arxiv: v1 [cs.it] 20 Oct 2014

Size: px
Start display at page:

Download "arxiv: v1 [cs.it] 20 Oct 2014"

Transcription

1 FRAMES FOR SUBSPACES OF C N MATTHEW HIRN, DAVID WIDEMANN arxiv: v1 [cs.it] 20 Oct 2014 Abstract. We present a theory of finite frames for subspaces of C N. The definition of a subspace frame is given and results analogous to those from frame theory for C N are proven. 1. Introduction Frames have been used in many applications of signal processing. They give stable signal representations and allow modelling for noisy environments. Recent work with hyperspectral data has shown the need to consider subspaces of high dimensional spaces. In particular, ongoing work has led us to investigate frames for these subspaces. 2. Frames for C N Let Φ = {ϕ j } s CN, where s N. Φ is a finite frame for C N if there exist constants A,B > 0 such that (1) A f 2 f,ϕ j 2 B f 2, f C N. The numbers A,B are called the frame bounds. It is a well known fact that any spanning set is a frame for C N, while every frame is indeed a spanning set. A frame is tight if one can choose A = B in the definition, i.e., if (2) f,ϕ j 2 = A f 2, f C N. Finally, a frame is unit norm if (3) ϕ j = 1, j = 1,...,s. If Φ satisfies (1), (2), and (3), then we say Φ is a finite unit norm tight frame (FUNTF) for C N. In this case, the frame bounds satisfy A = B = s/n. In particular, ifφis afuntf with framebounds A = B = 1, then Φis anorthonormalbasis. Assume now that Φ = {ϕ j } s is a frame for CN. The analysis operator of Φ is defined as follows: L : C N C s, Lf := { f,ϕ j } s. Date: November 19, Key words and phrases. Frames, frame potential. 1

2 2 M. HIRN, D. WIDEMANN The synthesis operator is given by: L : C s C N, L {c j } s = c j ϕ j. One obtains the frame operator by composing L with L: S : C N C N, Sf = L Lf = f,ϕ j ϕ j Some important properties of S are the following: (i) S is invertible and self-adjoint. (ii) Every f C N can be represented as (4) f = f,s 1 ϕ j ϕ j = f,ϕ j S 1 ϕ j. (iii) Φ is a tight frame if and only if S = AI. Based on equation (4), one defines the dual frame of Φ as Φ = { ϕ j } s := {S 1 ϕ j } s ; the frame operator of Φ is S 1. If Φ is a tight frame for C N, then S 1 = 1 AI, and the representation formula is simple: f = 1 f,ϕ j ϕ j = 1 f,ϕ j ϕ j. A A 3. Frames for Subspaces of C N Let Φ = {ϕ j } s CN and let W be a subspace of C N of dimension r < N. We say Φ is a finite subspace frame for W if span(φ) = W. It is clear from this definition that there exist constants A,B > 0 such that (5) A f 2 f,ϕ j 2 B f 2, f W. Wenotethat ifwehadinsteadused(5) asourdefinition, then itwouldnotnecessarily imply that span(φ) = W but ratherthat span(φ) W. The unit norm property as well as the notion of a tight frame remain similar in this setting. More specifically, if we can take A = B in (5) then we call Φ a tight subspace frame. Finally, if Φ is a finite unit norm tight subspace frame, then we say Φ is a subspace FUNTF. We define L, L, and S exactly the same as in section 1, however we note that the properties of these maps change for subspace frames. In particular, we see: (a) L : C N C s is no longer injective, but rather ker(l) = (C N \W) {0}. (b) L : C s C N is no longer surjective, but rather image(l ) = W. (c) Based on (a) and (b), we see that S : C N C N is no longer invertible. Because of (c), none of properties (i) - (iii) from section 1 hold for subspace frames. The question then becomes: in what sense do subspace frames satisfy properties (i) - (iii) above? Theorems below show that subspace frames satisfy natural modifications of the above properties.

