Decentralized Real-Time Monitoring of Network-Wide Aggregates

Size: px
Start display at page:

Download "Decentralized Real-Time Monitoring of Network-Wide Aggregates"

Transcription

1 Decetralzed Real-Tme Motorg of Network-Wde Aggregates Rolf Stadler Mads Dam, Alberto Gozalez, Fetah Wuhb KTH Royal Isttute of Techology Stockholm, Swede Large-scale Dstrbuted Systems ad Mddleware (LADIS 8) IBM TJ Watso Research Lab, NY, Sept 15-17, 28 Outle A self-orgazg Motorg Layer Cotuous Motorg of Aggregates wth Accuracy Objectves (A-GAP) Performace comparso gossp vs. tree-based motorg (GAP vs. G-GAP) 2

2 Today s Maagemet Systems for Today s Network Techologes aalyze Maagemet System act observe Maagemet tellgece outsde maaged system. Clear separato betwee maagemet system ad maaged system, by desg. Maaged System 3 Today s Maagemet Systems for Today s Network Techologes (2) aalyze Maagemet System Motorg ad cofgurato, geerally FCAPS fuctos, performed o a per-devce bass. Successful for - small umber of compoets - small rate of chage. Maaged System 4

3 A Maagemet Layer sde the Network aalyze polces exceptos reports 5 A Motorg System for Large-scale Dyamc Evromets 1. Egeer a self-orgazg motorg layer sde the maaged system. 2. Support motorg of aggregates real-tme. across eghborhood, doma, etwork sum, max, average, percetle, hstogram, 3. Provde prmtves for pollg, cotuous motorg, detecto of threshold crossgs. 4. Support cotrollg the performace trade-offs. accuracy, overhead, executo tme, robustess 6

4 Cotuous Motorg of Aggregates wth Accuracy Objectves (A-GAP) 7 The Problem Fd a effcet soluto for cotuous motorg of aggregates large-scale l dyamc etwork evromets -Aggregato fuctos: SUM, MAX ad AVERAGE, -Sample aggregates: total umber of VoIP flows, maxmum lk utlzato, hstogram of curret load across routers a etwork doma Key Applcato Areas: Network Supervso, Qualty Assurace, Proactve Fault Maagemet 8

5 Tradeoff betwee Estmato ad Overhead Overhead Estmato Error Maagemet solutos deployed today usually provde qualtatve cotrol of the accuracy Goal: Cotrol trade-off through error objectve 9 Decetralzed -Network Aggregato Maagemet Stato Computg Aggregates Self-stablzg spag tree Global Aggregate Partal Aggregate Local varable Root 1 1 Physcal Node Aggregatg Node Leaf Node Icremetal, -etwork etwork aggregato Push-based Effcet Operato Local flters coform to error objectve Adapt dyamcally to etwork statstcs

6 Local Adaptve Flters Local varable or partal aggregate Last update value Flter wdth Flter Exceeded: 1) Trggers a update to paret 2) Flter s shfted tme Local flter o a ode Cotrols the maagemet overhead by flterg updates Drops updates wth small chage to partal aggregate Perodcally adapts to the dyamcs of etwork evromet 11 Problem Formalzato Fd flter wdths to motor aggregate for a gve accuracy objectve, wth mmal overhead Overhead: maxmum processg load ω over all maagemet processes Accuracy objectve: average error percetle error maxmum error Mmze Mmze Mmze { } Max ω { } Max ω { } Max ω s.t. E[ E root ] ε s.t. p( E root >γ) θ s.t. E root κ 12

7 A-GAP: A Dstrbuted Heurstc The global problem s mapped oto a local problem for each ode Mmze { ω π } Max s.t. ( ) π E E out ε Attempts to mmze the maxmum processg load over all odes by mmzg the load wth each ode s eghborhood Flter computato: decetralzed ad asychroous Each ode depedetly rus a cotrol cycle: every τ secods { request model varables from chldre compute ew flters ad accuracy objectves for chldre compute model varables for local ode } 13 A Stochastc Model for the Motorg Process Model based o dscrete-tme Markov chas It relates for each ode -the error of ts partal aggregate -evoluto of the partal aggregate -the rate of updates seds -the wdth of the local flter It permts to compute for each ode -the dstrbuto of estmato error -the protocol overhead Updates to paret G Node state F Flter wdth Updates from chldre λ S out E out ω S E Update rate Step szes Estmato Error Update rate (processg load) Step szes Et Estmato Error 14

