General Strong Polarization

Size: px
Start display at page:

Download "General Strong Polarization"

Transcription

1 General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 1, 018 G.Tech: General Strong Polarization 1 of 1

2 This Talk: Martingales and Polarization [0,1]-Martingale: Sequence of r.v.s XX 0, XX 1, XX, XX tt 0,1, EE XX tt+1 XX 0,, XX tt = XX tt Well-studied in algorithms: [MotwaniRaghavan, 4.4], [MitzenmacherUpfal, 1] E.g., XX tt = Expected approx. factor of algorithm given first tt random choices. Usually study concentration E.g. whp XX final [XX 0 ± εε] Today: Polarization: whp XX final εε, 1 εε Why? Polar codes lim tt XX tt = XX 0 lim tt XX tt = Bern XX 0 May 1, 018 G.Tech: General Strong Polarization of 1

3 Main Result: Definition and Theorem Strong Polarization: (informally) Pr XX tt (ττ, 1 ττ) εε if tt max OO(log 1/εε), oo(log 1/ττ) formally γγ > 0 ββ < 1, cc ss. tt. tt Pr XX tt (γγ tt, 1 γγ tt ) cc ββ tt A non-polarizing example: XX 0 = 1 ; XX tt+1 = XX tt ± tt Local Polarization: Both definitions qualitative! Variance in the middle: XX tt (ττ, 1 ττ) ττ > 0 σσ > 0 ss. tt. tt, XX tt ττ, 1 ττ VVVVVV XX tt+1 XX tt Suction at the ends: XX tt ττ, 1 ττ θθ > 0, cc <, ττ > 0 ss. tt. XX tt < ττ Pr XX tt+1 < XX tt cc σσ θθ Theorem: Local Polarization low Strong end condition. Polarization. Similar condition for high end May 1, 018 G.Tech: General Strong Polarization 3 of 1

4 Rest of the talk Background/Motivation: The Shannon Capacity Challenge Resolution by [Arikan 08], [Guruswami-Xia 13], [Hassani,Alishahi,Urbanke 13]: Polar Codes! Key ideas: Polar Codes & Arikan-Martingale. Implications of Weak/Strong Polarization. Our Contributions: Simplification & Generalization Local Polarization Strong Polarization Arikan-Martingale Locally Polarizes (generally) May 1, 018 G.Tech: General Strong Polarization 4 of 1

5 Shannon and Channel Capacity Shannon [ 48]: For every (noisy) channel of communication, capacity CC s.t. communication at rate RR < CC is possible and RR > CC is not. Needs lot of formalization omitted. Example: XX FF BBBBBB(pp) Acts independently on bits XX w.p. 1 pp 1 XX w.p. pp Capacity = 1 HH(pp) ; HH(pp) = binary entropy! Rate? Encode:FF kk nn FF nn kk lim nn RR nn nn HH pp = pp log 1 pp + 1 pp log 1 1 pp May 1, 018 G.Tech: General Strong Polarization 5 of 1

6 Achieving Channel Capacity Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can nn be? Get RR > CC εε with polytime algorithms? [Luby et al. 95] Make running time poly nn εε? Open till 008 Shannon 48 : nn = OO CC RR Forney 66 :time = pppppppp nn, 1 εε Arikan 08: Invented Polar Codes Final resolution: Guruswami+Xia 13, Hassani+Alishahi+Urbanke 13 Strong analysis May 1, 018 G.Tech: General Strong Polarization 6 of 1

7 Polar Codes and Polarization Arikan: Defined Polar Codes, one for every tt Associated Martingale XX 0,, XX tt, ttth code: Length nn = tt If Pr XX tt γγ, 1 δδ εε then ttth code is εε + δδ - close to capacity, and Pr DDDDDDDDDDDD EEEEEEEEEEEE mm + eeeeeeeeee mm nn γγ Need γγ = oo 1 nn (strong polarization γγ = nnnnnn(nn)) Need εε = 1/nn Ω(1) ( strong polarization) May 1, 018 G.Tech: General Strong Polarization 7 of 1

8 Context for today s talk [Arikan 08]: Martingale associated to general class of codes. Martingale polarizes (weakly) implies code achieves capacity (weakly) Martingale polarizes weakly for entire class. [GX 13, HAU 13]: Strong polarization for one specific code. Why so specific? Bottleneck: Strong Polarization Rest of talk: Polar codes, Martingale and Strong Polarization May 1, 018 G.Tech: General Strong Polarization 8 of 1