3 FRAMES FOR SUBSPACES OF C N 3 Let W on be a set of r orthonormal vectors such that span(w on ) = W. We will also consider W on as an N r matrix where the columns of this matrix are the vectors in the set W on. We define Φ W to be the r s matrix whose columns are the coordinates of Φ in W on ; that is: (6) Φ W := W on Φ, where we have implicitly used the matrix form of Φ, that is the N s matrix whose columns are the elements of Φ. The j th column of Φ W is the projected W-subspace coordinates of Φ. Proposition 1. The set Φ W consisting of the columns of the matrix Φ W is a frame for C r. Proof. Since span(w on ) = W, we have ker(won) W = {0}. Therefore, since span(φ) = W as well, we see that Won Φ has rank r. We denote the analysis, synthesis, and frame operators of Φ W by L W, L W, and S W, respectively. In terms of the analysis operator, L, for Φ, L W = LW on. By proposition 1 we see that S W will satisfy (i) - (iii). Theorem 1. Φ is a subspace FUNTF for W with frame bound A if and only if Φ W is a FUNTF for C r with frame bound A. Proof. We do the forward direction first: let g C r, then: Therefore we have: S W g,g = L W g,l W g = Φ W on g,φ W on g = W on g,ϕ j 2 = A W on g 2 = A W on g,w on g S W g,g A W on g,w on g = 0 = S W g,g A W on W ong,g = 0 = g,(s W AI)g = 0 = S W = AI For the reverse direction, let f W. There exists g C r such that W on g = f. Therefore, A f 2 = A f,f = A W on g,w on g = Ag,g = S W g,g = W on L LW on g,g = LW on g,lw on g = Lf,Lf = f,ϕ j 2

4 4 M. HIRN, D. WIDEMANN We define the dual frame of Φ W in the usual way, that is Φ W = S 1 W Φ W. We now define the dual subspace frame of Φ as follows: (7) Φ := Won ΦW = W on S 1 W W onφ. As the name implies, the set Φ = { ϕ j } s = {W ons 1 W W on ϕ j} s following properties: will have the Proposition 2. Φ is a subspace frame for W. Proof. This follows from proposition 1. Theorem 2. Every f W can be represented as f = f, ϕ j ϕ j = f,ϕ j ϕ j. Proof. The first representation formula is Φ Φ f = f for all f W. Letting f = W on g for some g C r, we have: (8) Φ Φ f = Φ(W on S 1 W W on Φ) f = ΦΦ W on (S 1 W ) W on(w on g) = SW on S 1 W g = SW on (W onsw on ) 1 g Since W on W on is the identity on W, (8) = W on W onsw on (W onsw on ) 1 g = W on g = f The second representation formula is ΦΦ f = f for all f W. ΦΦ f = (W on S 1 W W onφ)φ f = W on (W on SW on) 1 W on SW ong = W on g = f The following commutative diagram illustrates the above ideas:

5 FRAMES FOR SUBSPACES OF C N 5 Φ subspace frame for W C N (subspace FUNTF for W C N ) W ons 1 W W on Φ subspace frame for W C N (subspace FUNTF for W C N ) W on W on Φ W frame for C r (FUNTF for C r ) S 1 W ΦW frame for C r (FUNTF for C r ) 4. Frame Potential Define the frame potential of a finite unit norm frame Φ = {ϕ j } s for CN as: FP(Φ) := k=1 ϕ j,ϕ k 2. In [1] a characterization of FUNTFs is given in terms of the frame potential: Theorem 3 (Benedetto and Fickus 2002). For a given N and s, let S N 1 denote the unit sphere in C N and consider: Then: FP : S N 1 S }{{ N 1 [0, ). } s times (1) Every local minimizer of the frame potential is also a global minimizer. (2) If s N, the minimum value of the frame potential is s, and the minimizers are precisely the orthonormal sequences in C N. (3) If s N, the minimum value of the frame potential is s 2 /N, and the minimizer are precisely the FUNTFs for C N. The following theorem is a trivial generalization of theorem 3: Theorem 4. For a given s and N, let W be a subspace of C N of dimension r < N and consider the resctricted frame potential: Then: FP W : (S N 1 S }{{ N 1 ) W [0, ). } s times (1) Every local minimizer of the restricted frame potential is also a global minimizer. (2) If s r, the minimum value of the restricted frame potential is s, and the minimizers are precisely the orthonormal sequences in W. (3) If s r, the minimum value of the restricted frame potential is s 2 /r, and the minimizer are precisely the subspace FUNTFs for W.

