscillations not observed experimentally? K *0 K 0 ( is the same as but with spin-1 instead of spin-0. ) K 0 s d spin 0 M(K 0 ) 498 MeV /c 2 K *0 s d spin 1

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

Atomic Collisions and Backscattering Spectrometry

Atomic Collisions and Backscattering Spectrometry 2 Atomic Collisions and Backscattering Spectrometry 2.1 Introduction The model of the atom is that of a cloud of electrons surrounding a positively charged central core the nucleus that contains Z protons

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Ultrarelativistic Heavy-Ions

Ultrarelativistic Heavy-Ions Kinematics November 11, 2010 / GSI Outline Introduction 1 Introduction 2 3 3 Notation Introduction A parallel to z-axis (beam): A A = A A transverse to z-axis: A = A A A = A Transverse mass: m = m 2 +

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Use conserved quantities to reduce number of variables and the equation of motion (EOM)

Use conserved quantities to reduce number of variables and the equation of motion (EOM) Physics 106a, Caltech 5 October, 018 Lecture 8: Central Forces Bound States Today we discuss the Kepler problem of the orbital motion of planets and other objects in the gravitational field of the sun.

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

Quantum Physics III (8.06) Spring 2005 Assignment 9

Quantum Physics III (8.06) Spring 2005 Assignment 9 Quantum Physics III (8.06) Spring 2005 Assignment 9 April 21, 2005 Due FRIDAY April 29, 2005 Readings Your reading assignment on scattering, which is the subject of this Problem Set and much of Problem

More information

Quantum Physics III (8.06) Spring 2008 Assignment 10

Quantum Physics III (8.06) Spring 2008 Assignment 10 May 5, 2008 Quantum Physics III (8.06) Spring 2008 Assignment 10 You do not need to hand this pset in. The solutions will be provided after Friday May 9th. Your FINAL EXAM is MONDAY MAY 19, 1:30PM-4:30PM,

More information

Chapter 8. Orbits. 8.1 Conics

Chapter 8. Orbits. 8.1 Conics Chapter 8 Orbits 8.1 Conics Conic sections first studied in the abstract by the Greeks are the curves formed by the intersection of a plane with a cone. Ignoring degenerate cases (such as a point, or pairs

More information

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one. Scattering Classical model As a model for the classical approach to collision, consider the case of a billiard ball colliding with a stationary one. The scattering direction quite clearly depends rather

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.6 Physical Chemistry II Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.6 Spring 008 Lecture #30

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 15 Reference Frames Relative and Velocities 151 Center of Mass Reference Frame 3 15 Relative Velocities 4 153 Characterizing Collisions

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Get Discount Coupons for your Coaching institute and FREE Study Material at   Force System Get Discount Coupons for your Coaching institute and FEE Study Material at www.pickmycoaching.com Mechanics Force System When a member of forces simultaneously acting on the body, it is known as force

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

r CM = ir im i i m i m i v i (2) P = i

r CM = ir im i i m i m i v i (2) P = i Physics 121 Test 3 study guide Thisisintendedtobeastudyguideforyourthirdtest, whichcoverschapters 9, 10, 12, and 13. Note that chapter 10 was also covered in test 2 without section 10.7 (elastic collisions),

More information

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 29 Physics 7B Lecture 7 17-Feb-2010 Slide 2 of 29 The Definition of Impulse Recall that

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Momentum and Collisions Name: Lab Partner: Section: 7.1 Purpose In this experiment, the conservation of linear momentum will be investigated. The application of momentum conservation to different

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

Conserv. of Momentum (Applications)

Conserv. of Momentum (Applications) Conserv. of Momentum (Applications) Announcements: Next midterm a week from Thursday (3/15). Chapters 6 9 will be covered LA information session at 6pm today, UMC 235. Will do some longer examples today.