9 Lesson 0: Compression Coding Linear Compression Scheme: HH, DD for compression scheme for bern pp nn if Linear map HH: FF nn FF mm Pr ZZ bern pp nn DD HH ZZ ZZ = oo 1 Hopefully mm HH pp + εε nn Compression Coding Let HH be such that HH HH = 0; Encoder: XX HH XX Error-Corrector: YY = HH XX + ηη YY DD HH YY = ww.pp. 1 oo(1) HH XX May 1, 018 G.Tech: General Strong Polarization 9 of 1

10 Question: How to compress? Arikan s key idea: Start with Polarization Transform : UU, VV UU + VV, VV Invertible so does nothing? If UU, VV independent, then UU + VV more random than either VV UU + VV less random than either Iterate (ignoring conditioning) End with bits that are almost random, or almost determined (by others). Output totally random part to get compression! May 1, 018 G.Tech: General Strong Polarization 10 of 1

11 Information Theory Basics Entropy: Defn: for random variable XX Ω, HH XX = pp xx log 1 where pp pp xx = Pr XX = xx xx xx Ω Bounds: 0 HH XX log Ω Conditional Entropy Defn: for jointly distributed XX, YY HH XX YY = pp yy HH(XX YY = yy) yy Chain Rule: HH XX, YY = HH XX + HH(YY XX) Conditioning does not increase entropy: HH XX YY HH(XX) Equality Independence: HH XX YY = HH XX XX YY May 1, 018 G.Tech: General Strong Polarization 11 of 1

12 Iteration by Example: AA, BB, CC, DD AA + BB + CC + DD, BB + DD, CC + DD, DD EE, FF, GG, HH EE + FF + GG + HH, FF + HH, GG + HH, HH BB + DD HH BB + DD AA + BB + CC + DD) BB + DD + FF + HH HH BB + DD + FF + HH AA + BB + CC + DD, EE + FF + GG + HH FF + HH HH FF + HH EE + FF + GG + HH) HH FF + HH FF + HH AA + BB + CC + DD, EE + FF + GG + HH, BB + DD + FF + HH May 1, 018 G.Tech: General Strong Polarization 1 of 1

13 The Polarization Butterfly PP nn UU, VV = PPnn UU + VV, PPnn VV UU ZZ 1 ZZ ZZ ZZ + + WW 1 WW Polarization SS nn HH WW nn SS WW SS 0 SS HH pp + εε nn + ZZ nn WWnn Compression EE ZZ = PP nn ZZ SS VV WWnn +1 WWnn + Encoding time = OO nn log nn (given SS) To be shown: ZZ nn ZZ nn WW nn 1. Decoding = OO nn log nn. Polarization! May 1, 018 G.Tech: General Strong Polarization 13 of 1

14 The Polarization Butterfly: Decoding ZZ 1 ZZ ZZ ZZ + + WW 1 WW Decoding idea: Given SS, WW SS = PP nn UU, VV Compute UU + VV Bern pp pp Determine VV? VV UU + VV ii Bern(rr ii ) ZZ nn WWnn WWnn +1 WWnn + Key idea: Stronger induction! - non-identical product distribution Decoding Algorithm: Given SS, WW SS = PP nn UU, VV, pp 1,, pp nn - Compute qq 1,.. qqnn pp 1 pp nn ZZ nn ZZ nn WW nn - Determine UU + VV = DD WW SS +, qq 1 qqnn - Compute rr 1 rrnn pp 1 pp nn ; UU + VV - Determine VV = DD WW SS, rr 1 rrnn May 1, 018 G.Tech: General Strong Polarization 14 of 1

15 Polarization? Martingale? ZZ 1 ZZ +1 + ZZ nn ZZ ZZ ZZ nn + ZZ nn + WW 1 WW ZZ ii,0 ZZ ii,1 Z ii,tt ZZ ii,log nn WWnn WWnn +1 WWnn + WW nn Idea: Follow XX tt = HH ZZ ii,tt ZZ <ii,tt for random ii Martingale? ZZ jj,tt ZZ kk,tt XX tt can t distinguish ZZ jj,tt+1 ZZ kk,tt+1 ii = jj from ii = kk HH ZZ jj,tt, ZZ kk,tt = HH ZZ jj,tt+1, ZZ kk,tt+1 Chain Rule EE XX tt+1 XX tt = XX tt May 1, 018 G.Tech: General Strong Polarization 15 of 1

16 Remaining Tasks: 1. Prove that XX tt HH ZZ ii,tt ZZ <ii,tt polarizes locally. Prove that Local polarization Strong Polarization. Recall Strong Polarization: (informally) Pr XX tt (ττ, 1 ττ) εε if tt max OO(log 1/εε), oo(log 1/ττ) formally γγ > 0 ββ < 1, cc ss. tt. tt Pr XX tt (γγ tt, 1 γγ tt ) cc ββ tt Local Polarization: Variance in the middle: XX tt (ττ, 1 ττ) ττ > 0 σσ > 0 ss. tt. tt, XX tt ττ, 1 ττ VVVVVV XX tt+1 XX tt σσ Suction at the ends: XX tt ττ, 1 ττ θθ > 0, cc <, ττ > 0 ss. tt. XX tt < ττ Pr XX tt+1 < XX tt cc θθ May 1, 018 G.Tech: General Strong Polarization 16 of 1