8 ,35,3,25,2,15,1, ,5 2 1,5 1,5 ode 1 ode 2 ode 3 ode 4 ode 5 ode 6 ode 7 Measured Estmated Stochastc Model (leaf ode) Estmatg step sze (MLE) Evoluto of local varable Trasto Matrx Step Sze Estmato Error Maagemet Overhead X + X F + X F j = otherwse. t j = P( X P( X = ) + P( F = j ) < X < F j ) F, j j = s+ F P( X = z) P( G = s z) s > F z = s F F d + F P( Sout = s) = P( X = z) P( G = d z) s = d = F z = d F otherwse. E = G out λ = ( 1 P( S = )) out 15 A-GAP: Model-based Motorg Error Objectve Estmato Error Estmato model varables Optmzato Problem Stochastc Model of Motorg Process Overhead Updates/sec Step Szes Flter Wdths Aggregate Estmato x (t) Measuremets local varables Tree-based aggregato 16

9 A-GAP: Evaluato through Smulato Overlay topologes -Aboveet: 654 odes, 1332 lks -Grds: 25, 85, 221, 613 odes Aggregate: Number of http flows the doma Traces -From two 1 Gbt/s lks that coect Uversty of Twete to a research etwork Cotrol cycle -τ=1 sec 17 Tradeoff: Accuracy vs Overhead 6 5 ε = ARC Updates/se ec ε =2 ε =5 A-GAP T m = ε =1 ε =15.1 ε =2 Overhead decreases mootocally Overhead depeds o the chages of the aggregate, ot o ts value. A-GAP outperforms a rate-cotrol scheme (ARC) Avg Error 18

10 Scalablty alzed) Updates/sec (orm 1,8,6,4,2 Grd 25 Grd 221 Grd 613 e m Avg Error Mmum error e m creases wth the etwork sze Overhead creases learly wth etwork sze for same error objectve 19 Robustess Estmato Error Tme 175 Maxmum m Load (Updates/sec) Node A fals Ed of Traset Tme 175 Estmato error: several spkes durg sub-secod traset perod Overhead: sgle peak wth a log traset 2

11 Error Predcto by A-GAP vs Actual Error,5,4,3 At ActualError Absolute Avg Error Error Predcted by A-GAP,2, Error 4 Accurate predcto of the error dstrbuto Maxmum error >> average error (oe order of magtude) 21 A-GAP Prototype Lab testbed at KTH 16 motorg odes 16 Csco 26 Seres routers Smartbts 6 traffc geerator A-GAP mplemeted Java Maagemet Stato Aggregato Tree Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Physcal Network 22

12 Prototype: Maagemet Stato Iterface Select Aggregato Fucto Select Accuracy Objectve Select Root Node Evoluto of the Aggregate (True Value ad A-GAP Estmato) Overhead Dstrbuto ad Evoluto Show Aggregato Tree Real-tme Estmato of Error Dstrbuto ad Trade-off 23 Smulato vs Testbed Measuremets Testbed Expermet Updates/sec Smulato Avg Error e Curves are close: dfferece overhead below 3,5% Prototype valdates smulato mode 24

13 Prototype: Error Estmato by A-GAP vs Actual Error,1,8 Measured Error Error Estmated by A-GAP,6,4,2 Absolute Avg Error, Error 3 Accurate estmato of the error dstrbuto Maxmum error >> average error (oe order of magtude) 25 Prototype: Overhead Estmato by A-GAP vs Actual Overhead 3 2,5 Updates/sec 2 1,5 1,5 ode 1 ode 2 ode 3 ode 4 ode 5 ode 6 ode 7 Measured Accurate estmato of the overhead Estmato teds to be more accurate for odes close to the root Estmated 26

14 Gossp vs. Tree-based Aggregato 27 Gossp protocols Gossp protocols are roud-based, durg each roud a ode radomly selects a subset of eghbors ad teracts wth them. Applcatos - formato dssemato - database replcato - falure detecto - resource dscovery - computg aggregates - 28

