Damage detection in wind turbine blades using time-frequency analysis of vibration signals

Size: px
Start display at page:

Download "Damage detection in wind turbine blades using time-frequency analysis of vibration signals"

Transcription

1 Dublin Institute of Technology From the SelectedWorks of Breiffni Fitzgerald Damage detection in wind turbine blades using time-frequency analysis of vibration signals Breiffni Fitzgerald, Dublin Institute of Technology Available at:

2 Damage Detection in Wind Turbine Blades Using Time-Frequency Analysis of Vibration Signals Breiffni Fitzgerald, John Arrigan and Biswajit Basu, Member, IEEE Abstract The dynamic behavior of modern multi-megawatt wind turbines has become an important design consideration. One of the major aspects related to the reliability of operation of the turbines concerns the safe and adequate performance of the blades. The aim of this paper is to develop a time-frequency based algorithm to detect damage in wind turbine blades from blade vibration signals. It is important that damage to blades is detected before they fail or cause the turbine to fail. A wind turbine model was developed for this paper. The parameters considered were the rotational speed of the blades and the stiffness of the blades and the nacelle. The model derived considers the structural dynamics of the turbine and includes the dynamic coupling between the blades and the tower. The algorithm developed uses a frequency tracking technique. Numerical simulations have been carried out to study the effectiveness of the algorithm. Index Terms Wind turbine blades, Tower blade coupling, Short Time Fourier Transform. I. INTRODUCTION ver the last decade, wind turbine technology has taken Ohuge leaps forward to become a leading alternative energy resource to traditional fossil fuels. Turbines with outputs as large as 5MW are being constructed with tower heights and rotor diameters of over 8m and m respectively. With the increased size of the blades comes increased flexibility making it important to understand their dynamic behaviour. Ahlstrom carried out research into the effect of increased flexibility in turbine blades and found that it can lead to a significant drop in the power output of the turbine []. Significant research has been carried out into the area of blade design and failure characteristics [, 3]. However, it is only over the last few years that research has started to focus on the dynamic behaviour of the turbine blades and the interaction that occurs between the blades and the tower. Two main types of vibration occur in wind turbine blades, flapwise and edgewise. Edgewise vibrations are vibrations Manuscript received March 6,. This work was supported by the Irish Research Council for Science Engineering and Technology (IRCSET) and the EU under FP7 Marie Curie project SYSWIND (Grant No. 3835). Breiffni Fitzgerald is with Trinity College Dublin, Ireland (phone: ; fitzgebr@tcd.ie). John Arrigan is with Trinity College Dublin, Ireland ( arriganj@tcd.ie). Biswajit Basu is with Trinity College Dublin, Ireland ( basub@tcd.ie). occurring in the plane of the rotor axis. Flapwise vibrations are vibrations occurring out of the plane of rotation of the blades. Flapwise vibrations are considered in this paper. Ronold and Larsen [4] studied the failure of a wind turbine blade in flapwise bending during normal operating conditions of the turbine while Murtagh and Basu [5] studied the flapwise motion of wind turbine blades and included their dynamic interaction with the tower. They found that the inclusion of the blade-tower interaction could lead to significant increases in the maximum blade tip displacement. The aim of this paper is to use Short Time Fourier Transforms (STFT) for damage detection in wind turbine blades. Wind turbine blades are vulnerable to cumulative fatigue damage owing to the periodic nature of the loading. Detecting damage to blades before failure is crucial. Simulations were run with the model developed. The stiffness of the blades was reduced in real-time during these simulations. This is essentially modelling the case where the blade loses stiffness due to delamination of its underlying composite structure. The responses obtained from the model simulations were then subjected to the STFT based tracking algorithm to identify blade damage. Nagarajaiah and Varadarajan [6] have developed algorithms to track the dominant frequencies of a system using STFTs. STFTs enable local frequencies to be identified in the response of the system that may only exist for a short period of time. Reducing the stiffness of the blade to simulate blade damage will alter the frequency of vibration of the blade and thus allow the damage to be detected by STFTs. II. LAGRANGIAN FORMULATION The dynamic model was formulated using the Lagrangian formulation expressed in equation below. () where: T = kinetic energy of the system, V = potential energy of the system, q i = displacement of the generalized degree of freedom (DOF) i and Q i = generalized loading for degree of freedom i. The kinetic and potential energies of the model were first derived including the motion of the nacelle and are stated in equations a and b. These expressions were then substituted back into the Lagrangian formulation in equation to allow the equations of motion to be determined. (a) //$6. IEEE