17 Local (Global) Strong Polarization Step 1: Medium Polarization: αα, ββ < 1 Pr XX tt ββ tt, 1 ββ tt αα tt Proof: Potential Φ tt = EE min XX tt, 1 XX tt Variance+Suction ηη < 1 s.t. Φ tt ηη φφ tt 1 (Aside: Why XX tt? Clearly XX tt won t work. And XX tt increases!) Φ tt ηη tt Pr XX tt ββ tt, 1 ββ tt ηη ββ tt May 1, 018 G.Tech: General Strong Polarization 17 of 1

18 Local (Global) Strong Polarization Step 1: Medium Polarization: αα, ββ < 1 Pr XX tt ββ tt, 1 ββ tt αα tt Step : Medium Polarization + tt-more steps Strong Polarization: Proof: Assume XX 0 αα tt ; Want XX tt γγ tt w.p. 1 OO αα 1 tt Pick cc large & ττ s.t. Pr XX ii < XX ii 1 cc XX ii 1 ττ θθ.1: Pr ii ss. tt. XX ii ττ ττ 1 αα tt (Doob s Inequality).: Let YY ii = log XX ii ; Assuming XX ii ττ for all ii YY ii YY ii 1 log cc w.p. θθ; & kk w.p. kk. EEEE YY tt tt log cc θθ + 1 tt log γγ Concentration! Pr YY tt tt log γγ αα tt QED! May 1, 018 G.Tech: General Strong Polarization 18 of 1

19 Polarization of Arikan Martingale Ignoring conditioning: XX tt = HH pp XX tt+1 = HH pp pp w.p. ½ = HH pp HH pp pp w.p. ½ Variance in the middle: Continuity of HH and separation of pp pp from pp Suction at high end: XX tt = 1 εε Suction at low end: XX tt+1 = 1 OO(εε ) w.p. ½ XX tt = HH pp XX tt+1 = HH pp log pp w.p. ½ May 1, 018 G.Tech: General Strong Polarization 19 of 1

20 General Strong Polarization? So far: PP nn = HH l for HH = What about other matrices? E.g., PP nn = HH 3 l for HH 3 = Open till our work! Necessary conditions: HH invertible, not-lowertriangular Our work: Necessary conditions suffice (for local polarization)!. May 1, 018 G.Tech: General Strong Polarization 0 of 1

21 Conclusion Simple General Analysis of Strong Polarization But main reason to study general polarization: Maybe some matrices polarize even faster! This analysis does not get us there. But hopefully following the (simpler) steps in specific cases can lead to improvements. May 1, 018 G.Tech: General Strong Polarization 1 of 1

22 Thank You! May 1, 018 G.Tech: General Strong Polarization of 1

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) Oct. 5, 018 Stanford:

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) Oct. 8, 018 Berkeley:

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

Locality in Coding Theory

Locality in Coding Theory Locality in Coding Theory Madhu Sudan Harvard April 9, 2016 Skoltech: Locality in Coding Theory 1 Error-Correcting Codes (Linear) Code CC FF qq nn. FF qq : Finite field with qq elements. nn block length

More information

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard Uncertain Compression & Graph Coloring Madhu Sudan Harvard Based on joint works with: (1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (WUStL) (2) Elad Haramaty (Harvard) (3) Badih Ghazi (MIT),

More information

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University Property Testing and Affine Invariance Part I Madhu Sudan Harvard University December 29-30, 2015 IITB: Property Testing & Affine Invariance 1 of 31 Goals of these talks Part I Introduce Property Testing

More information

Low-Degree Polynomials

Low-Degree Polynomials Low-Degree Polynomials Madhu Sudan Harvard University October 7, 2016 Avi60!! Low-degree Polynomials 1 of 27 October 7, 2016 Avi60!! Low-degree Polynomials 2 of 27 Happy Birthday, Avi!! October 7, 2016

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Algebraic Codes and Invariance

Algebraic Codes and Invariance Algebraic Codes and Invariance Madhu Sudan Harvard April 30, 2016 AAD3: Algebraic Codes and Invariance 1 of 29 Disclaimer Very little new work in this talk! Mainly: Ex- Coding theorist s perspective on