15 Computg aggregates wth gosspg Push Syopses [Kempe et al. 3] The protocol computes AVERAGE of the local varables x. After each roud a ew estmate of the aggregate s computed as s /w. Expoetal covergece for uform gossp ad complete graphs Protocol Ivarats: s = x, r, = r r, r, w Roud { 1. s = x ; 2. w = 1; 3. sed ( s, w ) to self } Roud r + 1 { * * 1. Let {( s, w )} be all pars set to l l durg roud r * * 2. s s w w = ; l l = l l 3. choose shares α for all odes j, j such that α = j, j 1 (, j * s, α, j * w 4. for all j sed α ) to each j } 29 The G-GAP protocol Roud { 1. s = x ; 2. w = 1 ; 3. L = {} ; 4. for each ode j ( rs, j, rw, j ) = (,) ; 5. for each ode j ( srs, j, srw, j ) = (,) ; 6. sed ( s, w,,,,) to self; 7. for all j sed (,,,,,) to j } Roud r+1 { 1. Let M be all messages receved by durg roud r 2. s = s( m) + ( xr, xr 1, ) m M ; w = w( m) m M 3. for all j ( acks, j, ackw, j) = (,) 4. L = L org( M) } 5. for all j Neghbors { a. ( rs, j, rw, j) = ( rs, j, rw, j) + (( rs( m), rw( m) acks( m), ackw( m))) morg : ( m) = j b. ( acks, j, ackw, j) = ( srs, j, srw, j) + (( s m ), w ( m )) morg : ( m) = j c. f (detected_falure(j)) {. ( s, w) = ( s, w) + ( rs, j, rw, j). ( rs, j, rw, j) = ( srs, j, srw, j) = (,). L = L \ j } } 6. for all j L { a. choose α such that α 1, j j, j = b. choose β, such that j β = j, j 1 ad β, = c. ( srs, j, srw, j) = β, j( α, s x), β, j( α, w 1) d. sed ( α, js, α, jw, srs, j, srw, j, acks, j, ackw, j) to j e. ( rs, j, rw, j ) = ( rs, j +α, js, rw, j + α, jw ) } 3

16 Accuracy vs. Overhead gossp- ad tree-based aggregato protocol GAP ad G-GAP 654 ode etwork GoCast overlay, coectvty 1 aggregato: AVERAGE UT trace 4 rouds/sec o falures 31 Accuracy vs. Falure Rate gossp- ad tree-based aggregato protocol GAP ad G-GAP 654 ode etwork GoCast overlay, coectvty 1 aggregato: AVERAGE UT trace 4 rouds/sec odes fal radomly, recover after 1 sec 32

17 Summary A self-orgazg motorg layer sde the maaged system -Motorg etwork-wdewde aggregates. -Pollg, cotuous motorg, threshold detecto. -Cotrollg the performace trade-offs. Cotuous motorg of aggregates wth accuracy objectves -Effcet, scalable ad adaptable motorg usg aggregato trees s feasble. -Model-based motorg allows for performace predcto. Tree-based vs. gossp-based cotuous motorg -I a tradtoal wrele etworkg scearo, tree-based aggregato outperforms gossp-based aggregato 33 Refereces F. Wuhb, M. Dam, R. Stadler: Decetralzed Detecto of Global Threshold Crossgs Usg Aggregato Trees, Computer Networks, Vol. 52, No. 9, pp , 28. A. Gozalez Preto, R. Stadler: A-GAP: A Adaptve Protocol for Cotuous Network Motorg wth Accuracy Objectves, IEEE Trasactos o Network ad Servce Maagemet (TNSM), Vol. 4, No. 1, Jue 27. F. Wuhb, M. Dam, R. Stadler, A. Clemm: Robust Motorg of Network-wde Aggregates through Gosspg, 1th IFIP/IEEE Iteratoal Symposum o Itegrated Maagemet (IM 27), Much, Germay, May 21-25, 27. K.S. Lm ad R. Stadler: Real-tme vews of etwork traffc usg decetralzed maagemet, 9th IFIP/IEEE Iteratoal Symposum o Itegrated Network Maagemet (IM 25), Nce, Frace, May 16-19,

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

A Multi-Entry Simulated and Inversed Function Approach. for Alternative Solutions

A Multi-Entry Simulated and Inversed Function Approach. for Alternative Solutions Iteratoal Mathematcal Forum,, 2006, o. 40, 2003 207 A Mult-Etry Smulated ad Iversed Fucto Approach for Alteratve Solutos Kev Wag a, Che Chag b ad Chug Pg Lu b a Computg ad Mathematcs School Joh Moores