3 (b) where: m b = mass of blade, L = length of the blade (= 48m) in this study, v bi = absolute velocity of blade i including the nacelle motion that causes blade tip displacement, this is a function of both the position along the blade, x, and time, t. M nac = mass of nacelle, E = Young s Modulus for the blade, I = second moment of area of blade, K nac = stiffness of the nacelle, q i is the displacement of the blade i and q nac is the displacement of the nacelle. Each blade was modelled as a cantilever beam with uniformly distributed parameters as can be observed from the expressions for the kinetic and potential energies in equations a and b. The relative displacement of the blades was expressed as the product of the dominant modeshape multiplied by the tip displacement, shown in equation 3 below., (3) where Φ(x) = modeshape and q i (t) = relative tip displacement of blade of blade i in the flapwise direction. The blades were assumed to be vibrating in their fundamental mode and a quadratic modeshape was assumed. This allowed reduction of the continuous beam to a single degree of freedom, a technique known as Raleigh s method [7]. The cantilevers were attached at their root to a large mass representing the nacelle of the turbine. This allowed for the inclusion of the blade-tower interaction in the model. A schematic of the flapwise vibration model is shown in Fig.. The degrees of freedom marked q, q, q 3 and q nac represent the motion of the blades and nacelle. The model consisted of a total of 4 DOF (one in each of the blades and one at the nacelle) expressed in the standard form as in equation 4 below. (4) where [M], [C] and [K] are the mass, damping and stiffness matrices of the system respectively. q, q and q are the acceleration, velocity and displacement vectors and Q is the loading. Centrifugal stiffening was added to the model as per the formula developed by Hansen [8]. Structural damping included in the system was assumed to be in the form of stiffness proportional damping. Fig.. Flapwise vibration model III. LOADING The loading scenario considered was a simple steady wind load varied linearly with height with an added random component modelling turbulent wind. The steady wind loading on blade is given by equation 5 below. The loads on blades and 3 are shifted by angles of π/3 and 4π/3 respectively. vnac A vnac L A v Q + = v nac nac+ L A cos( Ωt) (5) where: v nac = wind speed at nacelle height, v nac+l = wind speed at the maximum blade tip height, i.e. when blade is in upright vertical position. A = area of blade, taken as to normalize the load, with Ω equal to the rotational speed of the blade. The loading on the nacelle was assumed to be zero so that all motion of the nacelle was due to the forces transferred from the blades through the coupling present in the system. The turbulent velocity component was generated at a height equal to that of the nacelle using a Kaimal spectrum [9] defined by equations 6, 7 and 8 below. Uniform turbulence was assumed for the blades., (6) where: H = nacelle height, S vv (H, f ) is the PSDF (Power Spectral Density Function) of the fluctuating wind velocity as a function of the hub elevation and the frequency,, is the friction velocity from equation 7, and c is known as the Monin coordinate which is defined in equation 8. (7) (8) where k is Von-Karman s constant (typically around.4 []), v H is the mean z =.5 (the roughness length), and ( )

4 wind speed. This results in a turbulence intensity of.5 in the generated spectrum. IV. STFT BASED TRACKING ALGORITHM STFT is a commonly used method of identifying the timefrequency distribution of non-stationary signals. It is widely used because it gives good time-frequency distribution for many signals. It allows local frequencies to be picked up in the response of the system that may only exist for a short period of time. These local frequencies can be missed by normal Fast Fourier Transform (FFT) techniques. The STFT algorithm splits up the signal into shorter time segments and an FFT is performed on each segment to identify the dominant frequencies present in the system during the time period considered. Combining the frequency spectra of each of these time segments results in the time frequency distribution of the system over the entire time history. The time segment is short compared to the whole signal therefore the process is called short time. The STFT algorithm developed in this study enables damage to be detected in wind turbine blades. When blades become damaged their stiffness is reduced. This causes the frequency at which the blades vibrate to change. Therefore, by tracking the frequency of the blades in real-time changes in frequency, and hence damage, can be detected. V. RESULTS Simulations were run with the flapwise model with a realistic stiffness value. The rotational speed (Ω) was assumed to be 3.4 rad/s. Fig. shows the response of Blade to turbulent load and Fig. 3 shows the frequency content. Fig. 3. Blade flapwise frequency spectrum, turbulent load, Ω = 3.4 rad/s Fourier Amplitude X:.5 Y: 53.9 X:.66 Y: X:.3 Y: Frequency (Hz) Fig. 4. Nacelle flapwise time history response, turbulent load, Ω = 3.4 rad/s Fourier Amplitude X:.37 Y: 7. X:.3 Y: Ti me (s) Fig.. Blade flapwise time history response, turbulent load, Ω = 3.4 rad/s Frequency (Hz) Fig. 5. Nacelle flapwise frequency spectrum, turbulent load, Ω = 3.4 rad/s Fig. 4 and Fig. 5 show the response of the nacelle to turbulent load and the nacelle response frequency content respectively. The model was then changed. A loss in stiffness in the blade and in the nacelle was simulated.

