Obtaining Consensus of Multi-agent Linear Dynamic Systems

Size: px
Start display at page:

Download "Obtaining Consensus of Multi-agent Linear Dynamic Systems"

Transcription

1 Obtaining Consensus of Multi-agent Linear Dynamic Systems M I GRCÍ-PLNS Universitat Politècnica de Catalunya Departament de Matemàtica plicada Mineria 1, arcelona SPIN mariaisabelgarcia@upcedu bstract: In this paper the consensus problem is considered for multi-agent systems, in which all agents have an identical linear dynamic mode that can be of any order generalization to the case all agents are of the same order but do not have the same linear dynamic ey Words: Multi-agent systems, consensus, control 1 Introduction It is well known the attraction created in many research communities, the study of multi-agents system, and there are an amount of literature as for example [3, 6, 8] It is due to the multi-agents appear in different areas as for example in consensus problem of communication networks [4], or formation control of mobile robots [] Jinhuan Wang, Daizhan Cheng and Xiaoming Hu in [6] study the consensus problem in the case of multiagent systems in which all agents have an identical linear dynamics and it is an stable linear system In this paper, we generalize to the case where the dynamic of the agents are controllable Finally a brief study of the case of all agents are not identical linear systems is introduced Preliminaries 1 lgebraic Graph theory We consider a graph G = (V, E) of order N with the set of vertices V = {1,, N} and the set of edges E = {(i, j) i, j V} V V Given an edge (i, j) i is called the parent node and j is called the child node and j is in the neighbor of i, concretely we define the neighbor of i and we denote it by N i to the set N i = {j V (i, j) E} The graph is called undirected if verifies that (i, j) E if and only if (j, i) E The graph is called connected if there exists a path between any two vertices, otherwise is called disconnected ssociated to the graph we consider a matrix G = (g ij called (unweighted) adjacency matrix defined as follows g ii = 0, g ij = 1 if (i, j) E, and g ij = 0 otherwise (In a more general case we can consider a weighted adjacency matrix is G = (g ij with g ii = 0, g ij > 0 if (i, j) E, and g ij = 0 otherwise) The Laplacian matrix of the graph is N i if i = j L = (l ij ) = 1 if j N i 0 otherwise Remark 1 i) If the graph is undirected then the matrix L is symmetric, then there exist an orthogonal matrix P such that P LP t = D ii) If the graph is undirected then 0 is an eigenvalue of L and (1,, 1) t is the associated eigenvector iii) If the graph is undirected and connected the eigenvalue 0 is simple For more details about graph theory see [7] ronecker product Remember that = (a ij ) M n m (IC) and = (b ij ) M p q (IC) the ronecker product (see [5] for more information) is defined as follows Definition Let = (a i j ) M n m(ic) and M p q (IC) be two matrices, the ronecker product of and, write, is the matrix = a 1 1 a1 a1 m a 1 a a m a n 1 an an m M np mq(ic) ISN:

2 ronecker product verifies the following properties 1) ( + ) C = ( C) + ( C) ) ( + C) = ( ) + ( C) 3) ( ) C = ( C) 4) ( ) t = t t 5) If Gl(n; IC) and Gl(p; IC)), then Gl(np; IC)) and ( ) 1 = 1 1 6) ( )(C D) = (C) (D) ssociated to the ronecker product, can be defined the vectorizing operator that transforms any matrix into a column vector, by placing the columns in the matrix one after another, Definition 3 Let X = (x i j ) M n m(ic) be a matrix, and we denote x i = ( i,, xn i )t for 1 i m the i-th column of the matrix X We define the vectorizing operator vec, as vec : M n m (IC) X Obviously, vec is an isomorphism M nm 1 (IC) x x m 3 Dynamic of multi-agent having identical dynamical mode Let us consider a group of k identical agents The dynamic of each agent is given by the following linear dynamical systems ẋ 1 = + u 1 (1) ẋ k = x k + u k x i IR n, u i IR m, 1 i k We consider the undirected graph G with i) Vertex set: V = {1,, k} ii) Edge set: E = {(i, j) i, j V } V V defining the communication topology among agents Definition 4 Consider the system 4 We say that the consensus is achieved using local information if there is a state feedback such that u i = (x i x j ), 1 i k lim t xi x j = 0, 1 i, j k For simplify we will write z i = (x i x j ), 1 i k The closed-loop system obtained under this feedback is as follows where = = X = X = X + Z, x k X = = Z = ẋ 1 ẋ k j N 1 x j j N k x k x j Following this notation we can conclude the following Proposition 5 ([6]) The closed-loop system can be described as X = ((I k ) + (I k )(L I n ))X Proof: Calling = = ISN:

3 and observing that = I k = I k Z = (L I n )X, we can conclude that closed-loop system is X = ((I k ) + (I k )(L I n ))X Taking into account that the graph is undirected, following remark 1, we have that there exists an orthogonal matrix P Gl(k; IR) such that P LP t = D = diag (λ 1,, λ k ), (λ 1 λ k ) Corollary 6 The closed-loop system can be described in terms of the matrices,, the feedback and the eigenvalues of L Proof: Following properties of ronecker product we have that (P I n )(I k )(P t I n ) = (I k ) (P I n )(I k )(P t I n ) = (I k ) (P I n )(L I n )(P t I n ) = (D I n ) and calling X = (P I n )X = P P x P x 3, we have X = ((I k ) + (I k )(D I n )) X Equivalently, X = + λ 1 + λk X () Remark 7 lim t P x i P x j = 0 if and only if lim t x i x j = 0 31 Consensus problem It would seem that if the graph is connected the consensus problem would be solvable of there is a such that the system is stabilized ut taking into account that λ 1 = 0 this system is only stabilized if ẋ 1 = is stable Suppose now, that the system (, ) is controllable, so there exist such that the close loop system ẋ = ( + )x = x is stable and we apply all results presented in 3 over the group of k identical agents, where the dynamic of each agent is given by the following linear dynamical systems ẋ 1 = + u 1 (3) ẋ k = x k + u k x i IR n, u i IR m, 1 i k Example 1 We consider 3 identical agents with the following dynamics of each agent ẋ 1 = + u 1 ẋ = x + u (4) ẋ 3 = x 3 + u 3 ( ) ( ) with = and = The communication topology is defined by the graph (V, E): V = {1,, 3} E = {(i, j) i, j V } = {(1, ), (1, 3)} V V and the adjacency matrix: G = The neighbors of the parent nodes are N 1 = {, 3}, N = {1}, N 3 = {1} The Laplacian matrix of the graph is L = with eigenvalues λ 1 = 0, λ = 1, λ 3 = 3 u i = ( (x i x j )) = z i (5) u 1 = (( x ) + ( x 3 )) = = ( x x 3 ) u = (x ) u 3 = (x 3 ) Taking into account that the system ẋ 1 = is not stable but (, ) is( a controllable ) system, we 0 1 consider = + = with appropriate a b values for a and b ISN:

4 Then, the close loop system of 4 with control 5 is ẋ 1 = + ( x x 3 ) = = ( + ) x x 3 ẋ = x + x ) = ( + )x ẋ 3 = x 3 + x 3 ) = ( + )x 3 Or in a (formal)-matrix form: X = X (6) The basis change matrix diagonalizing the matrix L is 1 0 P = and we obtain the following equivalent system X = X The eigenvalues of the system are: b± b +4a, (corresponding to the eigenvalues of the system ẋ 1 = ), b+d± b +bd+d +4a+4c, (corresponding to the eigenvalues of the system ẋ = ( + )x ), b+3d± b +6bd+9d +4a+1c, (corresponding to the eigenvalues of the system ẋ 3 = ( + 3)x 3 ) Then, there exist and (defined by a, b, c, d), which assign the eigenvalues as negative as possible In a more general case we have the following lemma Lemma 8 ([6]) Let (, ) be a controllable pair of matrices and we consider the set of k-linear systems ẋ i = x i + λ i u i, 1 i k with λ i > 0 Then, there exist a feedback which simultaneously assigns the eigenvalues of the systems as negative as possible More concretely, for any M > 0, there exist u i = x i for 1 i k such that Re σ( + λ i ) < M, 1 i k (σ(+λ i ) denotes de spectrum of +λ i for each 1 i k) s a corollary we can consider the consensus problem Corollary 9 We consider the system 4 with a connect adjacent topology If (, ) is a controllable pair then, the consensus is achieved by means the feedback defined in 4 and a feedback stabilizing (, ) Proof: Taking into account that the adjacent topology is connected we have that 0 = λ 1 < λ λ k and (1,, 1) t = 1 k is the eigenvector corresponding to the simple eigenvalue λ 1 = 0 On the other hand we can find stabilizing (, ) and then we can find stabilizing the associate system, then we find Z such that lim t Z = 0 Using Z = (L I n )X we have that lim t X = 1 k v for some vector v IR n and the consensus is obtained 4 Dynamic of multi-agent having no identical dynamical mode The dynamic of each agent is given by the following dynamical systems ẋ 1 = u 1 (7) ẋ k = k x k + k u k x i IR n, u i IR m, 1 i k The communication topology among agents is defined by means the undirected graph G with i) Vertex set: V = {1,, k} ii) Edge set: E = {(i, j) i, j V } V V an in a similar way as before, we have the following Definition 10 Consider the system 7 We say that the consensus is achieved using local information if there exists a state feedback u i = i (x i x j ), 1 i k such that lim t xi x j = 0, 1 i, j k For simplicity we define z i = (x i x j ), 1 i k The closed-loop system obtained under this feedback is as follows ISN:

5 where = = Calling X = 1 1 = and observing that X = X + Z x k k k k X = = Z = 1 k k ẋ 1 ẋ k 1 k j N 1 x j j N k x k x j k = References: [1] Z Li, Z Duan, G Chen, Consensus of Multiagent Systems and Synchronization of Complex Networks: unified Viewpoint, IEEE Trans on Circuits and Systems, 57, (1), pp 13-4, (010) [] Fax, R Murray, Information flow and cooperative control of vehicle formations, IEEE Trans utomat Control 49, (9), pp , (004) [3] RO Saber, RM Murray, Consensus Protocols for Networks of Dynamic gents, Report [4] RO Saber, RM Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans utomat Control 49, (9), pp , (004) [5] P Lancaster, M Tismenetsky, The Thoery of Matrices cademic Press San Diego (1985) [6] J Wang, D Cheng, X Hu, Consensus of multiagent linear dynamics systems, sian Journal of Control 10, (), pp , (008) [7] D West Introduction to Graph Theory Prentice Hall (3rd Edition), (007) [8] G Xie, L Wang, Consensus control for a class of networks of dynamic agents: switching topology, Proc 006 mer Contro Conf, pp , (007) Z = (L I n )X we deduce the following proposition Proposition 11 The closed-loop system can be deduced in terms of matrices, and in the following manner X = ( + (L I n ))X (8) We are interested in i such that the consensus is achieved Proposition 1 We consider the system 7 which a connected adjacent topology If the system 8 is stable the consensus problem has a solution 5 Conclusions In this paper the consensus problem is considered for multi-agent systems, in which all agents have an identical linear dynamic mode that can be of any order generalization to the case all agents are of the same order but do not have the same linear dynamic ISN:

Exact Consensus Controllability of Multi-agent Linear Systems

Exact Consensus Controllability of Multi-agent Linear Systems Exact Consensus Controllability of Multi-agent Linear Systems M. ISAEL GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matèmatiques Minería 1, Esc. C, 1-3, 08038 arcelona SPAIN maria.isabel.garcia@upc.edu

More information

Consensus Stabilizability and Exact Consensus Controllability of Multi-agent Linear Systems

Consensus Stabilizability and Exact Consensus Controllability of Multi-agent Linear Systems Consensus Stabilizability and Exact Consensus Controllability of Multi-agent Linear Systems M. ISABEL GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matèmatiques Minería 1, Esc. C, 1-3,

More information

Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems

Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems M. ISAL GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matèmatiques Minería 1, sc. C, 1-3, 08038 arcelona

More information

Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control

Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control Outline Background Preliminaries Consensus Numerical simulations Conclusions Average-Consensus of Multi-Agent Systems with Direct Topology Based on Event-Triggered Control Email: lzhx@nankai.edu.cn, chenzq@nankai.edu.cn

More information

MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY

MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY Jrl Syst Sci & Complexity (2009) 22: 722 731 MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY Yiguang HONG Xiaoli WANG Received: 11 May 2009 / Revised: 16 June 2009 c 2009

More information

Complex Laplacians and Applications in Multi-Agent Systems

Complex Laplacians and Applications in Multi-Agent Systems 1 Complex Laplacians and Applications in Multi-Agent Systems Jiu-Gang Dong, and Li Qiu, Fellow, IEEE arxiv:1406.186v [math.oc] 14 Apr 015 Abstract Complex-valued Laplacians have been shown to be powerful

More information

Consensus of Hybrid Multi-agent Systems

Consensus of Hybrid Multi-agent Systems Consensus of Hybrid Multi-agent Systems Yuanshi Zheng, Jingying Ma, and Long Wang arxiv:52.0389v [cs.sy] 0 Dec 205 Abstract In this paper, we consider the consensus problem of hybrid multi-agent system.

More information

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Štefan Knotek, Kristian Hengster-Movric and Michael Šebek Department of Control Engineering, Czech Technical University, Prague,

More information

Consensus Tracking for Multi-Agent Systems with Nonlinear Dynamics under Fixed Communication Topologies

Consensus Tracking for Multi-Agent Systems with Nonlinear Dynamics under Fixed Communication Topologies Proceedings of the World Congress on Engineering and Computer Science Vol I WCECS, October 9-,, San Francisco, USA Consensus Tracking for Multi-Agent Systems with Nonlinear Dynamics under Fixed Communication

More information

Research on Consistency Problem of Network Multi-agent Car System with State Predictor

Research on Consistency Problem of Network Multi-agent Car System with State Predictor International Core Journal of Engineering Vol. No.9 06 ISSN: 44-895 Research on Consistency Problem of Network Multi-agent Car System with State Predictor Yue Duan a, Linli Zhou b and Yue Wu c Institute

More information

On the convergence of weighted-average consensus

On the convergence of weighted-average consensus On the convergence of weighted-average consensus Francisco Pedroche Miguel Rebollo Carlos Carrascosa Alberto Palomares arxiv:307.7562v [math.oc] 29 Jul 203 Abstract In this note we give sufficient conditions

More information

Zeno-free, distributed event-triggered communication and control for multi-agent average consensus

Zeno-free, distributed event-triggered communication and control for multi-agent average consensus Zeno-free, distributed event-triggered communication and control for multi-agent average consensus Cameron Nowzari Jorge Cortés Abstract This paper studies a distributed event-triggered communication and

More information

Distributed Robust Consensus of Heterogeneous Uncertain Multi-agent Systems

Distributed Robust Consensus of Heterogeneous Uncertain Multi-agent Systems Distributed Robust Consensus of Heterogeneous Uncertain Multi-agent Systems Zhongkui Li, Zhisheng Duan, Frank L. Lewis. State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics

More information

Distributed Tracking ControlforLinearMultiagent Systems With a Leader of Bounded Unknown Input

Distributed Tracking ControlforLinearMultiagent Systems With a Leader of Bounded Unknown Input 518 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 2, FEBRUARY 2013 Distributed Tracking ControlforLinearMultiagent Systems With a Leader of Bounded Unknown Input Zhongkui Li, Member,IEEE, Xiangdong

More information

Tracking control for multi-agent consensus with an active leader and variable topology

Tracking control for multi-agent consensus with an active leader and variable topology Automatica 42 (2006) 1177 1182 wwwelseviercom/locate/automatica Brief paper Tracking control for multi-agent consensus with an active leader and variable topology Yiguang Hong a,, Jiangping Hu a, Linxin

More information

arxiv: v2 [math.oc] 14 Dec 2015

arxiv: v2 [math.oc] 14 Dec 2015 Cooperative Output Regulation of Discrete-Time Linear Time-Delay Multi-agent Systems Yamin Yan and Jie Huang arxiv:1510.05380v2 math.oc 14 Dec 2015 Abstract In this paper, we study the cooperative output