6 6 M. HIRN, D. WIDEMANN Theorem 4 shows that the minimum value of the frame potential depends on the dimension of the subspace W. Proof. Let W on be a set of r orthonormal vectors such that span(w on ) = W and consider it as an N r matrix. If Φ = {ϕ j } s is a finite unit norm set of vectors in W, then the coordinates of Φ in W on are given by the r s matrix Φ W = Won Φ. In [1] it is shown that FP(Φ) = Tr(S 2 ), where S is the frame operator of Φ. Using the previous two statements we then have: FP W (Φ) = Tr(S 2 ) = Tr([(W on Φ W )(W on Φ W ) ] 2 ) = Tr([Φ W Φ W] 2 ) = Tr(S 2 W ) = FP(Φ W ) Since Φ W is a finite unit norm set of vectors in C r, we can apply theorem 3 to get (1) and (2). Combining theorem 3 along with theorem 1 gives (3). References [1] John J. Benedetto and Matt Fickus. Finite normalized tight frames. Adv. Comput. Math., 18: , [2] J. Kovacevic and A Chebira. Life beyond bases: The advent of frames. IEEE SP Mag., Feature article. Norbert Wiener Center, University of Maryland, College Park, MD 20742

Preconditioning techniques in frame theory and probabilistic frames

Preconditioning techniques in frame theory and probabilistic frames Preconditioning techniques in frame theory and probabilistic frames Department of Mathematics & Norbert Wiener Center University of Maryland, College Park AMS Short Course on Finite Frame Theory: A Complete

More information

So reconstruction requires inverting the frame operator which is often difficult or impossible in practice. It follows that for all ϕ H we have

So reconstruction requires inverting the frame operator which is often difficult or impossible in practice. It follows that for all ϕ H we have CONSTRUCTING INFINITE TIGHT FRAMES PETER G. CASAZZA, MATT FICKUS, MANUEL LEON AND JANET C. TREMAIN Abstract. For finite and infinite dimensional Hilbert spaces H we classify the sequences of positive real

More information

Approximating scalable frames

Approximating scalable frames Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. Wang Department of Mathematics & Norbert Wiener Center University of Maryland, College Park 5 th International Conference on Computational

More information

LOCAL AND GLOBAL STABILITY OF FUSION FRAMES

LOCAL AND GLOBAL STABILITY OF FUSION FRAMES LOCAL AND GLOBAL STABILITY OF FUSION FRAMES Jerry Emidih Norbert Wiener Center Department of Mathematics University of Maryland, College Park November 22 2016 OUTLINE 1 INTRO 2 3 4 5 OUTLINE 1 INTRO 2

More information

Introduction to Hilbert Space Frames

Introduction to Hilbert Space Frames to Hilbert Space Frames May 15, 2009 to Hilbert Space Frames What is a frame? Motivation Coefficient Representations The Frame Condition Bases A linearly dependent frame An infinite dimensional frame Reconstructing

More information

University of Missouri Columbia, MO USA

University of Missouri Columbia, MO USA EXISTENCE AND CONSTRUCTION OF FINITE FRAMES WITH A GIVEN FRAME OPERATOR PETER G. CASAZZA 1 AND MANUEL T. LEON 2 1 Department of Mathematics University of Missouri Columbia, MO 65211 USA e-mail: casazzap@missouri.edu

More information

On the Equality of Fusion Frames 1

On the Equality of Fusion Frames 1 International Mathematical Forum, 4, 2009, no. 22, 1059-1066 On the Equality of Fusion Frames 1 Yao Xiyan 2, Gao Guibao and Mai Ali Dept. of Appl. Math., Yuncheng University Shanxi 044000, P. R. China

More information

A NEW IDENTITY FOR PARSEVAL FRAMES

A NEW IDENTITY FOR PARSEVAL FRAMES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A NEW IDENTITY FOR PARSEVAL FRAMES RADU BALAN, PETER G. CASAZZA, DAN EDIDIN, AND GITTA KUTYNIOK

More information

Journal of Mathematical Analysis and Applications. Properties of oblique dual frames in shift-invariant systems

Journal of Mathematical Analysis and Applications. Properties of oblique dual frames in shift-invariant systems J. Math. Anal. Appl. 356 (2009) 346 354 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Properties of oblique dual frames in shift-invariant

More information

A BRIEF INTRODUCTION TO HILBERT SPACE FRAME THEORY AND ITS APPLICATIONS AMS SHORT COURSE: JOINT MATHEMATICS MEETINGS SAN ANTONIO, 2015 PETER G. CASAZZA Abstract. This is a short introduction to Hilbert