5 First a loss in blade stiffness was modeled. This is modeling the case where the blade loses stiffness due to delamination of its underlying composite structure. A simulation was set up for seconds. A loss in blade stiffness of % was applied 7 seconds into the simulation. Fig. 6 shows the time history response for Blade. It is clear from Fig. 6 that after 7 seconds the flapwise displacements observed at Blade increase dramatically. The next step was to use the STFT algorithm to track the dominant frequencies in the system with respect to time. Fig. 7 shows the dominant frequency of the system with respect to time. The STFT was applied at 4 seconds. It is clear that before the blade s stiffness was reduced (at 7 seconds) the dominant frequency in the system was roughly Hz. However, after the blade s stiffness has been reduced the dominant frequency in the system is reduced to roughly.5 Hz. STFT frequency tracking was thus successful in detecting a loss in blade stiffness and hence damage. Finally a loss in nacelle stiffness was modeled. The stiffness of the nacelle was reduced by 5% after 7 seconds. Fig. 8 plots the nacelle displacement time history. It is clear from this graph that there is a negligible increase in the nacelle displacement response after the loss in stiffness Nacelle Displacement Fig. 8. Nacelle displacement 5% loss in stiffness Blade Displacement Dominant Freq (Hz) Dominant Freq (Hz) Fig. 6. Blade % loss in stiffness Fig. 9. STFT loss in nacelle stiffness Fig. 9 shows the dominant frequency of the system with respect to time. The STFT was applied at 4 seconds. Before a loss in nacelle stiffness the dominant frequency was roughly.36 Hz. After 7 seconds the dominant frequency is reduced to roughly.3 Hz. The STFT again identified the change in frequency due to the loss in stiffness and can therefore be used for damage detection Fig. 7. STFT loss in blade stiffness VI. CONCLUSION In this study the use of a STFT frequency tracking technique to detect damage in wind turbine blades was investigated. The model developed in this paper focused only on the structural dynamics of the turbine including the interaction between the blades and the tower. By reducing the young s modulus (stiffness value) of the blades damage was simulated. This in turn had an effect on the natural frequency

6 of the blades. By tracking the dominant frequencies present in the model over time, via STFTs, it was possible to detect this simulated damage. REFERENCES [] Ahlstrom A. Influence of Wind Turbine Flexibility on Loads and Power Production, Wind Energy 5; 9: [] Tavner PJ, Xiang J, Spinato F. Reliability Analysis for Wind Turbines, 7//6 [3] Sutherland HJ. A Summary of the Fatigue Properties of Wind Turbine Materials. Wind Energy ; 3: -34 [4] Ronold KO, Larsen GC. Reliability-based design of wind-turbine rotor blades against failure in ultimate loading. Engineering Structures ; : [5] Murtagh PJ, Basu B, Broderick BM. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading. Engineering Structures 5; 7: [6] Nagarajaiah S, Varadarajan N. Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD. Engineering Structures 5; 7: [7] Clough RW, Penzien J. Dynamics of Structures. McGraw Hill: New York, 993. [8] Chaviaropoutos PK, Nikolaou IG, Aggelis KA, Sorensen NN, Johansen J, Hansen MOL, Gaunaa M, Hambraus T, von Geyr HF, Hirsch C, Shun K, Voutsinas SG, Tzabiras G, Perivolaris J, Dyrmose SZ. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL Project. Part : 3D Navier-Stokes Rotor Simulations. Wind Energy 3; 6: [9] J. C. Kaimal, J. C. Wyngaard, Y. Izumi, Coté OR. Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society 97; 98: [] Simiu E, Scanlan R. Wind Effects on Structures. John Wiley & Sons: New York, 996..

Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers. Houston, TX, U.S.A. SUMMARY

Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers. Houston, TX, U.S.A. SUMMARY STRUCTURAL CONTROL AND HEALTH MONITORING Struct. Control Health Monit. (200) Published online in Wiley InterScience (www.interscience.wiley.com)..404 Control of flapwise vibrations in wind turbine blades

More information

CORA Cork Open Research Archive

CORA Cork Open Research Archive This paper is a postprint of a paper submitted to and accepted for publication in Proceedings of IET Irish Signals and Systems Conference (ISSC 9) (CP9) Dublin, Ireland, - June 9, ISBN: 978 899 and is

More information

364 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN

364 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN 954. Investigation of damage detection in blade root joints of a 1 kw wind turbine using frequency tracking Mohammad Sheibani, Ali Akbar Akbari 954. INVESTIGATION OF DAMAGE DETECTION IN BLADE ROOT JOINTS

More information

Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed Journal of Physics: Conference Series PAPER OPEN ACCESS Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed To cite this article: Alec Beardsell

More information

Dynamic Characteristics of Wind Turbine Blade

Dynamic Characteristics of Wind Turbine Blade Dynamic Characteristics of Wind Turbine Blade Nitasha B. Chaudhari PG Scholar, Mechanical Engineering Department, MES College Of Engineering,Pune,India. Abstract this paper presents a review on the dynamic

More information

0000. Finite element modeling of a wind turbine blade

0000. Finite element modeling of a wind turbine blade ArticleID: 16033; Draft date: 2015-07-27 0000. Finite element modeling of a wind turbine blade Mohammad Sheibani 1, Ali Akbar Akbari 2 Department of Mechanical Engineering, Ferdowsi University of Mashhad,

More information

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES von Karman Institute for Fluid Dynamics Lecture Series Programme 1998-99 AEROELASTICITY IN AXIAL FLOW TURBOMACHINES May 3-7, 1999 Rhode-Saint- Genèse Belgium STRUCTURAL DYNAMICS: BASICS OF DISK AND BLADE