More information

OUTPUT CONSENSUS OF HETEROGENEOUS LINEAR MULTI-AGENT SYSTEMS BY EVENT-TRIGGERED CONTROL

OUTPUT CONSENSUS OF HETEROGENEOUS LINEAR MULTI-AGENT SYSTEMS BY EVENT-TRIGGERED CONTROL OUTPUT CONSENSUS OF HETEROGENEOUS LINEAR MULTI-AGENT SYSTEMS BY EVENT-TRIGGERED CONTROL Gang FENG Department of Mechanical and Biomedical Engineering City University of Hong Kong July 25, 2014 Department

More information

Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach Yongcan Cao, Member, IEEE, and Wei Ren, Member, IEEE

Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach Yongcan Cao, Member, IEEE, and Wei Ren, Member, IEEE IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 1, JANUARY 2012 33 Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach Yongcan Cao, Member, IEEE, and Wei Ren,

More information

NCS Lecture 8 A Primer on Graph Theory. Cooperative Control Applications

NCS Lecture 8 A Primer on Graph Theory. Cooperative Control Applications NCS Lecture 8 A Primer on Graph Theory Richard M. Murray Control and Dynamical Systems California Institute of Technology Goals Introduce some motivating cooperative control problems Describe basic concepts

More information

A MATRIX INEQUALITY BASED DESIGN METHOD FOR CONSENSUS PROBLEMS IN MULTI AGENT SYSTEMS

A MATRIX INEQUALITY BASED DESIGN METHOD FOR CONSENSUS PROBLEMS IN MULTI AGENT SYSTEMS Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 4, 639 646 DOI: 10.2478/v10006-009-0051-1 A MATRIX INEQUALITY BASED DESIGN METHOD FOR CONSENSUS PROBLEMS IN MULTI AGENT SYSTEMS GUISHENG ZHAI, SHOHEI

More information

Consensus Problem in Multi-Agent Systems with Communication Channel Constraint on Signal Amplitude

Consensus Problem in Multi-Agent Systems with Communication Channel Constraint on Signal Amplitude SICE Journal of Control, Measurement, and System Integration, Vol 6, No 1, pp 007 013, January 2013 Consensus Problem in Multi-Agent Systems with Communication Channel Constraint on Signal Amplitude MingHui

More information

Analysis of behavior of a simple eigenvalue of singular system

Analysis of behavior of a simple eigenvalue of singular system Proceedings of the 213 International onference on Systems, ontrol and Informatics nalysis of behavior of a simple eigenvalue of singular system Maria Isabel García-Planas, Sonia Tarragona Matemàtica plicada

More information

Formation Control of Nonholonomic Mobile Robots

Formation Control of Nonholonomic Mobile Robots Proceedings of the 6 American Control Conference Minneapolis, Minnesota, USA, June -6, 6 FrC Formation Control of Nonholonomic Mobile Robots WJ Dong, Yi Guo, and JA Farrell Abstract In this paper, formation

More information

Consensus seeking on moving neighborhood model of random sector graphs

Consensus seeking on moving neighborhood model of random sector graphs Consensus seeking on moving neighborhood model of random sector graphs Mitra Ganguly School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India Email: gangulyma@rediffmail.com Timothy Eller

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 431 (9) 71 715 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa On the general consensus protocol

More information

A Graph-Theoretic Characterization of Controllability for Multi-agent Systems

A Graph-Theoretic Characterization of Controllability for Multi-agent Systems A Graph-Theoretic Characterization of Controllability for Multi-agent Systems Meng Ji and Magnus Egerstedt Abstract In this paper we continue our pursuit of conditions that render a multi-agent networked

More information

A Note to Robustness Analysis of the Hybrid Consensus Protocols

A Note to Robustness Analysis of the Hybrid Consensus Protocols American Control Conference on O'Farrell Street, San Francisco, CA, USA June 9 - July, A Note to Robustness Analysis of the Hybrid Consensus Protocols Haopeng Zhang, Sean R Mullen, and Qing Hui Abstract

More information

Scaling the Size of a Multiagent Formation via Distributed Feedback

Scaling the Size of a Multiagent Formation via Distributed Feedback Scaling the Size of a Multiagent Formation via Distributed Feedback Samuel Coogan, Murat Arcak, Magnus Egerstedt Abstract We consider a multiagent coordination problem where the objective is to steer a

More information

Consensus Protocols for Networks of Dynamic Agents

Consensus Protocols for Networks of Dynamic Agents Consensus Protocols for Networks of Dynamic Agents Reza Olfati Saber Richard M. Murray Control and Dynamical Systems California Institute of Technology Pasadena, CA 91125 e-mail: {olfati,murray}@cds.caltech.edu

More information

RECENTLY, the study of cooperative control of multiagent

RECENTLY, the study of cooperative control of multiagent 24 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL., NO. 2, APRIL 24 Consensus Robust Output Regulation of Discrete-time Linear Multi-agent Systems Hongjing Liang Huaguang Zhang Zhanshan Wang Junyi Wang Abstract

More information

Periodic Behaviors in Multi-agent Systems with Input Saturation Constraints

Periodic Behaviors in Multi-agent Systems with Input Saturation Constraints 5nd IEEE Conference on Decision and Control December 10-13, 013. Florence, Italy Periodic Behaviors in Multi-agent Systems with Input Saturation Constraints Tao Yang, Ziyang Meng, Dimos V. Dimarogonas,

More information

Consensus of Multi-Agent Systems with

Consensus of Multi-Agent Systems with Consensus of Multi-Agent Systems with 1 General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols arxiv:1109.3799v1 [cs.sy] 17 Sep 2011 Zhongkui Li, Wei Ren, Member, IEEE, Xiangdong