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

On Optimal Frame Conditioners

On Optimal Frame Conditioners On Optimal Frame Conditioners Chae A. Clark Department of Mathematics University of Maryland, College Park Email: cclark18@math.umd.edu Kasso A. Okoudjou Department of Mathematics University of Maryland,

More information

MORE ON SUMS OF HILBERT SPACE FRAMES

MORE ON SUMS OF HILBERT SPACE FRAMES Bull. Korean Math. Soc. 50 (2013), No. 6, pp. 1841 1846 http://dx.doi.org/10.4134/bkms.2013.50.6.1841 MORE ON SUMS OF HILBERT SPACE FRAMES A. Najati, M. R. Abdollahpour, E. Osgooei, and M. M. Saem Abstract.

More information

Distributed Noise Shaping of Signal Quantization

Distributed Noise Shaping of Signal Quantization 1 / 37 Distributed Noise Shaping of Signal Quantization Kung-Ching Lin Norbert Wiener Center Department of Mathematics University of Maryland, College Park September 18, 2017 2 / 37 Overview 1 Introduction

More information

REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012

REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012 REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012 JOSEPHINE YU This note will cover introductory material on representation theory, mostly of finite groups. The main references are the books of Serre

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Ole Christensen 3. October 20, Abstract. We point out some connections between the existing theories for

Ole Christensen 3. October 20, Abstract. We point out some connections between the existing theories for Frames and pseudo-inverses. Ole Christensen 3 October 20, 1994 Abstract We point out some connections between the existing theories for frames and pseudo-inverses. In particular, using the pseudo-inverse

More information

PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES

PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES KASSO A. OKOUDJOU Abstract. These notes have a dual goal. On the one hand we shall give an overview of the recently introduced class

More information

Lecture Notes for Math 414: Linear Algebra II Fall 2015, Michigan State University

Lecture Notes for Math 414: Linear Algebra II Fall 2015, Michigan State University Lecture Notes for Fall 2015, Michigan State University Matthew Hirn December 11, 2015 Beginning of Lecture 1 1 Vector Spaces What is this course about? 1. Understanding the structural properties of a wide

More information

PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES

PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES PRECONDITIONING TECHNIQUES IN FRAME THEORY AND PROBABILISTIC FRAMES KASSO A. OKOUDJOU Abstract. In this chapter we survey two topics that have recently been investigated in frame theory. First, we give

More information

Atomic decompositions of square-integrable functions

Atomic decompositions of square-integrable functions Atomic decompositions of square-integrable functions Jordy van Velthoven Abstract This report serves as a survey for the discrete expansion of square-integrable functions of one real variable on an interval

More information

Spanning and Independence Properties of Finite Frames

Spanning and Independence Properties of Finite Frames Chapter 1 Spanning and Independence Properties of Finite Frames Peter G. Casazza and Darrin Speegle Abstract The fundamental notion of frame theory is redundancy. It is this property which makes frames

More information

Preconditioning techniques in frame theory and probabilistic frames

Preconditioning techniques in frame theory and probabilistic frames Proceedings of Symposia in Applied Mathematics Preconditioning techniques in frame theory and probabilistic frames Kasso A. Okoudjou Abstract. In this chapter we survey two topics that have recently been

More information

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45 address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

More information

DENSITY, OVERCOMPLETENESS, AND LOCALIZATION OF FRAMES. I. THEORY

DENSITY, OVERCOMPLETENESS, AND LOCALIZATION OF FRAMES. I. THEORY DENSITY, OVERCOMPLETENESS, AND LOCALIZATION OF FRAMES. I. THEORY RADU BALAN, PETER G. CASAZZA, CHRISTOPHER HEIL, AND ZEPH LANDAU Abstract. This work presents a quantitative framework for describing the

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

A brief introduction to trace class operators

A brief introduction to trace class operators A brief introduction to trace class operators Christopher Hawthorne December 2015 Contents 1 Introduction 1 2 Preliminaries 1 3 Trace class operators 2 4 Duals 8 1 Introduction The trace is a useful number

More information

Math 113 Practice Final Solutions

Math 113 Practice Final Solutions Math 113 Practice Final Solutions 1 There are 9 problems; attempt all of them. Problem 9 (i) is a regular problem, but 9(ii)-(iii) are bonus problems, and they are not part of your regular score. So do