More information

Aeroelastic effects of large blade deflections for wind turbines

Aeroelastic effects of large blade deflections for wind turbines Aeroelastic effects of large blade deflections for wind turbines Torben J. Larsen Anders M. Hansen Risoe, National Laboratory Risoe, National Laboratory P.O. Box 49, 4 Roskilde, Denmark P.O. Box 49, 4

More information

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Time Frequency and Wavelet Techniquesc Satish Nagarajaiah Professor of Civil and

More information

CHAPTER 16. Tower design and analysis. Biswajit Basu Trinity College Dublin, Ireland. 1 Introduction

CHAPTER 16. Tower design and analysis. Biswajit Basu Trinity College Dublin, Ireland. 1 Introduction CHAPTER 16 Tower design and analysis Biswajit Basu Trinity College Dublin, Ireland. This chapter addresses some of the design and analysis issues of interest to structural and wind engineers involved in

More information

Engineering Structures

Engineering Structures Engineering Structures 36 (2012) 270 282 Contents lists available at SciVerse ScienceDirect Engineering Structures journal homepage: www.elsevier.com/locate/engstruct Fragility analysis of steel and concrete

More information

Active tuned mass dampers for control of in-plane vibrations of wind turbine blades

Active tuned mass dampers for control of in-plane vibrations of wind turbine blades Dublin Institute of Technology From the SelectedWorks of Breiffni Fitzgerald 13 Active tuned mass dampers for control of in-plane vibrations of wind turbine blades Breiffni Fitzgerald, Dublin Institute

More information

ON ESTIMATION OF COHERENCE IN INFLOW TURBULENCE BASED ON FIELD MEASUREMENTS *

ON ESTIMATION OF COHERENCE IN INFLOW TURBULENCE BASED ON FIELD MEASUREMENTS * AIAA-004-100 ON ESTIMATION OF COHERENCE IN INFLOW TURBULENCE BASED ON FIELD MEASUREMENTS * Korn Saranyasoontorn 1 Lance Manuel 1 Paul S. Veers 1 Department of Civil Engineering, University of Texas at

More information

Zero-Pad Effects on Conditional Simulation and Application of Spatially-Varying Earthquake Motions

Zero-Pad Effects on Conditional Simulation and Application of Spatially-Varying Earthquake Motions 6th European Workshop on Structural Health Monitoring - Tu.3.D.3 More info about this article: http://www.ndt.net/?id=14103 Zero-Pad Effects on Conditional Simulation and Application of Spatially-Varying

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

Blade Group Fatigue Life Calculation under Resonant Stresses

Blade Group Fatigue Life Calculation under Resonant Stresses TEM Journal. Volume 6, Issue, Pages 73-80, ISSN 227-8309, DOI: 0.842/TEM6-25, February 207. Blade Group Fatigue Life Calculation under Resonant Stresses Zlatko Petreski, Goce Tasevski Ss. Cyril and Methodius

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

A wavelet-based time-varying adaptive LQR algorithm for structural control

A wavelet-based time-varying adaptive LQR algorithm for structural control Engineering Structures 30 (2008) 2470 2477 www.elsevier.com/locate/engstruct A wavelet-based time-varying adaptive LQR algorithm for structural control Biswajit Basu a,b,, Satish Nagarajaiah a,c a Department

More information

Edgewise vibration control of wind turbine blades using roller and liquid dampers

Edgewise vibration control of wind turbine blades using roller and liquid dampers Journal of Physics: Conference Series OPEN ACCESS Edgewise vibration control of wind turbine blades using roller and liquid dampers To cite this article: Z L Zhang and S R K Nielsen 14 J. Phys.: Conf.

More information

Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen

Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen Unsteady structural behaviour of small wind turbine blades Samuel Evans Supervisor: A/Prof Philip Clausen samuel.evans@uon.edu.au +61 2 492 16187 The University of Newcastle University Drive Callaghan

More information

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Journal of Physics: Conference Series OPEN ACCESS A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions To cite this article: T Kim et al 2014

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade

Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade V. A. Riziotis and S. G. Voutsinas National Technical University of Athens 9 Heroon Polytechniou str.,

More information

APVC2013. Twin Rotor Damper for Control of Wind-Induced Bridge Deck Vibrations. Jörn SCHELLER * and Uwe STAROSSEK ** 1.