More information

Graph Theoretic Methods in the Stability of Vehicle Formations

Graph Theoretic Methods in the Stability of Vehicle Formations Graph Theoretic Methods in the Stability of Vehicle Formations G. Lafferriere, J. Caughman, A. Williams gerardol@pd.edu, caughman@pd.edu, ancaw@pd.edu Abstract This paper investigates the stabilization

More information

Coordinated Path Following for Mobile Robots

Coordinated Path Following for Mobile Robots Coordinated Path Following for Mobile Robots Kiattisin Kanjanawanishkul, Marius Hofmeister, and Andreas Zell University of Tübingen, Department of Computer Science, Sand 1, 7276 Tübingen Abstract. A control

More information

Stability Analysis of Stochastically Varying Formations of Dynamic Agents

Stability Analysis of Stochastically Varying Formations of Dynamic Agents Stability Analysis of Stochastically Varying Formations of Dynamic Agents Vijay Gupta, Babak Hassibi and Richard M. Murray Division of Engineering and Applied Science California Institute of Technology

More information

ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS. A Thesis by. Dipendra Khatiwada

ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS. A Thesis by. Dipendra Khatiwada ANALYSIS OF CONSENSUS AND COLLISION AVOIDANCE USING THE COLLISION CONE APPROACH IN THE PRESENCE OF TIME DELAYS A Thesis by Dipendra Khatiwada Bachelor of Science, Wichita State University, 2013 Submitted

More information

Convergence Properties of Dynamic Agents Consensus Networks with Broken Links

Convergence Properties of Dynamic Agents Consensus Networks with Broken Links 2008 American Control Conference (to appear) http://wwwcdscaltechedu/~murray/papers/dpbm08-acchtml Convergence Properties of Dynamic Agents Consensus Networks with Broken Links S Di Cairano, A Pasini,

More information

IN the multiagent systems literature, the consensus problem,

IN the multiagent systems literature, the consensus problem, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 63, NO. 7, JULY 206 663 Periodic Behaviors for Discrete-Time Second-Order Multiagent Systems With Input Saturation Constraints Tao Yang,

More information

Stability and Disturbance Propagation in Autonomous Vehicle Formations : A Graph Laplacian Approach

Stability and Disturbance Propagation in Autonomous Vehicle Formations : A Graph Laplacian Approach Stability and Disturbance Propagation in Autonomous Vehicle Formations : A Graph Laplacian Approach Francesco Borrelli*, Kingsley Fregene, Datta Godbole, Gary Balas* *Department of Aerospace Engineering

More information

Discrete Double Integrator Consensus

Discrete Double Integrator Consensus Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Discrete Double Integrator Consensus David W. Casbeer, Randy Beard, and A. Lee Swindlehurst Abstract A distributed

More information

Consensus, Flocking and Opinion Dynamics

Consensus, Flocking and Opinion Dynamics Consensus, Flocking and Opinion Dynamics Antoine Girard Laboratoire Jean Kuntzmann, Université de Grenoble antoine.girard@imag.fr International Summer School of Automatic Control GIPSA Lab, Grenoble, France,

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

Theory and Applications of Matrix-Weighted Consensus

Theory and Applications of Matrix-Weighted Consensus TECHNICAL REPORT 1 Theory and Applications of Matrix-Weighted Consensus Minh Hoang Trinh and Hyo-Sung Ahn arxiv:1703.00129v3 [math.oc] 6 Jan 2018 Abstract This paper proposes the matrix-weighted consensus

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

On non-consensus motions of dynamical linear multiagent systems

On non-consensus motions of dynamical linear multiagent systems Pramana J Phys (218) 91:16 https://doiorg/117/s1243-18-159-5 Indian Academy of Sciences On non-consensus motions of dynamical linear multiagent systems NING CAI 1,2,4, CHUN-LIN DENG 1,3, and QIU-XUAN WU

More information

A Graph-Theoretic Characterization of Structural Controllability for Multi-Agent System with Switching Topology

A Graph-Theoretic Characterization of Structural Controllability for Multi-Agent System with Switching Topology Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, December 16-18, 29 FrAIn2.3 A Graph-Theoretic Characterization of Structural Controllability

More information

Discrete-time Consensus Filters on Directed Switching Graphs

Discrete-time Consensus Filters on Directed Switching Graphs 214 11th IEEE International Conference on Control & Automation (ICCA) June 18-2, 214. Taichung, Taiwan Discrete-time Consensus Filters on Directed Switching Graphs Shuai Li and Yi Guo Abstract We consider

More information

On the Scalability in Cooperative Control. Zhongkui Li. Peking University

On the Scalability in Cooperative Control. Zhongkui Li. Peking University On the Scalability in Cooperative Control Zhongkui Li Email: zhongkli@pku.edu.cn Peking University June 25, 2016 Zhongkui Li (PKU) Scalability June 25, 2016 1 / 28 Background Cooperative control is to

More information

Active Passive Networked Multiagent Systems

Active Passive Networked Multiagent Systems Active Passive Networked Multiagent Systems Tansel Yucelen and John Daniel Peterson Abstract This paper introduces an active passive networked multiagent system framework, which consists of agents subject

More information

1520 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER Reza Olfati-Saber, Member, IEEE, and Richard M. Murray, Member, IEEE

1520 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER Reza Olfati-Saber, Member, IEEE, and Richard M. Murray, Member, IEEE 1520 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER 2004 Consensus Problems in Networks of Agents With Switching Topology and Time-Delays Reza Olfati-Saber, Member, IEEE, and Richard

More information

Consensus Control of Multi-agent Systems with Optimal Performance

Consensus Control of Multi-agent Systems with Optimal Performance 1 Consensus Control of Multi-agent Systems with Optimal Performance Juanjuan Xu, Huanshui Zhang arxiv:183.941v1 [math.oc 6 Mar 18 Abstract The consensus control with optimal cost remains major challenging