More information

W if p = 0; ; W ) if p 1. p times

W if p = 0; ; W ) if p 1. p times Alternating and symmetric multilinear functions. Suppose and W are normed vector spaces. For each integer p we set {0} if p < 0; W if p = 0; ( ; W = L( }... {{... } ; W if p 1. p times We say µ p ( ; W

More information

MULTIPLEXING AND DEMULTIPLEXING FRAME PAIRS

MULTIPLEXING AND DEMULTIPLEXING FRAME PAIRS MULTIPLEXING AND DEMULTIPLEXING FRAME PAIRS AZITA MAYELI AND MOHAMMAD RAZANI Abstract. Based on multiplexing and demultiplexing techniques in telecommunication, we study the cases when a sequence of several

More information

Operators with Closed Range, Pseudo-Inverses, and Perturbation of Frames for a Subspace

Operators with Closed Range, Pseudo-Inverses, and Perturbation of Frames for a Subspace Canad. Math. Bull. Vol. 42 (1), 1999 pp. 37 45 Operators with Closed Range, Pseudo-Inverses, and Perturbation of Frames for a Subspace Ole Christensen Abstract. Recent work of Ding and Huang shows that

More information

arxiv:math/ v1 [math.fa] 14 Sep 2003

arxiv:math/ v1 [math.fa] 14 Sep 2003 arxiv:math/0309236v [math.fa] 4 Sep 2003 RANK-ONE DECOMPOSITION OF OPERATORS AND CONSTRUCTION OF FRAMES KERI A. KORNELSON AND DAVID R. LARSON Abstract. The construction of frames for a Hilbert space H

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

2 PETER G. CASAZZA, MANUEL T. LEON In this paper we generalize these results to the case where I is replaced by any positive selfadjoint invertible op

2 PETER G. CASAZZA, MANUEL T. LEON In this paper we generalize these results to the case where I is replaced by any positive selfadjoint invertible op FRAMES WITH A GIVEN FRAME OPERATOR PETER G. CASAZZA, MANUEL T. LEON Abstract. Let S be a positive self-adjoint invertible operator on an N-dimensional Hilbert space H N and let M N. We give necessary and

More information

Decompositions of frames and a new frame identity

Decompositions of frames and a new frame identity Decompositions of frames and a new frame identity Radu Balan a, Peter G. Casazza b, Dan Edidin c and Gitta Kutyniok d a Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA; b Department

More information

Linear Algebra for Math 542 JWR

Linear Algebra for Math 542 JWR Linear Algebra for Math 542 JWR Spring 2001 2 Contents 1 Preliminaries 7 1.1 Sets and Maps........................... 7 1.2 Matrix Theory.......................... 11 2 Vector Spaces 13 2.1 Vector Spaces...........................

More information

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016 Linear Algebra Notes Lecture Notes, University of Toronto, Fall 2016 (Ctd ) 11 Isomorphisms 1 Linear maps Definition 11 An invertible linear map T : V W is called a linear isomorphism from V to W Etymology:

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 407 Renato Feres 1. Exercise 4.1, page 49 of notes. Let W := T0 m V and denote by GLW the general linear group of W, defined as the group of all linear isomorphisms of W

More information

Optimal dual fusion frames for probabilistic erasures

Optimal dual fusion frames for probabilistic erasures Electronic Journal of Linear Algebra Volume 32 Volume 32 (2017) Article 16 2017 Optimal dual fusion frames for probabilistic erasures Patricia Mariela Morillas Universidad Nacional de San Luis and CONICET,

More information

Density, Overcompleteness, and Localization of Frames. I. Theory

Density, Overcompleteness, and Localization of Frames. I. Theory The Journal of Fourier Analysis and Applications Volume 2, Issue 2, 2006 Density, Overcompleteness, and Localization of Frames. I. Theory Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau

More information

Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging

Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging Mark Magsino mmagsino@math.umd.edu Norbert Wiener Center for Harmonic Analysis and Applications Department of Mathematics

More information

APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES

APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES APPROXIMATING THE INVERSE FRAME OPERATOR FROM LOCALIZED FRAMES GUOHUI SONG AND ANNE GELB Abstract. This investigation seeks to establish the practicality of numerical frame approximations. Specifically,

More information

Fourier and Wavelet Signal Processing

Fourier and Wavelet Signal Processing Ecole Polytechnique Federale de Lausanne (EPFL) Audio-Visual Communications Laboratory (LCAV) Fourier and Wavelet Signal Processing Martin Vetterli Amina Chebira, Ali Hormati Spring 2011 2/25/2011 1 Outline

