# Super-Resolution. Shai Avidan Tel-Aviv University

Save this PDF as:
Size: px
Start display at page:

Download "Super-Resolution. Shai Avidan Tel-Aviv University"

## Transcription

1 Super-Resolution Shai Avidan Tel-Aviv University

2 Slide Credits (partial list) Ric Szelisi Steve Seitz Alyosha Efros Yacov Hel-Or Yossi Rubner Mii Elad Marc Levoy Bill Freeman Fredo Durand Sylvain Paris

3 Basic Super-Resolution Idea Given: A set of low-quality images: Required: Fusion of these images into a higher resolution image How? Comment: This is an actual superresolution reconstruction result

4 Example Surveillance 40 images ratio :4 4

5 Example Enhance Mosaics 5

6 6

7 Super-Resolution - Agenda The basic idea Image formation process Formulation and solution Special cases and related problems Limitations of Super-Resolution SR in time 7

8 Intuition For a given band-limited image, the yquist sampling theorem states that if a uniform sampling is fine enough ( D), perfect reconstruction is possible. D D 8

9 Intuition Due to our limited camera resolution, we sample using an insufficient D grid D D 9

10 Intuition However, if we tae a second picture, shifting the camera slightly to the right we obtain: D D 0

11 Intuition Similarly, by shifting down we get a third image: D D

12 Intuition And finally, by shifting down and to the right we get the fourth image: D D

13 Intuition It is trivial to see that interlacing the four images, we get that the desired resolution is obtained, and thus perfect reconstruction is guaranteed. 3

14 Rotation/Scale/Disp. What if the camera displacement is Arbitrary? What if the camera rotates? Gets closer to the object (zoom)? 4

15 Rotation/Scale/Disp. There is no sampling theorem covering this case 5

16 Agenda Modeling the Super-Resolution Problem Defining the relation between the given and the desired images The Maximum-Lielihood Solution A simple solution based on the measurements Bayesian Super-Resolution Reconstruction Taing into account behavior of images Some Results and Variations Examples, Robustifying, Handling color Super-Resolution: A Summary The bottom line

17 Chapter : Modeling the Super-Resolution Problem

18 The Model High- Resolution Image Geometric Warp F =I Blur H Decimation D V Y Low- Resolution Images Additive oise F H D Y V { } = DH F + V Y = Assumed nown

19 { } V Y = + = F H D The Model as One Equation V V V V Y Y Y Y + = + = = H F H D D H F D H F M M M

20 A Rule of Thumb Y Y Y Y H F H D D H F D H F = = = M M In the noiseless case we have Clearly, this linear system of equations should have more equations than unnowns in order to mae it possible to have a unique Least-Squares solution. Example: Assume that we have images of 00-by-00 pixels, and we would lie to produce an image of size 300- by-300. Then, we should require 9.

21 Chapter : The Maximum-Lielihood Solution

22 Super-Resolution - Model Geometric warp Blur Decimation High- Resolution Image F =I H D V Y Low- Resolution Exposures Additive oise F H D Y Y V { 0, } = D H F + V, V ~ σ n =

23 Simplified Model Geometric warp Blur Decimation High- Resolution Image F =I H D V Y Low- Resolution Exposures Additive oise F H D Y Y V { 0, } = DHF + V, V ~ σ n = 3

24 The Super-Resolution Problem Y = DHF + V { 0, } σ, V ~ n Given Y The measured images (noisy, blurry, down-sampled..) H The blur can be extracted from the camera characteristics D The decimation is dictated by the required resolution ratio F The warp can be estimated using motion estimation σ n The noise can be extracted from the camera / image Recover HR image 4

25 The Model as One Equation Y Y DH F V Y V DHF + = = = G M M M Y DHF V + V Y G r = resolution factor = 4 MM = size of the frames = = number of frames = 0 of of, V size size of [ M ] [ M r M ] [ r M ] size =[0M ] =[0M 6M] =[6M ] Linear algebra notation is intended only to develop algorithm 5

26 SR - Solutions Maximum Lielihood (ML): = argmin = = DHF Y Often ill posed problem! Maximum Aposteriori Probability (MAP) = argmin DHF Y { } +λa Smoothness constraint regularization6

27 ML Reconstruction (LS) ( ) = = ML Y DHF ε Minimize: ( ) ( ) 0 ˆ = = = T T T ML Y DHF H D F ε Thus, require: T T T T T T Y = = = ˆ D H F DHF D H F A B B A = ˆ 7