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN EP2200 Queueg theory ad teletraffc systems Queueg etworks Vktora Fodor Ope ad closed queug etworks Queug etwork: etwork of queug systems E.g. data packets traversg the etwork from router to router Ope

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Research on SVM Prediction Model Based on Chaos Theory

Research on SVM Prediction Model Based on Chaos Theory Advaced Scece ad Techology Letters Vol.3 (SoftTech 06, pp.59-63 http://dx.do.org/0.457/astl.06.3.3 Research o SVM Predcto Model Based o Chaos Theory Sog Lagog, Wu Hux, Zhag Zezhog 3, College of Iformato

More information

Outline. Basic Components of a Queue. Queueing Notation. EEC 686/785 Modeling & Performance Evaluation of Computer Systems.

Outline. Basic Components of a Queue. Queueing Notation. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. EEC 686/785 Modelg & Performace Evaluato of Computer Systems Lecture 5 Departmet of Electrcal ad Computer Egeerg Clevelad State Uversty webg@eee.org (based o Dr. Raj Ja s lecture otes) Outle Homework #5

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Wireless Link Properties

Wireless Link Properties Opportustc Ecrypto for Robust Wreless Securty R. Chadramoul ( Moul ) moul@steves.edu Multmeda System, Networkg, ad Commucatos (MSyNC) Laboratory, Departmet of Electrcal ad Computer Egeerg, Steves Isttute

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Research on Fault Tolerance for the Static Segment of FlexRay Protocol

Research on Fault Tolerance for the Static Segment of FlexRay Protocol Research o Fault Tolerace for the Statc Segmet of FlexRay Protocol Ru I a, Ye ZHU a, Zhyg WANG b a Embedded System & Networkg aboratory, Hua Uversty, Cha b the School of Computer, Natoal Uversty of Defese

More information

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares.

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares. Lecture 3 Optmzato Trt 04 P.H.S.Torr Least Squares Fttg Classc least squares Total least squares Robust Estmato Fttg: Cocepts ad recpes Least squares le fttg Data:,,,, Le equato: = m + b Fd m, b to mmze

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter A Robust otal east Mea Square Algorthm For Nolear Adaptve Flter Ruxua We School of Electroc ad Iformato Egeerg X'a Jaotog Uversty X'a 70049, P.R. Cha rxwe@chare.com Chogzhao Ha, azhe u School of Electroc

More information

Spreadsheet Problem Solving

Spreadsheet Problem Solving 1550 1500 CO Emmssos for the US, 1989 000 Class meetg #6 Moday, Sept 14 th CO Emssos (MMT Carbo) y = 1.3x 41090.17 1450 1400 1350 1300 1989 1990 1991 199 1993 1994 1995 1996 1997 1998 1999 000 Year GEEN

More information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved. VOL., NO., November 0 ISSN 5-77 ARPN Joural of Scece ad Techology 0-0. All rghts reserved. http://www.ejouralofscece.org Usg Square-Root Iverted Gamma Dstrbuto as Pror to Draw Iferece o the Raylegh Dstrbuto

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Reliability evaluation of distribution network based on improved non. sequential Monte Carlo method

Reliability evaluation of distribution network based on improved non. sequential Monte Carlo method 3rd Iteratoal Coferece o Mecatrocs, Robotcs ad Automato (ICMRA 205) Relablty evaluato of dstrbuto etwork based o mproved o sequetal Mote Carlo metod Je Zu, a, Cao L, b, Aog Tag, c Scool of Automato, Wua

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Research on scheme evaluation method of automation mechatronic systems

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Research on scheme evaluation method of automation mechatronic systems [ype text] [ype text] [ype text] ISSN : 0974-7435 Volume 0 Issue 6 Boechology 204 Ida Joural FULL PPER BIJ, 0(6, 204 [927-9275] Research o scheme evaluato method of automato mechatroc systems BSRC Che

More information

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department Mapulator Dyamcs mrkabr Uversty of echology omputer Egeerg formato echology Departmet troducto obot arm dyamcs deals wth the mathematcal formulatos of the equatos of robot arm moto. hey are useful as:

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation.