More information

THE DUAL FORM OF THE APPROXIMATION PROPERTY FOR A BANACH SPACE AND A SUBSPACE. In memory of A. Pe lczyński

THE DUAL FORM OF THE APPROXIMATION PROPERTY FOR A BANACH SPACE AND A SUBSPACE. In memory of A. Pe lczyński THE DUAL FORM OF THE APPROXIMATION PROPERTY FOR A BANACH SPACE AND A SUBSPACE T. FIGIEL AND W. B. JOHNSON Abstract. Given a Banach space X and a subspace Y, the pair (X, Y ) is said to have the approximation

More information

Math 396. An application of Gram-Schmidt to prove connectedness

Math 396. An application of Gram-Schmidt to prove connectedness Math 396. An application of Gram-Schmidt to prove connectedness 1. Motivation and background Let V be an n-dimensional vector space over R, and define GL(V ) to be the set of invertible linear maps V V

More information

OBLIQUE PROJECTIONS, BIORTHOGONAL RIESZ BASES AND MULTIWAVELETS IN HILBERT SPACES

OBLIQUE PROJECTIONS, BIORTHOGONAL RIESZ BASES AND MULTIWAVELETS IN HILBERT SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 2, Pages 463 473 S 0002-9939(99)05075-3 Article electronically published on September 27, 1999 OBLIQUE PROJECTIONS, BIORTHOGONAL RIESZ

More information

Sampling and Interpolation on Some Nilpotent Lie Groups

Sampling and Interpolation on Some Nilpotent Lie Groups Sampling and Interpolation on Some Nilpotent Lie Groups SEAM 013 Vignon Oussa Bridgewater State University March 013 ignon Oussa (Bridgewater State University)Sampling and Interpolation on Some Nilpotent

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Finite Frames and Graph Theoretical Uncertainty Principles

Finite Frames and Graph Theoretical Uncertainty Principles Finite Frames and Graph Theoretical Uncertainty Principles (pkoprows@math.umd.edu) University of Maryland - College Park April 13, 2015 Outline 1 Motivation 2 Definitions 3 Results Outline 1 Motivation

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 25, 2012 version

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

arxiv: v1 [math.gr] 8 Nov 2008

arxiv: v1 [math.gr] 8 Nov 2008 SUBSPACES OF 7 7 SKEW-SYMMETRIC MATRICES RELATED TO THE GROUP G 2 arxiv:0811.1298v1 [math.gr] 8 Nov 2008 ROD GOW Abstract. Let K be a field of characteristic different from 2 and let C be an octonion algebra

More information

Vector Spaces and SubSpaces

Vector Spaces and SubSpaces Vector Spaces and SubSpaces Linear Algebra MATH 2076 Linear Algebra Vector Spaces & SubSpaces Chapter 4, Section 1b 1 / 10 What is a Vector Space? A vector space is a bunch of objects that we call vectors

More information

Math 396. Quotient spaces

Math 396. Quotient spaces Math 396. Quotient spaces. Definition Let F be a field, V a vector space over F and W V a subspace of V. For v, v V, we say that v v mod W if and only if v v W. One can readily verify that with this definition

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Fitting Linear Statistical Models to Data by Least Squares II: Weighted

Fitting Linear Statistical Models to Data by Least Squares II: Weighted Fitting Linear Statistical Models to Data by Least Squares II: Weighted Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 21, 2014 version

More information

buer overlfows at intermediate nodes in the network. So to most users, the behavior of a packet network is not characterized by random loss, but by un

buer overlfows at intermediate nodes in the network. So to most users, the behavior of a packet network is not characterized by random loss, but by un Uniform tight frames for signal processing and communication Peter G. Casazza Department of Mathematics University of Missouri-Columbia Columbia, MO 65211 pete@math.missouri.edu Jelena Kovacevic Bell Labs

More information

Preconditioning of Frames

Preconditioning of Frames Preconditioning of Frames Gitta Kutyniok a, Kasso A. Okoudjou b, and Friedrich Philipp a a Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany b University

More information

The Dirichlet-to-Neumann operator

The Dirichlet-to-Neumann operator Lecture 8 The Dirichlet-to-Neumann operator The Dirichlet-to-Neumann operator plays an important role in the theory of inverse problems. In fact, from measurements of electrical currents at the surface