28 LS - Iterative Solution Steepest descent ˆ T T T n+ = ˆ β n F H D n = ( DHF ˆ Y ) Bac projection Simulated error All the above operations can be interpreted as operations performed on images. There is no actual need to use the Matrix-Vector notations as shown here. 8

29 LS - Iterative Solution Steepest descent ( ) T T T ˆ n+ = ˆ n β F H D DHF ˆ n Y = For =.. ˆ n Y geometry wrap convolve with H down sample - up sample convolve with H T inverse geometry wrap F H D T D T H T F -β ˆ n+ 9

30 Chapter 3: Bayesian Super-Resolution Reconstruction

31 The Model A Statistical View V V V V Y Y Y Y + = + = = H F H D D H F D H F M M M We assume that the noise vector, V, is Gaussian and white. { } { } exp Pr v V T V Const obv σ = For a nown, Y is also Gaussian with a shifted mean { } ( ) ( ) { } exp Pr v T Y Y Const Y σ H H =

32 Maximum-Lielihood Again The ML estimator is given by ˆ ML = ArgMaxProb Y { } which means: Find the image such that the measurements are the most liely to have happened. In our case this leads to what we have seen before ˆ ML { } = ArgMaxProb Y = ArgMin H Y

33 ML Often Sucs!!! For Example ˆ For the image denoising problem we get ML = ArgMin We got that the best ML estimate for a noisy image is the noisy image itself. Y ˆ=Y The ML estimator is quite useless, when we have insufficient information. A better approach is needed. The solution is the Bayesian approach.

34 Using The Posterior Instead of maximizing the Lielihood function Pr { Y } maximize the Posterior probability function Pr{ Y} This is the Maximum-Aposteriori Probability (MAP) estimator: Find the most probable, given the measurements A major conceptual change is assumed to be random

35 Why Called Bayesian? Bayes formula states that { Y} Pr = Pr { Y } Pr{ } Pr { Y} and thus MAP estimate leads to ˆ = ArgMaxPr = MAP { Y} ArgMax Pr{ Y } Pr{ } This part is already nown What shall it be?

36 Image Priors? { }? Pr = This is the probability law of images. How can we describe it in a relatively simple expression? Much of the progress made in image processing in the past 0 years (PDE s in image processing, wavelets, MRF, advanced transforms, and more) can be attributed to the answers given to this question.

37 MAP Reconstruction If we assume the Gibbs distribution with some energy function A() for the prior, we have Pr { } = Const exp{ A{ } ˆ MAP = = ArgMax Pr ArgMin { Y } Pr{ } HY { } +λa This additional term is also nown as regularization

38 MAP Choice of Regularization = ( ) Y D H F λa{ } ε + = Possible Prior functions - Examples:. A = S - simple smoothness (Wiener filtering), T T. A{ } = S W( 0) S- spatially adaptive smoothing, A { } { } = ρ{ S} 3. - M-estimator (robust functions), 4. The bilateral prior the one used in our recent wor: A P P { } ( n m = a ρ S S ) n= P m= P mn 4. Other options: Total Variation, Beltrami flow, example-based, sparse representations, h v

39 MAP Reconstruction MAP Regularization term: = ( ) DHF Y λa{ } ε + = Tihonov cost function A T { } = Γ Total variation A TV { } = Bilateral filter A B P P l+ m l m α SxS y 39 l= P m= P { } =

40 Robust Estimation + Regularization ( ) = = + = + = P P l P P m m y l x m l S S Y α λ ε DHF Minimize: ( ) [ ] ( ) + = = = + = + P P l P P m n m y l x n m y l x m l n T T T n n S S S S I Y ˆ ˆ sign ˆ sign ˆ ˆ α λ β DHF H D F 40

41 Robust Estimation + Regularization ˆ β P P l+ m ( ) + [ ] ( ) l m l m DHF ˆ Y λ I S S sign ˆ S S ˆ T T T = ˆ n F H D sign n n+ α = l= P m= P x y n x y n For =.. geometry wrap convolve with H down sample Y - sign up sample convolve with H T inverse geometry wrap ˆ n -β ˆ + n For l,m=-p..p horizontal shift l vertical shift m - sign horizontal shift -l vertical shift -m - m+ l λα From Farisu at al. IEEE trans. On Image Processing, 04 4