More information

On the Controllability of Nearest Neighbor Interconnections

On the Controllability of Nearest Neighbor Interconnections On the Controllability of Nearest Neighbor Interconnections Herbert G. Tanner Mechanical Engineering Department University of New Mexico Albuquerque, NM 87 Abstract In this paper we derive necessary and

More information

ON SEPARATION PRINCIPLE FOR THE DISTRIBUTED ESTIMATION AND CONTROL OF FORMATION FLYING SPACECRAFT

ON SEPARATION PRINCIPLE FOR THE DISTRIBUTED ESTIMATION AND CONTROL OF FORMATION FLYING SPACECRAFT ON SEPARATION PRINCIPLE FOR THE DISTRIBUTED ESTIMATION AND CONTROL OF FORMATION FLYING SPACECRAFT Amir Rahmani (), Olivia Ching (2), and Luis A Rodriguez (3) ()(2)(3) University of Miami, Coral Gables,

More information

Consensus Problems on Small World Graphs: A Structural Study

Consensus Problems on Small World Graphs: A Structural Study Consensus Problems on Small World Graphs: A Structural Study Pedram Hovareshti and John S. Baras 1 Department of Electrical and Computer Engineering and the Institute for Systems Research, University of

More information

Notes on averaging over acyclic digraphs and discrete coverage control

Notes on averaging over acyclic digraphs and discrete coverage control Notes on averaging over acyclic digraphs and discrete coverage control Chunkai Gao Francesco Bullo Jorge Cortés Ali Jadbabaie Abstract In this paper, we show the relationship between two algorithms and

More information

Consensus Problems in Complex-Weighted Networks

Consensus Problems in Complex-Weighted Networks Consensus Problems in Complex-Weighted Networks arxiv:1406.1862v1 [math.oc] 7 Jun 2014 Jiu-Gang Dong, Li Qiu Abstract Consensus problems for multi-agent systems in the literature have been studied under

More information

Flocking while Preserving Network Connectivity

Flocking while Preserving Network Connectivity Flocking while Preserving Network Connectivity Michael M Zavlanos, Ali Jadbabaie and George J Pappas Abstract Coordinated motion of multiple agents raises fundamental and novel problems in control theory

More information

Lecture 4: Introduction to Graph Theory and Consensus. Cooperative Control Applications

Lecture 4: Introduction to Graph Theory and Consensus. Cooperative Control Applications Lecture 4: Introduction to Graph Theory and Consensus Richard M. Murray Caltech Control and Dynamical Systems 16 March 2009 Goals Introduce some motivating cooperative control problems Describe basic concepts

More information

On Bifurcations. in Nonlinear Consensus Networks

On Bifurcations. in Nonlinear Consensus Networks On Bifurcations in Nonlinear Consensus Networks Vaibhav Srivastava Jeff Moehlis Francesco Bullo Abstract The theory of consensus dynamics is widely employed to study various linear behaviors in networked

More information

Agreement Problems in Networks with Directed Graphs and Switching Topology

Agreement Problems in Networks with Directed Graphs and Switching Topology Technical Report CIT-CDS 3 5 Agreement Problems in Networks with Directed Graphs and Switching Topology Reza Olfati Saber Richard M. Murray Control and Dynamical Systems California Institute of Technology

More information

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems 1 Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems Mauro Franceschelli, Andrea Gasparri, Alessandro Giua, and Giovanni Ulivi Abstract In this paper the formation stabilization problem

More information

Multi-Hop Relay Protocols for Fast Consensus Seeking

Multi-Hop Relay Protocols for Fast Consensus Seeking Multi-Hop Relay Protocols for Fast Consensus Seeking Zhipu Jin and Richard M Murray Abstract Consensus protocols in coordinated multi-agent systems are distributed algorithms Just using local information

More information

Fast Linear Iterations for Distributed Averaging 1

Fast Linear Iterations for Distributed Averaging 1 Fast Linear Iterations for Distributed Averaging 1 Lin Xiao Stephen Boyd Information Systems Laboratory, Stanford University Stanford, CA 943-91 lxiao@stanford.edu, boyd@stanford.edu Abstract We consider

More information

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 1, JANUARY

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 1, JANUARY IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL 57, NO 1, JANUARY 2010 213 Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint Zhongkui Li, Zhisheng

More information

arxiv: v1 [cs.sy] 4 Nov 2015

arxiv: v1 [cs.sy] 4 Nov 2015 Novel Distributed Robust Adaptive Consensus Protocols for Linear Multi-agent Systems with Directed Graphs and ExternalDisturbances arxiv:5.033v [cs.sy] 4 Nov 05 YuezuLv a,zhongkuili a,zhishengduan a,gangfeng

More information

Multi-Hop Relay Protocols for Fast Consensus Seeking

Multi-Hop Relay Protocols for Fast Consensus Seeking Proceedings of the 5th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 13-15, 6 WeB111 Multi-Hop Relay Protocols for Fast Consensus Seeking Zhipu Jin and

More information

Almost Sure Convergence to Consensus in Markovian Random Graphs

Almost Sure Convergence to Consensus in Markovian Random Graphs Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 2008 Almost Sure Convergence to Consensus in Markovian Random Graphs Ion Matei, Nuno Martins and John S. Baras

More information

Research Article H Consensus for Discrete-Time Multiagent Systems

Research Article H Consensus for Discrete-Time Multiagent Systems Discrete Dynamics in Nature and Society Volume 05, Article ID 8084, 6 pages http://dx.doi.org/0.55/05/8084 Research Article H Consensus for Discrete- Multiagent Systems Xiaoping Wang and Jinliang Shao