More information

Math 752 Week s 1 1

Math 752 Week s 1 1 Math 752 Week 13 1 Homotopy Groups Definition 1. For n 0 and X a topological space with x 0 X, define π n (X) = {f : (I n, I n ) (X, x 0 )}/ where is the usual homotopy of maps. Then we have the following

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 7.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 7. INTRODUCTION TO LIE ALGEBRAS. LECTURE 7. 7. Killing form. Nilpotent Lie algebras 7.1. Killing form. 7.1.1. Let L be a Lie algebra over a field k and let ρ : L gl(v ) be a finite dimensional L-module. Define

More information

A primer on the theory of frames

A primer on the theory of frames A primer on the theory of frames Jordy van Velthoven Abstract This report aims to give an overview of frame theory in order to gain insight in the use of the frame framework as a unifying layer in the

More information

DUALITY PRINCIPLE IN g-frames

DUALITY PRINCIPLE IN g-frames Palestine Journal of Mathematics Vol. 6(2)(2017), 403 411 Palestine Polytechnic University-PPU 2017 DUAITY PRINCIPE IN g-frames Amir Khosravi and Farkhondeh Takhteh Communicated by Akram Aldroubi MSC 2010

More information

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS Adv. Oper. Theory 3 (2018), no. 1, 53 60 http://doi.org/10.22034/aot.1702-1129 ISSN: 2538-225X (electronic) http://aot-math.org POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY POSITIVE OR SUPER-POSITIVE MAPS

More information

LECTURE 2: LANGLANDS CORRESPONDENCE FOR G. 1. Introduction. If we view the flow of information in the Langlands Correspondence as

LECTURE 2: LANGLANDS CORRESPONDENCE FOR G. 1. Introduction. If we view the flow of information in the Langlands Correspondence as LECTURE 2: LANGLANDS CORRESPONDENCE FOR G J.W. COGDELL. Introduction If we view the flow of information in the Langlands Correspondence as Galois Representations automorphic/admissible representations

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE

A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE PETER G. CASAZZA, GITTA KUTYNIOK,

More information

Math Linear Algebra

Math Linear Algebra Math 220 - Linear Algebra (Summer 208) Solutions to Homework #7 Exercise 6..20 (a) TRUE. u v v u = 0 is equivalent to u v = v u. The latter identity is true due to the commutative property of the inner

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

4 Linear operators and linear functionals

4 Linear operators and linear functionals 4 Linear operators and linear functionals The next section is devoted to studying linear operators between normed spaces. Definition 4.1. Let V and W be normed spaces over a field F. We say that T : V

More information

C -Algebra B H (I) Consisting of Bessel Sequences in a Hilbert Space

C -Algebra B H (I) Consisting of Bessel Sequences in a Hilbert Space Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 191 199 DOI:10.3770/j.issn:2095-2651.2015.02.009 Http://jmre.dlut.edu.cn C -Algebra B H (I) Consisting of Bessel Sequences

More information

Norms and embeddings of classes of positive semidefinite matrices

Norms and embeddings of classes of positive semidefinite matrices Norms and embeddings of classes of positive semidefinite matrices Radu Balan Department of Mathematics, Center for Scientific Computation and Mathematical Modeling and the Norbert Wiener Center for Applied

More information

PERTURBATION OF FRAMES FOR A SUBSPACE OF A HILBERT SPACE

PERTURBATION OF FRAMES FOR A SUBSPACE OF A HILBERT SPACE ROCKY MOUNTIN JOURNL OF MTHEMTICS Volume 30, Number 4, Winter 2000 PERTURBTION OF FRMES FOR SUBSPCE OF HILBERT SPCE OLE CHRISTENSEN, CHRIS LENNRD ND CHRISTINE LEWIS BSTRCT. frame sequence {f i } i=1 in

More information

On Riesz-Fischer sequences and lower frame bounds

On Riesz-Fischer sequences and lower frame bounds On Riesz-Fischer sequences and lower frame bounds P. Casazza, O. Christensen, S. Li, A. Lindner Abstract We investigate the consequences of the lower frame condition and the lower Riesz basis condition

More information

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39) 2.3 The derivative A description of the tangent bundle is not complete without defining the derivative of a general smooth map of manifolds f : M N. Such a map may be defined locally in charts (U i, φ