APVC2013. Twin Rotor Damper for Control of Wind-Induced Bridge Deck Vibrations. Jörn SCHELLER * and Uwe STAROSSEK ** 1. Twin Rotor Damper for Control of Wind-Induced Bridge Deck Vibrations Jörn SCHELLER * and Uwe STAROSSEK ** *Institute of Steel and Timber Construction, Faculty of Civil Engineering, Technische Universität

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades the Aerodynamic Offshore Wind, Henning Schmitt, Jörg R. Seume The Science of Making Torque from Wind 2012 October 9-11, 2012 Oldenburg, Germany 1. Motivation and 2. 3. 4. 5. Conclusions and Slide 2 / 12

More information

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2)

Engineering Tripos Part IB. Part IB Paper 8: - ELECTIVE (2) Engineering Tripos Part IB SECOND YEAR Part IB Paper 8: - ELECTIVE (2) MECHANICAL ENGINEERING FOR RENEWABLE ENERGY SYSTEMS Examples Paper 2 Wind Turbines, Materials, and Dynamics All questions are of Tripos

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Shu Wang 1, Peter Seiler 1 and Zongxuan Sun Abstract This paper proposes an H individual pitch controller for the Clipper

More information

Smallbore. Definition of a Cutoff Natural Frequency for. Jim McGhee, Xodus Group

Smallbore. Definition of a Cutoff Natural Frequency for. Jim McGhee, Xodus Group Definition of a Cutoff Natural Frequency for Smallbore Pipework Connections Jim McGhee, Xodus Group A primary cause of vibration induced fatigue failures of smallbore connections in process piping systems

More information

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Downloaded from orbit.dtu.dk on: Jul 12, 2018 A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions Kim, Taeseong; Pedersen, Mads Mølgaard; Larsen,

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY

EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY Published in Proceedings of the L00 (Response of Structures to Extreme Loading) Conference, Toronto, August 00. EFFICIENT MODELS FOR WIND TURBINE ETREME LOADS USING INVERSE RELIABILITY K. Saranyasoontorn

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

A Comparison of Standard Coherence Models for Inflow Turbulence With Estimates from Field Measurements

A Comparison of Standard Coherence Models for Inflow Turbulence With Estimates from Field Measurements A Comparison of Standard Coherence Models for Inflow Turbulence With Estimates from Field Measurements Korn Saranyasoontorn Lance Manuel Department of Civil Engineering, University of Texas at Austin,

More information

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING

FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING FATIGUE LIFE PREDICTION OF TURBOMACHINE BLADING Sanford Fleeter, Chenn Zhou School of Mechanical Engineering Elias Houstis, John Rice Department of Computer Sciences Purdue University West Lafayette, Indiana

More information

Damage Detection in Wind Turbine Towers using a Finite Element Model and Discrete Wavelet Transform of Strain Signals

Damage Detection in Wind Turbine Towers using a Finite Element Model and Discrete Wavelet Transform of Strain Signals Journal of Physics: Conference Series PAPER OPEN ACCESS Damage Detection in Wind Turbine Towers using a Finite Element Model and Discrete Wavelet Transform of Strain Signals To cite this article: A Kenna

More information

Reduction of unwanted swings and motions in floating wind turbines

Reduction of unwanted swings and motions in floating wind turbines Reduction of unwanted swings and motions in floating wind turbines L F Recalde, W E Leithead Department of Electronic and Electrical Engineering, Wind Energy and Control, University of Strathclyde, Glasgow,

More information

Non-Synchronous Vibrations of Turbomachinery Airfoils

Non-Synchronous Vibrations of Turbomachinery Airfoils Non-Synchronous Vibrations of Turbomachinery Airfoils 600 500 NSV Frequency,!, hz 400 300 200 F.R. Flutter 100 SFV 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Rotor Speed,!, RPM Kenneth C. Hall,

More information

EFFECT OF TAPER AND TWISTED BLADE IN STEAM TURBINES

EFFECT OF TAPER AND TWISTED BLADE IN STEAM TURBINES EFFECT OF TAPER AND TWISTED BLADE IN STEAM TURBINES Tulsidas.D 1, M.Shantharaja 2 1 Department of Mechanical Engineering, Acharya Institute of Technology, Bangalore-560107, (India) 2 Department of Mechanical

More information

Foundation models for the dynamic response of offshore wind turbines

Foundation models for the dynamic response of offshore wind turbines Marine Renewable Energy Conference (MAREC), Newcastle, UK, September 00. Foundation models for the dynamic response of offshore wind turbines. M.B. Zaaijer, MSc Delft University of Technology, The Netherlands

More information

Measured wind turbine loads and their dependence on inflow parameters

Measured wind turbine loads and their dependence on inflow parameters Measured wind turbine loads and their dependence on inflow parameters L. Manuel & L. D. Nelson Dept. of Civil Engineering, University of Texas at Austin, TX, USA H. J. Sutherland & P. S. Veers Sandia National

More information

NONLINEAR VIBRATIONS OF ROTATING 3D TAPERED BEAMS WITH ARBITRARY CROSS SECTIONS

NONLINEAR VIBRATIONS OF ROTATING 3D TAPERED BEAMS WITH ARBITRARY CROSS SECTIONS COMPDYN 2013 4 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, V. Papadopoulos, V. Plevris (eds.) Kos Island, Greece, 12 14 June

More information

Wind Turbine Control

Wind Turbine Control Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated

More information

EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS: TECHNICAL REPORT OF FINDINGS

EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS: TECHNICAL REPORT OF FINDINGS Applied Physical Sciences Corp. 475 Bridge Street, Suite 100, Groton, CT 06340 (860) 448-353 www.aphysci.com EVALUATE THE EFFECT OF TURBINE PERIOD OF VIBRATION REQUIREMENTS ON STRUCTURAL DESIGN PARAMETERS:

More information

Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method

Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method Failure of Engineering Materials & Structures Code 04 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Modal and Harmonic analysis of L.P. Turbine of a small Turbo- Fan engine using Finite Element Method H.