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Lecture 2c: Satellite Orbits

Lecture 2c: Satellite Orbits Lecture 2c: Satellite Orbits Outline 1. Newton s Laws of Mo3on 2. Newton s Law of Universal Gravita3on 3. Kepler s Laws 4. Pu>ng Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

1 Molecular collisions

1 Molecular collisions Advanced Kinetics Solution 9 April 29, 216 1 Molecular collisions 1.1 The bimolecular rate constant for the reaction is defined as: dc A dt = k(t )C A C B. (1) The attenuation of the intensity of the beam

More information

10. Scattering from Central Force Potential

10. Scattering from Central Force Potential University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 215 1. Scattering from Central Force Potential Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Problem 1 Problem 2 Problem 3 Problem 4 Total

Problem 1 Problem 2 Problem 3 Problem 4 Total Name Section THE PENNSYLVANIA STATE UNIVERSITY Department of Engineering Science and Mechanics Engineering Mechanics 12 Final Exam May 5, 2003 8:00 9:50 am (110 minutes) Problem 1 Problem 2 Problem 3 Problem

More information

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics PHY-494: Applied Relativity ecture 5 Relativistic Particle Kinematics Richard J. Jacob February, 003. Relativistic Two-body Decay.. π 0 Decay ets return to the decay of an object into two daughter objects.

More information

Module 18: Collision Theory

Module 18: Collision Theory Module 8: Collision Theory 8 Introduction In the previous module we considered examples in which two objects collide and stick together, and either there were no external forces acting in some direction

More information

Exercise 6: The conservation of energy and momentum

Exercise 6: The conservation of energy and momentum Physics 221 Name: Exercise 6: The conservation of energy and momentum Part 1: The projectile launcher s spring constant Objective: Through the use of the principle of conservation of energy (first law

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Collisions. Of classical objects like collisions of motor vehicles. Of subatomic particles collisions allow study force law.

Collisions. Of classical objects like collisions of motor vehicles. Of subatomic particles collisions allow study force law. Collision Theory Collisions Any interaction between (usually two) objects which occurs for short time intervals Δt when forces of interaction dominate over external forces. Of classical objects like collisions

More information

Chapter 3. Coulomb collisions

Chapter 3. Coulomb collisions Chapter 3 Coulomb collisions Coulomb collisions are long-range scattering events between charged particles due to the mutual exchange of the Coulomb force. Where do they occur, and why they are of interest?

More information

PHYS 3313 Section 001 Lecture #13

PHYS 3313 Section 001 Lecture #13 PHYS 3313 Section 001 Lecture #13 Wednesday, March 1, 2017 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic

More information

Physics 101 Final Exam Problem Guide

Physics 101 Final Exam Problem Guide Physics 101 Final Exam Problem Guide Liam Brown, Physics 101 Tutor C.Liam.Brown@gmail.com General Advice Focus on one step at a time don t try to imagine the whole solution at once. Draw a lot of diagrams:

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

Lecture 15 - Orbit Problems

Lecture 15 - Orbit Problems Lecture 15 - Orbit Problems A Puzzle... The ellipse shown below has one focus at the origin and its major axis lies along the x-axis. The ellipse has a semimajor axis of length a and a semi-minor axis

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum Chapter 6 Work & Energy

More information

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 5 Scattering theory, Born Approximation SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Scattering amplitude We are going to show here that we can obtain the differential cross

More information

Some history. F p. 1/??

Some history. F p. 1/?? Some history F 12 10 18 p. 1/?? F 12 10 18 p. 1/?? Some history 1600: Galileo Galilei 1564 1642 cf. section 7.0 Johannes Kepler 1571 1630 cf. section 3.7 1700: Isaac Newton 1643 1727 cf. section 1.1 1750

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (C/D) Professor Cebra (Guest Lecturer) Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 36 Slides 3-19 were discussed in the 7:30 Lecture Slides 6-27 were discussed

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Physics Test VI Chapter 7 Impulse and Momentum

Physics Test VI Chapter 7 Impulse and Momentum Physics Test VI Chapter 7 Impulse and Momentum Name: Date: Period: Honor Pledge On my honor as a student I have neither given nor received aid on this test Sign Below HW Grade: Test Grade / Mr. Stark Loudoun

More information

PHYS 3313 Section 001 Lecture #12

PHYS 3313 Section 001 Lecture #12 PHYS 3313 Section 001 Lecture #12 Monday, Feb. 24, 2014 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model of the Hydrogen Atom 1 Quiz 2 results Class