More information

On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres

On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres Annals of Mathematics, 168 (2008), 1011 1024 On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres By Stefan Immervoll Abstract In this paper we give a

More information

Lecture 4.1: Homomorphisms and isomorphisms

Lecture 4.1: Homomorphisms and isomorphisms Lecture 4.: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4, Modern Algebra M. Macauley (Clemson) Lecture

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

arxiv: v2 [math.na] 27 Dec 2016

arxiv: v2 [math.na] 27 Dec 2016 An algorithm for constructing Equiangular vectors Azim rivaz a,, Danial Sadeghi a a Department of Mathematics, Shahid Bahonar University of Kerman, Kerman 76169-14111, IRAN arxiv:1412.7552v2 [math.na]

More information

Linear convergence of iterative soft-thresholding

Linear convergence of iterative soft-thresholding arxiv:0709.1598v3 [math.fa] 11 Dec 007 Linear convergence of iterative soft-thresholding Kristian Bredies and Dirk A. Lorenz ABSTRACT. In this article, the convergence of the often used iterative softthresholding

More information

1 Invariant subspaces

1 Invariant subspaces MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

More information

Sensitivity to Model Parameters

Sensitivity to Model Parameters Sensitivity to Model Parameters C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park lvrmr@math.umd.edu Math 420: Mathematical

More information

Invariances of Frame Sequences under Perturbations

Invariances of Frame Sequences under Perturbations Invariances of Frame Sequences under Perturbations Shannon Bishop a,1, Christopher Heil b,1,, Yoo Young Koo c,2, Jae Kun Lim d a School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia

More information

Numerical Aspects of Gabor Analysis

Numerical Aspects of Gabor Analysis Numerical Harmonic Analysis Group hans.feichtinger@univie.ac.at www.nuhag.eu DOWNLOADS: http://www.nuhag.eu/bibtex Graz, April 12th, 2013 9-th Austrian Numerical Analysis Day hans.feichtinger@univie.ac.at

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

2: LINEAR TRANSFORMATIONS AND MATRICES

2: LINEAR TRANSFORMATIONS AND MATRICES 2: LINEAR TRANSFORMATIONS AND MATRICES STEVEN HEILMAN Contents 1. Review 1 2. Linear Transformations 1 3. Null spaces, range, coordinate bases 2 4. Linear Transformations and Bases 4 5. Matrix Representation,

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.4 The Projection Matrix 1 Chapter 6. Orthogonality 6.4 The Projection Matrix Note. In Section 6.1 (Projections), we projected a vector b R n onto a subspace W of R n. We did so by finding a basis for

More information

Minimizing Fusion Frame Potential

Minimizing Fusion Frame Potential manuscript No. (will be inserted by the editor) Minimizing Fusion Frame Potential Peter G. Casazza 1, Matthew Fickus 2 1 Department of Mathematics, University of Missouri, Columbia, Missouri 65211, e-mail:

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Throughout these notes, F denotes a field (often called the scalars in this context). 1 Definition of a vector space Definition 1.1. A F -vector space or simply a vector space

More information

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

More information

Inverse Eigenvalue Problems in Wireless Communications

Inverse Eigenvalue Problems in Wireless Communications Inverse Eigenvalue Problems in Wireless Communications Inderjit S. Dhillon Robert W. Heath Jr. Mátyás Sustik Joel A. Tropp The University of Texas at Austin Thomas Strohmer The University of California

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

MATH 215B HOMEWORK 5 SOLUTIONS

MATH 215B HOMEWORK 5 SOLUTIONS MATH 25B HOMEWORK 5 SOLUTIONS. ( marks) Show that the quotient map S S S 2 collapsing the subspace S S to a point is not nullhomotopic by showing that it induces an isomorphism on H 2. On the other hand,

More information

LECTURE 11: TRANSVERSALITY

LECTURE 11: TRANSVERSALITY LECTURE 11: TRANSVERSALITY Let f : M N be a smooth map. In the past three lectures, we are mainly studying the image of f, especially when f is an embedding. Today we would like to study the pre-image

More information

RAPHAËL ROUQUIER. k( )

RAPHAËL ROUQUIER. k( ) GLUING p-permutation MODULES 1. Introduction We give a local construction of the stable category of p-permutation modules : a p- permutation kg-module gives rise, via the Brauer functor, to a family of

More information

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information