More information

A STUDY ON THE FRACTURE A SIROCCO FAN IMPELLER

A STUDY ON THE FRACTURE A SIROCCO FAN IMPELLER FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA A STUDY ON THE FRACTURE A SIROCCO FAN IMPELLER OF S.P. Lee, C.O. Ahn, H.S. Rew, S.C. Park, Y.M. Park and

More information

THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON LONG-TERM LOAD PREDICTION FOR OFFSHORE WIND TURBINES

THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON LONG-TERM LOAD PREDICTION FOR OFFSHORE WIND TURBINES Proceedings of the ASME 27 th International Conference on Offshore and Arctic Engineering OMAE2008 July 15-20, 2008, Estoril, Portugal OMAE2008-57893 THE INFLUENCE OF FOUNDATION MODELING ASSUMPTIONS ON

More information

Multivariate Modelling of Extreme Load Combinations for Wind Turbines

Multivariate Modelling of Extreme Load Combinations for Wind Turbines Downloaded from orbit.dtu.dk on: Oct 05, 2018 Multivariate Modelling of Extreme Load Combinations for Wind Turbines Dimitrov, Nikolay Krasimirov Published in: Proceedings of the 12th International Conference

More information

Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response

Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response ISSN 2395-1621 Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response #1 Supriya D. Sankapal, #2 Arun V. Bhosale 1 sankpal.supriya88@gmail.com 2 arunbhosale@rediffmail.com

More information

Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions

Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions Ahmet Arda Ozdemir, Peter J. Seiler, Gary J. Balas Department of Aerospace Engineering and Mechanics, University of Minnesota,

More information

Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter

Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter . Title Anomaly detection of a horizontal wind turbine using an Extended Kalman Filter 1. Introduction Loads that have a disproportionate impact on the components and structure of a wind turbine can be

More information

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings Applied and Computational Mechanics 1 (2007) 427-436 Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings P. Ferfecki a, * a Center

More information

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE ABSTRACT By G. C. Ezeokpube, M. Eng. Department of Civil Engineering Anambra State University,

More information

Buffeting research of suspension steel frame for ±500 kv converter station DC filter

Buffeting research of suspension steel frame for ±500 kv converter station DC filter Buffeting research of suspension steel frame for ±5 kv converter station DC filter Long-Yi Ou 1, Yang-Ke Jian 2 State Grid Hunan Electric Power Corporation Research Institute, Changsha 417, China 2 Corresponding

More information

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network Schulich School of Engineering Department of Mechanical and Manufacturing Engineering Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network By: Hamidreza Jafarnejadsani,

More information

High accuracy numerical and signal processing approaches to extract flutter derivatives

High accuracy numerical and signal processing approaches to extract flutter derivatives High accuracy numerical and signal processing approaches to extract flutter derivatives *NakHyun Chun 1) and Hak-eun Lee 2) 1), 2) School of Civil, Environmental and Architectural Engineering, Korea University,

More information

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine Applied and Computational Mechanics 3 (2009) 133 140 Static and Dynamic Analysis of 1 220 mm Steel Last Stage Blade for Steam Turbine T. Míšek a,,z.kubín a aškoda POWER a. s., Tylova 57, 316 00 Plzeň,

More information

Finite element analysis of rotating structures

Finite element analysis of rotating structures Finite element analysis of rotating structures Dr. Louis Komzsik Chief Numerical Analyst Siemens PLM Software Why do rotor dynamics with FEM? Very complex structures with millions of degrees of freedom

More information

EN40: Dynamics and Vibrations. Final Examination Wed May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Wed May : 2pm-5pm EN40: Dynamics and Vibrations Final Examination Wed May 10 017: pm-5pm School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You

More information

Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques

Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques Nan-fei Wang, Dong-xiang Jiang *, Te Han State Key Laboratory of Control and Simulation of Power System and Generation

More information

Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads

Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads Dr. Daniel Brenner Head of Monitoring Bosch Rexroth Monitoring Systems

More information

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue Journal of Physics: Conference Series OPEN ACCESS Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue To cite this article: M Reiso and M Muskulus 2014 J.