More information

Consensus Based Formation Control Strategies for Multi-vehicle Systems

Consensus Based Formation Control Strategies for Multi-vehicle Systems Proceedings of the 6 American Control Conference Minneapolis, Minnesota, USA, June 14-16, 6 FrA1.5 Consensus Based Formation Control Strategies for Multi-vehicle Systems Wei Ren Abstract In this paper

More information

On Bifurcations in Nonlinear Consensus Networks

On Bifurcations in Nonlinear Consensus Networks American Control Conference Marriott Waterfront, Baltimore, MD, USA June -July, WeC.4 On Bifurcations in Nonlinear Consensus Networks Vaibhav Srivastava Jeff Moehlis Francesco Bullo Abstract The theory

More information

Research Article Pinning-Like Adaptive Consensus for Networked Mobile Agents with Heterogeneous Nonlinear Dynamics

Research Article Pinning-Like Adaptive Consensus for Networked Mobile Agents with Heterogeneous Nonlinear Dynamics Mathematical Problems in Engineering, Article ID 69031, 9 pages http://dx.doi.org/10.1155/014/69031 Research Article Pinning-Like Adaptive Consensus for etworked Mobile Agents with Heterogeneous onlinear

More information

Network synchronizability analysis: The theory of subgraphs and complementary graphs

Network synchronizability analysis: The theory of subgraphs and complementary graphs Physica D 237 (2008) 1006 1012 www.elsevier.com/locate/physd Network synchronizability analysis: The theory of subgraphs and complementary graphs Zhisheng Duan a,, Chao Liu a, Guanrong Chen a,b a State

More information

TOPOLOGY FOR GLOBAL AVERAGE CONSENSUS. Soummya Kar and José M. F. Moura

TOPOLOGY FOR GLOBAL AVERAGE CONSENSUS. Soummya Kar and José M. F. Moura TOPOLOGY FOR GLOBAL AVERAGE CONSENSUS Soummya Kar and José M. F. Moura Department of Electrical and Computer Engineering Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:{moura}@ece.cmu.edu)

More information

Recent Advances in Consensus of Multi-Agent Systems

Recent Advances in Consensus of Multi-Agent Systems Int. Workshop on Complex Eng. Systems and Design, Hong Kong, 22 May 2009 Recent Advances in Consensus of Multi-Agent Systems Jinhu Lü Academy of Mathematics and Systems Science Chinese Academy of Sciences

More information

Automatica. Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication

Automatica. Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication Automatica 45 (2009 1299 1305 Contents lists available at ScienceDirect Automatica journal homepage: www.elsevier.com/locate/automatica Brief paper Distributed discrete-time coordinated tracking with a

More information

Consensusability of discrete-time multi-agent systems

Consensusability of discrete-time multi-agent systems Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Consensusability of discrete-time multi-agent systems Abhishek Pandey Louisiana State University and Agricultural

More information

Discrete-Time Distributed Observers over Jointly Connected Switching Networks and an Application

Discrete-Time Distributed Observers over Jointly Connected Switching Networks and an Application 1 Discrete-Time Distributed Observers over Jointly Connected Switching Networks and an Application Tao Liu and Jie Huang arxiv:1812.01407v1 [cs.sy] 4 Dec 2018 Abstract In this paper, we first establish

More information

Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents

Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents Max Planck Institute Magdeburg Preprints Petar Mlinarić Sara Grundel Peter Benner Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents MAX PLANCK INSTITUT

More information

Consensus Seeking in Multi-agent Systems Under Dynamically Changing Interaction Topologies

Consensus Seeking in Multi-agent Systems Under Dynamically Changing Interaction Topologies IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR PUBLICATION AS A TECHNICAL NOTE. Consensus Seeking in Multi-agent Systems Under Dynamically Changing Interaction Topologies Wei Ren, Student Member,

More information

Consensus in the network with uniform constant communication delay

Consensus in the network with uniform constant communication delay Consensus in the network with uniform constant communication delay Xu Wang 1 Ali Saberi 1 Anton A. Stoorvogel Håvard Fjær Grip 1 Tao Yang 3 Abstract This paper studies the consensus among identical agents

More information

Formation Control and Network Localization via Distributed Global Orientation Estimation in 3-D

Formation Control and Network Localization via Distributed Global Orientation Estimation in 3-D Formation Control and Network Localization via Distributed Global Orientation Estimation in 3-D Byung-Hun Lee and Hyo-Sung Ahn arxiv:1783591v1 [cssy] 1 Aug 17 Abstract In this paper, we propose a novel

More information

Max-Consensus in a Max-Plus Algebraic Setting: The Case of Fixed Communication Topologies

Max-Consensus in a Max-Plus Algebraic Setting: The Case of Fixed Communication Topologies Max-Consensus in a Max-Plus Algebraic Setting: The Case of Fixed Communication Topologies Behrang Monajemi Nejad, Sid Ahmed Attia and Jörg Raisch Control Systems Group ( Fachgebiet Regelungssysteme ),

More information

Decentralized Estimation of the Algebraic Connectivity for Strongly Connected Networks

Decentralized Estimation of the Algebraic Connectivity for Strongly Connected Networks Decentralized Estimation of the Algebraic Connectivity for Strongly Connected Networs Hasan A Poonawala and Mar W Spong Abstract The second smallest eigenvalue λ 2 (L) of the Laplacian L of a networ G

More information

Guaranteed-Cost Consensus for Singular Multi-Agent Systems With Switching Topologies