42 Chapter 4: Some Results and Variations

43 Example 0 Sanity Chec Synthetic case: 9 images, no blur, :3 ratio One of the lowresolution images The higher resolution original The reconstructed result

44 Example SR for Scanners 6 scanned images, ratio : Taen from one of the given images Taen from the reconstructed result

45 Example SR for IR Imaging 8 images*, ratio :4 * This data is courtesy of the US Air Force

46 40 images ratio :4 Example 3 Surveillance

47 MAP = Robust SR ( ) Y D H F λa{ } ε + = Cases of measurements outlier: Some of the images are irrelevant, Error in motion estimation, Error in the blur function, or General model mismatch. MAP = ( ) Y D H F λa{ } ε + =

48 Example 4 Robust SR 0 images, ratio :4 L norm based L norm based

49 Example 5 Robust SR 0 images, ratio :4 L norm based L norm based

50 MAP Handling Color in SR = ( ) Y D H F λa{ } ε + = Handling color: the classic approach is to convert the measurements to YCbCr, apply the SR on the Y and use trivial interpolation on the Cb and Cr. Better treatment can be obtained if the statistical dependencies between the color layers are taen into account (i.e. forming a prior for color images). In case of mosaiced measurements, demosaicing followed by SR is sub-optimal. An algorithm that directly fuse the mosaic information to the SR is better.

51 Example 6 SR for Full Color 0 images, ratio :4

52 Example 7 SR+Demoaicing 0 images, ratio :4 Mosaiced input Mosaicing and then SR Combined treatment

53 Chapter 5: Example based Super- Resolution

54 Example-based Super Resolution

55 Failure

56 Marov etwor Model

57 Single Pass

58 Super Resolution Result Original 70x70 Cubic Spline Example based, training: generic True 80x80

59 Results MRF etwor One pass Original Cubic-spline One pass

60 Failure Original Cubic-spline One pass

61 Chapter 6: Combining example based and motion based SR

62 Idea Classical Multi-Image SR Single-Image Multi-Patch SR

63 Why should it wor? Image scales All image patches High variance patches only (top 5%)

64 Putting everything together

65 Results Input. Bicubic interpolation (3). Unified single-image SR (3). Ground truth image.

### Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion

Super-Resolution Dr. Yossi Rubner yossi@rubner.co.il Many slides from Mii Elad - Technion 5/5/2007 53 images, ratio :4 Example - Video 40 images ratio :4 Example Surveillance Example Enhance Mosaics Super-Resolution

More information

### ITERATED SRINKAGE ALGORITHM FOR BASIS PURSUIT MINIMIZATION

ITERATED SRINKAGE ALGORITHM FOR BASIS PURSUIT MINIMIZATION Michael Elad The Computer Science Department The Technion Israel Institute o technology Haia 3000, Israel * SIAM Conerence on Imaging Science

More information

### Shai Avidan Tel Aviv University

Image Editing in the Gradient Domain Shai Avidan Tel Aviv Universit Slide Credits (partial list) Rick Szeliski Steve Seitz Alosha Eros Yacov Hel-Or Marc Levo Bill Freeman Fredo Durand Slvain Paris Image

More information

### Single Exposure Enhancement and Reconstruction. Some slides are from: J. Kosecka, Y. Chuang, A. Efros, C. B. Owen, W. Freeman

Single Exposure Enhancement and Reconstruction Some slides are from: J. Kosecka, Y. Chuang, A. Efros, C. B. Owen, W. Freeman 1 Reconstruction as an Inverse Problem Original image f Distortion & Sampling

More information

### Bayesian Paradigm. Maximum A Posteriori Estimation

Bayesian Paradigm Maximum A Posteriori Estimation Simple acquisition model noise + degradation Constraint minimization or Equivalent formulation Constraint minimization Lagrangian (unconstraint minimization)

More information

### Noise Removal? The Evolution Of Pr(x) Denoising By Energy Minimization. ( x) An Introduction to Sparse Representation and the K-SVD Algorithm

Sparse Representation and the K-SV Algorithm he CS epartment he echnion Israel Institute of technology Haifa 3, Israel University of Erlangen - Nürnberg April 8 Noise Removal? Our story begins with image

More information

### Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

### Computational Photography

Computational Photography Si Lu Spring 208 http://web.cecs.pdx.edu/~lusi/cs50/cs50_computati onal_photography.htm 04/0/208 Last Time o Digital Camera History of Camera Controlling Camera o Photography