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Frequency-domain methods for the analysis of offshore wind turbine foundations

Frequency-domain methods for the analysis of offshore wind turbine foundations Frequency-domain methods for the analysis of offshore wind turbine foundations Karl Merz SINTEF Energy Research With contributions from Lene Eliassen NTNU/Statkraft January 21, 2016 Additional thanks to

More information

Assessment of aerodynamics models for wind turbines aeroelasticity

Assessment of aerodynamics models for wind turbines aeroelasticity Assessment of aerodynamics models for wind turbines aeroelasticity *Angelo Calabretta 1), Marco Molica Colella 2), Luca Greco 3) and Massimo Gennaretti 4) 1), 2), 4) Dept. of Engineering, University of

More information

Applied Modal Analysis of Wind Turbine Blades

Applied Modal Analysis of Wind Turbine Blades Risø-R-1388(EN) Applied Modal Analysis of Wind Turbine Blades Henrik Broen Pedersen, Ole Jesper Dahl Kristensen Risø National Laboratory, Roskilde, Denmark February 2003 Abstract In this project modal

More information

Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades

Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades Downloaded from orbit.dtu.dk on: Jan 2, 219 Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades Stäblein, Alexander; Tibaldi, Carlo; Hansen, Morten Hartvig Published in: Proceedings of the

More information

Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads on Wind Turbines

Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads on Wind Turbines Energies 5, 8, 977-3; doi:.339/en84977 OPEN ACCESS energies ISSN 996-73 www.mdpi.com/journal/energies Article Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads

More information

Wind Effects on the Forth Replacement Crossing

Wind Effects on the Forth Replacement Crossing Wind Effects on the Forth Replacement Crossing M.N. Svendsen 1, M. Lollesgaard 2 and S.O. Hansen 2 1 RAMBØLL, DK. mnns@ramboll.dk 2 Svend Ole Hansen ApS, DK. Abstract The Forth Replacement Crossing is

More information

Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys

Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys Adrian Jensen, PE Senior Staff Mechanical Engineer Kyle Hamilton Staff Mechanical Engineer Table of Contents 1. INTRODUCTION... 4

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

FREE VIBRATIONS ANALYSIS OF SHROUDED BLADED DISCS WITH ONE LOOSE BLADE

FREE VIBRATIONS ANALYSIS OF SHROUDED BLADED DISCS WITH ONE LOOSE BLADE TASKQUARTERLY10No1,83 95 FREE VIBRATIONS ANALYSIS OF SHROUDED BLADED DISCS WITH ONE LOOSE BLADE ROMUALDRZĄDKOWSKI 1,LESZEKKWAPISZ 1, MARCINDREWCZYŃSKI 1,RYSZARDSZCZEPANIK 2 ANDJAMMISRINIVASARAO 3 1 InstituteofFluid-FlowMachinery,PolishAcademyofSciences,

More information

Transactions on the Built Environment vol 22, 1996 WIT Press, ISSN

Transactions on the Built Environment vol 22, 1996 WIT Press,   ISSN A shock damage potential approach to shock testing D.H. Trepess Mechanical Subject Group, School of Engineering, Coventry University, Coventry CVl 5FB, UK A shock damage (excitation capacity) approach

More information

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided.

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2015-2016 ENERGY ENGINEERING PRINCIPLES ENG-5001Y Time allowed: 3 Hours Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM

More information

However, reliability analysis is not limited to calculation of the probability of failure.

However, reliability analysis is not limited to calculation of the probability of failure. Probabilistic Analysis probabilistic analysis methods, including the first and second-order reliability methods, Monte Carlo simulation, Importance sampling, Latin Hypercube sampling, and stochastic expansions

More information

NASTRAN Analysis of a Turbine Blade and Comparison with Test and Field Data

NASTRAN Analysis of a Turbine Blade and Comparison with Test and Field Data 75-GT-77 I Copyright 1975 by ASME $3. PER COPY author(s). $1. TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society

More information

Fluid structure interaction of a parked wind turbine airfoil

Fluid structure interaction of a parked wind turbine airfoil Fluid structure interaction of a parked wind turbine airfoil O. Guerri Centre de Développement des Energies Renouvelables BP 62, Bouzaréah, CP 16 34, Alger, Algérie o_guerri@yahoo.com Résumé Le problème

More information

Role of flexible alternating current transmission systems devices in mitigating grid fault-induced vibration of wind turbines

Role of flexible alternating current transmission systems devices in mitigating grid fault-induced vibration of wind turbines See discussions, stats, and author profiles for this publication at https//www.researchgate.net/publication/6561 Role of flexible alternating current transmission systems devices in mitigating grid fault-induced

More information

FORCED RESPONSE COMPUTATION FOR BLADED DISKS INDUSTRIAL PRACTICES AND ADVANCED METHODS

FORCED RESPONSE COMPUTATION FOR BLADED DISKS INDUSTRIAL PRACTICES AND ADVANCED METHODS FORCED RESPONSE COMPUTATION FOR BLADED DISKS INDUSTRIAL PRACTICES AND ADVANCED METHODS E. Seinturier * Turbomeca (SAFRAN) Bordes, France Abstract The aero-mechanical optimisation of turbomachinery bladed

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

Dynamic Model of a Badminton Stroke

Dynamic Model of a Badminton Stroke ISEA 28 CONFERENCE Dynamic Model of a Badminton Stroke M. Kwan* and J. Rasmussen Department of Mechanical Engineering, Aalborg University, 922 Aalborg East, Denmark Phone: +45 994 9317 / Fax: +45 9815

More information

Dynamic Stress Analysis of a Bus Systems

Dynamic Stress Analysis of a Bus Systems Dynamic Stress Analysis of a Bus Systems *H. S. Kim, # Y. S. Hwang, # H. S. Yoon Commercial Vehicle Engineering & Research Center Hyundai Motor Company 772-1, Changduk, Namyang, Whasung, Kyunggi-Do, Korea

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Multiple Cracks Effects on Vibration Characteristics of Shaft Beam

Multiple Cracks Effects on Vibration Characteristics of Shaft Beam International Journal of Engineering Research and General Science Volume 3, Issue, January-February, 205 Multiple Cracks Effects on Vibration Characteristics of Shaft Beam Prof. D. R. Satpute, Prof. S.