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation. Whe solvg a vetory repleshmet problem usg a MDP model, kowg that the optmal polcy s of the form (s,s) ca reduce the computatoal burde. That s, f t s optmal to replesh the vetory whe the vetory level s,

More information

Signal,autocorrelation -0.6

Signal,autocorrelation -0.6 Sgal,autocorrelato Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato Phase ose p/.5..7.3 -. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.8..6.

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Delay minimisation in multipath routing using intelligent traffic distribution policies

Delay minimisation in multipath routing using intelligent traffic distribution policies www.etdl.org Publshed IET Commucatos Receved o 7th August 2010 Revsed o 20th December 2010 do: 10.1049/et-com.2010.0721 Delay mmsato multpath routg usg tellget traffc dstrbuto polces S.M. Mostafav 1 E.

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

Consensus Control for a Class of High Order System via Sliding Mode Control

Consensus Control for a Class of High Order System via Sliding Mode Control Cosesus Cotrol for a Class of Hgh Order System va Sldg Mode Cotrol Chagb L, Y He, ad Aguo Wu School of Electrcal ad Automato Egeerg, Taj Uversty, Taj, Cha, 300072 Abstract. I ths paper, cosesus problem

More information

Study on a Fire Detection System Based on Support Vector Machine

Study on a Fire Detection System Based on Support Vector Machine Sesors & Trasducers, Vol. 8, Issue, November 04, pp. 57-6 Sesors & Trasducers 04 by IFSA Publshg, S. L. http://www.sesorsportal.com Study o a Fre Detecto System Based o Support Vector Mache Ye Xaotg, Wu

More information

Web Caching and Content Distribution: A View From the Interior

Web Caching and Content Distribution: A View From the Interior Web achg ad otet Dstrbuto: A Vew From the Iteror Syam Gadde Jeff hase Duke Uversty Mchael AT&T Labs - Research Overvew Aalytcal tools have evolved to predct behavor of large-scale Web caches. Are results

More information

Estimation of state-of-charge of Li-ion batteries in EV using the genetic particle filter

Estimation of state-of-charge of Li-ion batteries in EV using the genetic particle filter IOP Coferece Seres: Earth ad Evrometal Scece PAPER OPEN ACCESS Estmato of state-of-charge of L-o batteres EV usg the geetc partcle flter To cte ths artcle: Ju B et al 207 IOP Cof. Ser.: Earth Evro. Sc.

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort Ths lecture ad the ext Heapsort Heap data structure ad prorty queue ADT Qucksort a popular algorthm, very fast o average Why Sortg? Whe doubt, sort oe of the prcples of algorthm desg. Sortg used as a subroute

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Application of Global Sensitivity Indices for measuring the effectiveness of Quasi-Monte Carlo methods and parameter estimation. parameter.

Application of Global Sensitivity Indices for measuring the effectiveness of Quasi-Monte Carlo methods and parameter estimation. parameter. Applcato of Global estvty Idces for measurg the effectveess of Quas-Mote Carlo methods ad parameter estmato parameter estmato Kuchereko Emal: skuchereko@cacuk Outle Advatages ad dsadvatages of Mote Carlo

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Modified Moment Estimation for a Two Parameter Gamma Distribution

Modified Moment Estimation for a Two Parameter Gamma Distribution IOSR Joural of athematcs (IOSR-J) e-issn: 78-578, p-issn: 39-765X. Volume 0, Issue 6 Ver. V (Nov - Dec. 04), PP 4-50 www.osrjourals.org odfed omet Estmato for a Two Parameter Gamma Dstrbuto Emly rm, Abel

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Bayes Decision Theory - II

Bayes Decision Theory - II Bayes Decso Theory - II Ke Kreutz-Delgado (Nuo Vascocelos) ECE 175 Wter 2012 - UCSD Nearest Neghbor Classfer We are cosderg supervsed classfcato Nearest Neghbor (NN) Classfer A trag set D = {(x 1,y 1 ),,

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Lear Regresso wth Oe Regressor AIM QA.7. Expla how regresso aalyss ecoometrcs measures the relatoshp betwee depedet ad depedet varables. A regresso aalyss has the goal of measurg how chages oe varable,