More information

### MCMC Sampling for Bayesian Inference using L1-type Priors

MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

### Inverse problem and optimization

Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

### Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Sean Borman and Robert L. Stevenson Department of Electrical Engineering, University of Notre Dame Notre Dame,

More information

### Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

### Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Jeffrey S. Morris University of Texas, MD Anderson Cancer Center Joint wor with Marina Vannucci, Philip J. Brown,

More information

### Expectation Maximization Mixture Models HMMs

11-755 Machine Learning for Signal rocessing Expectation Maximization Mixture Models HMMs Class 9. 21 Sep 2010 1 Learning Distributions for Data roblem: Given a collection of examples from some data, estimate

More information

### Regularization Theory

Regularization Theory Solving the inverse problem of Super resolution with CNN Aditya Ganeshan Under the guidance of Dr. Ankik Kumar Giri December 13, 2016 Table of Content 1 Introduction Material coverage

More information

### Modeling Multiscale Differential Pixel Statistics

Modeling Multiscale Differential Pixel Statistics David Odom a and Peyman Milanfar a a Electrical Engineering Department, University of California, Santa Cruz CA. 95064 USA ABSTRACT The statistics of natural

More information

### Recent Advances in SPSA at the Extremes: Adaptive Methods for Smooth Problems and Discrete Methods for Non-Smooth Problems

Recent Advances in SPSA at the Extremes: Adaptive Methods for Smooth Problems and Discrete Methods for Non-Smooth Problems SGM2014: Stochastic Gradient Methods IPAM, February 24 28, 2014 James C. Spall

More information

### Introduction to Nonlinear Image Processing

Introduction to Nonlinear Image Processing 1 IPAM Summer School on Computer Vision July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Mean and median 2 Observations

More information

### Sparse & Redundant Representations by Iterated-Shrinkage Algorithms

Sparse & Redundant Representations by Michael Elad * The Computer Science Department The Technion Israel Institute of technology Haifa 3000, Israel 6-30 August 007 San Diego Convention Center San Diego,

More information

### Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

### What is Image Deblurring?

What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

### Estimating Gaussian Mixture Densities with EM A Tutorial

Estimating Gaussian Mixture Densities with EM A Tutorial Carlo Tomasi Due University Expectation Maximization (EM) [4, 3, 6] is a numerical algorithm for the maximization of functions of several variables

More information

### 6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

### Recent Advances in Bayesian Inference for Inverse Problems

Recent Advances in Bayesian Inference for Inverse Problems Felix Lucka University College London, UK f.lucka@ucl.ac.uk Applied Inverse Problems Helsinki, May 25, 2015 Bayesian Inference for Inverse Problems

More information

### Supplementary Information for cryosparc: Algorithms for rapid unsupervised cryo-em structure determination

Supplementary Information for cryosparc: Algorithms for rapid unsupervised cryo-em structure determination Supplementary Note : Stochastic Gradient Descent (SGD) SGD iteratively optimizes an objective

More information

### Notes on Regularization and Robust Estimation Psych 267/CS 348D/EE 365 Prof. David J. Heeger September 15, 1998

Notes on Regularization and Robust Estimation Psych 67/CS 348D/EE 365 Prof. David J. Heeger September 5, 998 Regularization. Regularization is a class of techniques that have been widely used to solve

More information

### Motion Estimation (I)

Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

### Lecture 14 October 22

EE 2: Coding for Digital Communication & Beyond Fall 203 Lecture 4 October 22 Lecturer: Prof. Anant Sahai Scribe: Jingyan Wang This lecture covers: LT Code Ideal Soliton Distribution 4. Introduction So

More information

### Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

### Sparse Recovery Beyond Compressed Sensing

Sparse Recovery Beyond Compressed Sensing Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda Applied Math Colloquium, MIT 4/30/2018 Acknowledgements Project funded by NSF award DMS-1616340 Separable Nonlinear

More information

### Taking derivative by convolution

Taking derivative by convolution Partial derivatives with convolution For 2D function f(x,y), the partial derivative is: For discrete data, we can approximate using finite differences: To implement above

More information

### F denotes cumulative density. denotes probability density function; (.)

BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

### LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

### Part III Super-Resolution with Sparsity

Aisenstadt Chair Course CRM September 2009 Part III Super-Resolution with Sparsity Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Super-Resolution with Sparsity Dream: recover high-resolution