Guaranteed-Cost Consensus for Singular Multi-Agent Systems With Switching Topologies IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL 61, NO 5, MAY 2014 1531 Guaranteed-Cost Consensus for Singular Multi-Agent Systems With Switching Topologies Jianxiang Xi, Yao Yu, Guangbin

More information

Decentralized Control of Nonlinear Multi-Agent Systems Using Single Network Adaptive Critics

Decentralized Control of Nonlinear Multi-Agent Systems Using Single Network Adaptive Critics Decentralized Control of Nonlinear Multi-Agent Systems Using Single Network Adaptive Critics Ali Heydari Mechanical & Aerospace Engineering Dept. Missouri University of Science and Technology Rolla, MO,

More information

Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches

Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL Int. J. Robust Nonlinear Control (2016) Published online in Wiley Online Library (wileyonlinelibrary.com)..3552 Bipartite consensus of multi-agent

More information

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators Applied Mathematics Volume 212, Article ID 936, 12 pages doi:1.11/212/936 Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

More information

OUTPUT CONTROLLABILITY AND STEADY-OUTPUT CONTROLLABILITY ANALYSIS OF FIXED SPEED WIND TURBINE

OUTPUT CONTROLLABILITY AND STEADY-OUTPUT CONTROLLABILITY ANALYSIS OF FIXED SPEED WIND TURBINE PHYSCON 2011, León, Spain, September, 5 September, 8 2011 OUTPUT CONTROLLABILITY AND STEADY-OUTPUT CONTROLLABILITY ANALYSIS OF FIXED SPEED WIND TURBINE J.L. Domínguez-García Electrical Engineering Area

More information

Decentralized Consensus Based Control Methodology for Vehicle Formations in Air and Deep Space

Decentralized Consensus Based Control Methodology for Vehicle Formations in Air and Deep Space American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, hb5.5 Decentralized Consensus Based Control Methodology for Vehicle Formations in Air and Deep Space Miloš S. Stanković,

More information

Kybernetika. Wei Ni; Xiaoli Wang; Chun Xiong Leader-following consensus of multiple linear systems under switching topologies: An averaging method

Kybernetika. Wei Ni; Xiaoli Wang; Chun Xiong Leader-following consensus of multiple linear systems under switching topologies: An averaging method Kybernetika Wei Ni; Xiaoli Wang; Chun Xiong Leader-following consensus of multiple linear systems under switching topologies: An averaging method Kybernetika, Vol. 8 (), No. 6, 9-- Persistent URL: http://dml.cz/dmlcz/36

More information

An Optimal Tracking Approach to Formation Control of Nonlinear Multi-Agent Systems

An Optimal Tracking Approach to Formation Control of Nonlinear Multi-Agent Systems AIAA Guidance, Navigation, and Control Conference 13-16 August 212, Minneapolis, Minnesota AIAA 212-4694 An Optimal Tracking Approach to Formation Control of Nonlinear Multi-Agent Systems Ali Heydari 1

More information

Optimal Network Topology Design in Multi-Agent Systems for Efficient Average Consensus

Optimal Network Topology Design in Multi-Agent Systems for Efficient Average Consensus 49th IEEE Conference on Decision and Control December 15-17, 010 Hilton Atlanta Hotel, Atlanta, GA, USA Optimal Network Topology Design in Multi-Agent Systems for Efficient Average Consensus Mohammad Rafiee

More information

Decentralized Control of Vehicle Formations

Decentralized Control of Vehicle Formations Portland State University PDXScholar Mathematics and Statistics Faculty Publications and Presentations Fariborz Maseeh Department of Mathematics and Statistics Decentralized Control of Vehicle Formations

More information

Distributed Adaptive Synchronization of Complex Dynamical Network with Unknown Time-varying Weights

Distributed Adaptive Synchronization of Complex Dynamical Network with Unknown Time-varying Weights International Journal of Automation and Computing 3, June 05, 33-39 DOI: 0.007/s633-05-0889-7 Distributed Adaptive Synchronization of Complex Dynamical Network with Unknown Time-varying Weights Hui-Na

More information

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Consensus problems for multi-agent systems av Hongmei Zhao 2010 - No 2 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

More information

Consensus of Information Under Dynamically Changing Interaction Topologies

Consensus of Information Under Dynamically Changing Interaction Topologies Consensus of Information Under Dynamically Changing Interaction Topologies Wei Ren and Randal W. Beard Abstract This paper considers the problem of information consensus among multiple agents in the presence

More information

arxiv: v1 [cs.ro] 8 Aug 2016

arxiv: v1 [cs.ro] 8 Aug 2016 Enforcing Biconnectivity in Multi-robot Systems Mehran Zareh, Lorenzo Sabattini, and Cristian Secchi arxiv:1608.02286v1 [cs.ro] 8 Aug 2016 Abstract Connectivity maintenance is an essential task in multi-robot

More information

Consensus Algorithms are Input-to-State Stable

Consensus Algorithms are Input-to-State Stable 05 American Control Conference June 8-10, 05. Portland, OR, USA WeC16.3 Consensus Algorithms are Input-to-State Stable Derek B. Kingston Wei Ren Randal W. Beard Department of Electrical and Computer Engineering

More information

Distributed Tracking Control for Multi-Agent Systems Under Two Types of Attacks

Distributed Tracking Control for Multi-Agent Systems Under Two Types of Attacks Preprints of the 9th World Congress The International Federation of Automatic Control Distributed Tracking Control for Multi-Agent Systems Under Two Types of Attacks Zhi Feng and Guoqiang Hu Abstract:

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information