More information

Rock-Paper-Scissors: An Example of a Multi-agent Dynamical System

Rock-Paper-Scissors: An Example of a Multi-agent Dynamical System Rock-Paper-Scssors: A Example of a Mult-aget Dyamcal System Krst Lu Departmet of Mathematcs Krst.lu@gmal.com Abstract: I order to study ad uderstad mult-aget systems, I create smulatos of agets playg the

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Estimation and Testing in Type-II Generalized Half Logistic Distribution

Estimation and Testing in Type-II Generalized Half Logistic Distribution Joural of Moder Appled Statstcal Methods Volume 13 Issue 1 Artcle 17 5-1-014 Estmato ad Testg Type-II Geeralzed Half Logstc Dstrbuto R R. L. Katam Acharya Nagarjua Uversty, Ida, katam.rrl@gmal.com V Ramakrsha

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Monitoring Changes in Operational Scenarios via Data Fusion in Sensor Networks

Monitoring Changes in Operational Scenarios via Data Fusion in Sensor Networks 22 Motorg Chages Operatoal Scearos va Data Fuso Sesor Networs Papato-Kazaos, Dr. Ttsa ad Burrell, Dr. Athoy 2 Uversty of Colorado at Dever, 2 Olahoma State Uversty USA Ope Access Database www.techweb.org.

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

to the estimation of total sensitivity indices

to the estimation of total sensitivity indices Applcato of the cotrol o varate ate techque to the estmato of total sestvty dces S KUCHERENKO B DELPUECH Imperal College Lodo (UK) skuchereko@mperalacuk B IOOSS Electrcté de Frace (Frace) S TARANTOLA Jot

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical ECE66: Sold State Devces Lecture 13 Solutos of the Cotuty Eqs. Aalytcal & Numercal Gerhard Klmeck gekco@purdue.edu Outle Aalytcal Solutos to the Cotuty Equatos 1) Example problems ) Summary Numercal Solutos

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

CS475 Parallel Programming

CS475 Parallel Programming CS475 Parallel Programmg Deretato ad Itegrato Wm Bohm Colorado State Uversty Ecept as otherwse oted, the cotet o ths presetato s lcesed uder the Creatve Commos Attrbuto.5 lcese. Pheomea Physcs: heat, low,

More information

Bias Correction in Estimation of the Population Correlation Coefficient

Bias Correction in Estimation of the Population Correlation Coefficient Kasetsart J. (Nat. Sc.) 47 : 453-459 (3) Bas Correcto Estmato of the opulato Correlato Coeffcet Juthaphor Ssomboothog ABSTRACT A estmator of the populato correlato coeffcet of two varables for a bvarate

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Steady-state Behavior of a Multi-phase M/M/1 Queue in Random Evolution subject to Catastrophe failure

Steady-state Behavior of a Multi-phase M/M/1 Queue in Random Evolution subject to Catastrophe failure Advaces Theoretcal ad Appled Mathematcs ISSN 973-4554 Volume, Number 3 (26), pp. 23-22 Research Ida Publcatos http://www.rpublcato.com Steady-state Behavor of a Mult-phase M/M/ Queue Radom Evoluto subect

More information

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods Malaysa Umodalty Joural Tests of Mathematcal for Global Optmzato Sceces (): of 05 Sgle - 5 Varable (007) Fuctos Usg Statstcal Methods Umodalty Tests for Global Optmzato of Sgle Varable Fuctos Usg Statstcal

More information

Accelerated Life Test Sampling Plans under Progressive Type II Interval Censoring with Random Removals

Accelerated Life Test Sampling Plans under Progressive Type II Interval Censoring with Random Removals Iteratoal Joural of Statstcs ad Probablty; Vol. 7, No. ; Jauary 8 ISSN 97-73 E-ISSN 97-74 Publshed by Caada Ceter of Scece ad Educato Accelerated Lfe Test Samplg Plas uder Progressve Type II Iterval Cesorg

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Computational Verb Neural Networks

Computational Verb Neural Networks INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION HTTP://WWW.IJCC.US, VOL. 5, NO. 3, SEPTEMBER 27 57 Computatoal Verb Neural Networks Tao Yag Abstract Whe ay attrbute value a covetoal eural etwork s verbfed,

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Estmato heory Joseph A. O Sullva Samuel C. Sachs Professor Electroc Systems ad Sgals Research Laboratory Electrcal ad Systems Egeerg Washgto Uversty Urbauer Hall 34-935-473 (Lyda aswers

More information