More information

### Lecture 8: Bayesian Estimation of Parameters in State Space Models

in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

### Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Jing Dong jdong@gatech.edu 2017-06-20 License CC BY-NC-SA 3.0 Discrete time SLAM Downsides: Measurements

More information

### Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

### Edge Detection. Computer Vision P. Schrater Spring 2003

Edge Detection Computer Vision P. Schrater Spring 2003 Simplest Model: (Canny) Edge(x) = a U(x) + n(x) U(x)? x=0 Convolve image with U and find points with high magnitude. Choose value by comparing with

More information

### Resolving the White Noise Paradox in the Regularisation of Inverse Problems

1 / 32 Resolving the White Noise Paradox in the Regularisation of Inverse Problems Hanne Kekkonen joint work with Matti Lassas and Samuli Siltanen Department of Mathematics and Statistics University of

More information

### Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

### 10-701/15-781, Machine Learning: Homework 4

10-701/15-781, Machine Learning: Homewor 4 Aarti Singh Carnegie Mellon University ˆ The assignment is due at 10:30 am beginning of class on Mon, Nov 15, 2010. ˆ Separate you answers into five parts, one

More information

### Estimation Error Bounds for Frame Denoising

Estimation Error Bounds for Frame Denoising Alyson K. Fletcher and Kannan Ramchandran {alyson,kannanr}@eecs.berkeley.edu Berkeley Audio-Visual Signal Processing and Communication Systems group Department

More information

### Multiple-Model Adaptive Estimation for Star Identification with Two Stars

Multiple-Model Adaptive Estimation for Star Identification with Two Stars Steven A. Szlany and John L. Crassidis University at Buffalo, State University of New Yor, Amherst, NY, 460-4400 In this paper

More information

### LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN Abstract. Real images usually have sparse approximations under some tight frame systems derived

More information

### Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

### Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

### There is a unique function s(x) that has the required properties. It turns out to also satisfy

Numerical Analysis Grinshpan Natural Cubic Spline Let,, n be given nodes (strictly increasing) and let y,, y n be given values (arbitrary) Our goal is to produce a function s() with the following properties:

More information

### Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

### Mixture Models and EM

Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

### Introduction to Compressed Sensing

Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

### EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

### Fast Local Laplacian Filters: Theory and Applications

Fast Local Laplacian Filters: Theory and Applications Mathieu Aubry (INRIA, ENPC), Sylvain Paris (Adobe), Sam Hasinoff (Google), Jan Kautz (UCL), and Frédo Durand (MIT) Input Unsharp Mask, not edge-aware

More information

### Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang

Image Noise: Detection, Measurement and Removal Techniques Zhifei Zhang Outline Noise measurement Filter-based Block-based Wavelet-based Noise removal Spatial domain Transform domain Non-local methods

More information

### EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

### A New Look at First Order Methods Lifting the Lipschitz Gradient Continuity Restriction

A New Look at First Order Methods Lifting the Lipschitz Gradient Continuity Restriction Marc Teboulle School of Mathematical Sciences Tel Aviv University Joint work with H. Bauschke and J. Bolte Optimization

More information

### Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

### Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

### Wavelet Footprints: Theory, Algorithms, and Applications

1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

### Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

### An Introduction to Expectation-Maximization

An Introduction to Expectation-Maximization Dahua Lin Abstract This notes reviews the basics about the Expectation-Maximization EM) algorithm, a popular approach to perform model estimation of the generative

More information

### Abel Inversion using the Maximum Entropy Method

Abel Inversion using the Maximum Entropy Method Danilo R. Neuber Wolfgang von der Linden 3rd October 2003 Inst. für Theoretische Physik, Tel.: +43/3 16/8 73-81 88; neuber@itp.tu-graz.ac.at Inst. für Theoretische

More information

### The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm Francisco S. Melo In these notes, we provide a brief overview of the formal aspects concerning -means, EM and their relation. We closely follow the presentation in

More information

### An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

### Markov Random Fields

Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

### Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

### Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

### Covariance-Based PCA for Multi-Size Data

Covariance-Based PCA for Multi-Size Data Menghua Zhai, Feiyu Shi, Drew Duncan, and Nathan Jacobs Department of Computer Science, University of Kentucky, USA {mzh234, fsh224, drew, jacobs}@cs.uky.edu Abstract