More information

COMPARATIVE STUDIES ON SEISMIC INCOHERENT SSI ANALYSIS METHODOLOGIES

COMPARATIVE STUDIES ON SEISMIC INCOHERENT SSI ANALYSIS METHODOLOGIES Transactions, SMiRT-22 COMPARATIVE STUDIES ON SEISMIC INCOHERENT SSI ANALYSIS METHODOLOGIES Dan M. Ghiocel 1 1 Ghiocel Predictive Technologies, Inc., Rochester, New Yor, USA (dan.ghiocel@ghiocel-tech.com)

More information

MOTION SIMULATION AND STRESS AND STRAIN ANALYSIS OF ELASTIC WIND POWER GENERATORS *

MOTION SIMULATION AND STRESS AND STRAIN ANALYSIS OF ELASTIC WIND POWER GENERATORS * th 11 National Congress on Theoretical and Applied Mechanics, 2-5 Sept. 2009, Borovets, Bulgaria MOTION SIMULATION AND STRESS AND STRAIN ANALYSIS OF ELASTIC WIND POWER GENERATORS * EVTIM ZAHARIEV, EMIL

More information

PHYSICS 9646/02. NANYANG JUNIOR COLLEGE Science Department JC 2 PRELIMINARY EXAMINATION Higher 2. Candidate Name. Tutor Name.

PHYSICS 9646/02. NANYANG JUNIOR COLLEGE Science Department JC 2 PRELIMINARY EXAMINATION Higher 2. Candidate Name. Tutor Name. NANYANG JUNIOR COLLEGE Science Department JC PRELIMINARY EXAMINATION Higher Candidate Name Class Tutor Name PHYSICS 9646/0 Paper Structured Questions 4 September 013 1 hour 45 minutes Candidates answer

More information

Dynamic Analysis on Vibration Isolation of Hypersonic Vehicle Internal Systems

Dynamic Analysis on Vibration Isolation of Hypersonic Vehicle Internal Systems International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 55-60 International Research Publication House http://www.irphouse.com Dynamic Analysis on Vibration

More information

A generic evaluation of loads in horizontal axis wind turbines - Abstract. Introduction

A generic evaluation of loads in horizontal axis wind turbines - Abstract. Introduction A generic evaluation of loads in horizontal axis wind turbines - Abstract Introduction Wind turbine size has increased year by year especially recently due to the demand for large units offshore. A lot

More information

The Behaviour of Simple Non-Linear Tuned Mass Dampers

The Behaviour of Simple Non-Linear Tuned Mass Dampers ctbuh.org/papers Title: Authors: Subject: Keyword: The Behaviour of Simple Non-Linear Tuned Mass Dampers Barry J. Vickery, University of Western Ontario Jon K. Galsworthy, RWDI Rafik Gerges, HSA & Associates

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

Damage Identification in Wind Turbine Blades

Damage Identification in Wind Turbine Blades Damage Identification in Wind Turbine Blades 2 nd Annual Blade Inspection, Damage and Repair Forum, 2014 Martin Dalgaard Ulriksen Research Assistant, Aalborg University, Denmark Presentation outline Research

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

Frequency Failure Investigation on Shrouded Steam Turbine Blade through Dynamic Analysis

Frequency Failure Investigation on Shrouded Steam Turbine Blade through Dynamic Analysis Frequency Failure Investigation on Shrouded Steam Turbine Blade through Dynamic Analysis P. Nagababu 1, TSSR Krishna 2, M. Venkata naveen 3 M.Tech Student, Department of Mechanical Engineering, SVEC, Andhra

More information

Statistical Analysis of Wind Turbine Inflow and Structural Response Data From the LIST Program

Statistical Analysis of Wind Turbine Inflow and Structural Response Data From the LIST Program Luke D. Nelson Lance Manuel Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712 Herbert J. Sutherland Paul S. Veers Wind Energy Technology Department, Sandia National Laboratories,

More information

Validation of Offshore load simulations using measurement data from the DOWNVInD project

Validation of Offshore load simulations using measurement data from the DOWNVInD project Validation of Offshore load simulations using measurement data from the DOWNVInD project M. Seidel, F. Ostermann REpower Systems AG Franz-Lenz-Str., 49084 Osnabrück, Germany Mail: m.seidel@repower.de Curvers,

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university cissyvp@gmail.com Jancy Rose K Scientist/Engineer,VSSC, Thiruvananthapuram, India R Neetha

More information