More information

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations Central force motion/kepler problem This short note summarizes our discussion in the lectures of various aspects of the motion under central force, in particular, the Kepler problem of inverse square-law

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Review of Forces and Conservation of Momentum

Review of Forces and Conservation of Momentum Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 6 Review of Forces and Conservation of Momentum Slide 1 of 22 Vector Addition and Subtraction Vectors are added head to tail Note: a+b = b+a Vectors

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions

Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions 260 Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions 1. Rutherford Scattering We reexamine Rutherford scattering, (Reference 9.1) with in the context of neutral solid mass

More information

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form:

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form: Physics 3550, Fall 2011 Two Body, Central-Force Problem Relevant Sections in Text: 8.1 8.7 Two Body, Central-Force Problem Introduction. I have already mentioned the two body central force problem several

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

Collective model. Large quadrupole moments nucleus as a collective

Collective model. Large quadrupole moments nucleus as a collective Collective model Large quadrupole moments nucleus as a collective body (Liquid drop model). Interactions between outer nucleons and closed shells cause permanent deformation. Single-particle state calculated

More information

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009 UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 15 / LeClair Spring 009 Exam II: Solutions 1. A block of mass m is released from rest at a height d=40 cm and slides down a frictionless ramp

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II August 23, 208 9:00 a.m. :00 p.m. Do any four problems. Each problem is worth 25 points.

More information

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 PHY 7 Classical Mechanics and Mathematical Methods 0-0:50 AM MWF Olin 03 Plan for Lecture :. Brief comment on quiz. Particle interactions 3. Notion of center of mass reference fame 4. Introduction to scattering

More information

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9 Test 3 solution Problem 1: Short Answer Questions / Multiple Choice a. > 1 b. > 4 c. > 9 d. > 8 e. > 9 Problem : Estimation Problem (a GOAL Approach student solution) While this is a good GOAL approach

More information

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2 Physics 141 Rotational Motion 2 Page 1 Rotational Motion 2 Right handers, go over there, left handers over here. The rest of you, come with me.! Yogi Berra Torque Motion of a rigid body, like motion of

More information

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems.

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. Announcements 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. 2. Some PRS transmitters are missing. Please, bring them back! 1 Kinematics Displacement

More information

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson.

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson. Exam Question 5: Work, Energy, Impacts and June 18, 016 In this section we will continue our foray into forces acting on objects and objects acting on each other. We will first discuss the notion of energy,

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

Monte Carlo radiation transport codes

Monte Carlo radiation transport codes Monte Carlo radiation transport codes How do they work? Michel Maire (Lapp/Annecy) 23/05/2007 introduction to Monte Carlo radiation transport codes 1 Decay in flight (1) An unstable particle have a time

More information

A. Correct! These are the corresponding rectangular coordinates.

A. Correct! These are the corresponding rectangular coordinates. Precalculus - Problem Drill 20: Polar Coordinates No. 1 of 10 1. Find the rectangular coordinates given the point (0, π) in polar (A) (0, 0) (B) (2, 0) (C) (0, 2) (D) (2, 2) (E) (0, -2) A. Correct! These

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

February 18, In the parallel RLC circuit shown, R = Ω, L = mh and C = µf. The source has V 0. = 20.0 V and f = Hz.

February 18, In the parallel RLC circuit shown, R = Ω, L = mh and C = µf. The source has V 0. = 20.0 V and f = Hz. Physics Qualifying Examination Part I 7- Minute Questions February 18, 2012 1. In the parallel RLC circuit shown, R = 800.0 Ω, L = 160.0 mh and C = 0.0600 µf. The source has V 0 = 20.0 V and f = 2400.0

More information

PH1104/PH114S MECHANICS

PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

More information

Math 5 Trigonometry Final Exam Spring 2009

Math 5 Trigonometry Final Exam Spring 2009 Math 5 Trigonometry Final Exam Spring 009 NAME Show your work for credit. Write all responses on separate paper. There are 13 problems, all weighted equally. Your 3 lowest scoring answers problem will

More information