More information

### Inverse Problems in Image Processing

H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

### Gradient-domain image processing

Gradient-domain image processing http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 10 Course announcements Homework 3 is out. - (Much) smaller

More information

### CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

### Basic concepts in estimation

Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

### Lecture 3: Linear Filters

Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

### Noise-Blind Image Deblurring Supplementary Material

Noise-Blind Image Deblurring Supplementary Material Meiguang Jin University of Bern Switzerland Stefan Roth TU Darmstadt Germany Paolo Favaro University of Bern Switzerland A. Upper and Lower Bounds Our

More information

### A Comparison of Multiple-Model Target Tracking Algorithms

University of New Orleans ScholarWors@UNO University of New Orleans heses and Dissertations Dissertations and heses 1-17-4 A Comparison of Multiple-Model arget racing Algorithms Ryan Pitre University of

More information

### Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

### Learning-Based Image Super-Resolution

Limits of Algorithms Learning-Based Image Super-Resolution zhoulin@microsoft.com Microsoft Research Asia Nov. 8, 2008 Limits of Algorithms Outline 1 What is Super-Resolution (SR)? 2 3 Limits of Algorithms

More information

### Subsampling and image pyramids

Subsampling and image pyramids http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 3 Course announcements Homework 0 and homework 1 will be posted tonight. - Homework 0 is not required

More information

### Lecture 3: Linear Filters

Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

### Detectors part II Descriptors

EECS 442 Computer vision Detectors part II Descriptors Blob detectors Invariance Descriptors Some slides of this lectures are courtesy of prof F. Li, prof S. Lazebnik, and various other lecturers Goal:

More information

### PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS Yngve Selén and Eri G Larsson Dept of Information Technology Uppsala University, PO Box 337 SE-71 Uppsala, Sweden email: yngveselen@ituuse

More information

### Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

### These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

### Multichannel Deconvolution of Layered Media Using MCMC methods

Multichannel Deconvolution of Layered Media Using MCMC methods Idan Ram Electrical Engineering Department Technion Israel Institute of Technology Supervisors: Prof. Israel Cohen and Prof. Shalom Raz OUTLINE.

More information

### CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

### A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS

ICASSP 2015 A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS Stefano Maranò Donat Fäh Hans-Andrea Loeliger ETH Zurich, Swiss Seismological Service, 8092 Zürich ETH Zurich, Dept. Information

More information

### Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

### Robust Camera Location Estimation by Convex Programming

Robust Camera Location Estimation by Convex Programming Onur Özyeşil and Amit Singer INTECH Investment Management LLC 1 PACM and Department of Mathematics, Princeton University SIAM IS 2016 05/24/2016,

More information

### Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen

Multiview Geometry and Bundle Adjustment CSE P576 David M. Rosen 1 Recap Previously: Image formation Feature extraction + matching Two-view (epipolar geometry) Today: Add some geometry, statistics, optimization

More information

### PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

### A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

### Tracking of Extended Objects and Group Targets using Random Matrices A New Approach

Tracing of Extended Objects and Group Targets using Random Matrices A New Approach Michael Feldmann FGAN Research Institute for Communication, Information Processing and Ergonomics FKIE D-53343 Wachtberg,

More information

### ACTIVE safety systems on vehicles are becoming more

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1 Bayesian Road Estimation Using Onboard Sensors Ángel F. García-Fernández, Lars Hammarstrand, Maryam Fatemi, and Lennart Svensson Abstract This

More information

### Matrix and Tensor Factorization from a Machine Learning Perspective

Matrix and Tensor Factorization from a Machine Learning Perspective Christoph Freudenthaler Information Systems and Machine Learning Lab, University of Hildesheim Research Seminar, Vienna University of

More information

### sparse and low-rank tensor recovery Cubic-Sketching

Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

### Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

### Covariance Matrix Simplification For Efficient Uncertainty Management

PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

### Deep convolutional framelets:

Deep convolutional framelets: application to diffuse optical tomography : learning based approach for inverse scattering problems Jaejun Yoo NAVER Clova ML OUTLINE (bottom up!) I. INTRODUCTION II. EXPERIMENTS

More information

### Bayesian Learning (II)

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

### arxiv: v1 [astro-ph.im] 16 Apr 2009

Closed form solution of the maximum entropy equations with application to fast radio astronomical image formation arxiv:0904.2545v1 [astro-ph.im] 16 Apr 2009 Amir Leshem 1 School of Engineering, Bar-Ilan

More information

### Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information