More information

Local Decoding and Testing Polynomials over Grids

Local Decoding and Testing Polynomials over Grids Local Decoding and Testing Polynomials over Grids Madhu Sudan Harvard University Joint work with Srikanth Srinivasan (IIT Bombay) January 11, 2018 ITCS: Polynomials over Grids 1 of 12 DeMillo-Lipton-Schwarz-Zippel

More information

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays Journal of Mathematics and System Science 6 (216) 194-199 doi: 1.17265/2159-5291/216.5.3 D DAVID PUBLISHING On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

Two Decades of Property Testing Madhu Sudan Harvard

Two Decades of Property Testing Madhu Sudan Harvard Two Decades of Property Testing Madhu Sudan Harvard April 8, 2016 Two Decades of Property Testing 1 of 29 Kepler s Big Data Problem Tycho Brahe (~1550-1600): Wished to measure planetary motion accurately.

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

COMPRESSION FOR QUANTUM POPULATION CODING

COMPRESSION FOR QUANTUM POPULATION CODING COMPRESSION FOR QUANTUM POPULATION CODING Ge Bai, The University of Hong Kong Collaborative work with: Yuxiang Yang, Giulio Chiribella, Masahito Hayashi INTRODUCTION Population: A group of identical states

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous Research Journal of Mathematics and Statistics 6: -5, 24 ISSN: 242-224, e-issn: 24-755 Maxwell Scientific Organization, 24 Submied: September 8, 23 Accepted: November 23, 23 Published: February 25, 24

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo Approximate Second Order Algorithms Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo Why Second Order Algorithms? Invariant under affine transformations e.g. stretching a function preserves the convergence

More information

Lesson 24: True and False Number Sentences

Lesson 24: True and False Number Sentences NYS COMMON CE MATHEMATICS CURRICULUM Lesson 24 6 4 Student Outcomes Students identify values for the variables in equations and inequalities that result in true number sentences. Students identify values

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding Chapter 6 Reed-Solomon Codes 6. Finite Field Algebra 6. Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding 6. Finite Field Algebra Nonbinary codes: message and codeword symbols

More information

A A A A A A A A A A A A. a a a a a a a a a a a a a a a. Apples taste amazingly good.

A A A A A A A A A A A A. a a a a a a a a a a a a a a a. Apples taste amazingly good. Victorian Handwriting Sheet Aa A A A A A A A A A A A A Aa Aa Aa Aa Aa Aa Aa a a a a a a a a a a a a a a a Apples taste amazingly good. Apples taste amazingly good. Now make up a sentence of your own using

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Lecture 11. Kernel Methods

Lecture 11. Kernel Methods Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

A linear operator of a new class of multivalent harmonic functions

A linear operator of a new class of multivalent harmonic functions International Journal of Scientific Research Publications, Volume 7, Issue 8, August 2017 278 A linear operator of a new class of multivalent harmonic functions * WaggasGalibAtshan, ** Ali Hussein Battor,

More information

Terms of Use. Copyright Embark on the Journey

Terms of Use. Copyright Embark on the Journey Terms of Use All rights reserved. No part of this packet may be reproduced, stored in a retrieval system, or transmitted in any form by any means - electronic, mechanical, photo-copies, recording, or otherwise

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Classical RSA algorithm

Classical RSA algorithm Classical RSA algorithm We need to discuss some mathematics (number theory) first Modulo-NN arithmetic (modular arithmetic, clock arithmetic) 9 (mod 7) 4 3 5 (mod 7) congruent (I will also use = instead

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Introduction to time series econometrics and VARs. Tom Holden PhD Macroeconomics, Semester 2

Introduction to time series econometrics and VARs. Tom Holden   PhD Macroeconomics, Semester 2 Introduction to time series econometrics and VARs Tom Holden http://www.tholden.org/ PhD Macroeconomics, Semester 2 Outline of today s talk Discussion of the structure of the course. Some basics: Vector

More information

ME5286 Robotics Spring 2017 Quiz 2

ME5286 Robotics Spring 2017 Quiz 2 Page 1 of 5 ME5286 Robotics Spring 2017 Quiz 2 Total Points: 30 You are responsible for following these instructions. Please take a minute and read them completely. 1. Put your name on this page, any other

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Lesson 7: Linear Transformations Applied to Cubes

Lesson 7: Linear Transformations Applied to Cubes Classwork Opening Exercise Consider the following matrices: AA = 1 2 0 2, BB = 2, and CC = 2 2 4 0 0 2 2 a. Compute the following determinants. i. det(aa) ii. det(bb) iii. det(cc) b. Sketch the image of

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

10.4 The Cross Product

10.4 The Cross Product Math 172 Chapter 10B notes Page 1 of 9 10.4 The Cross Product The cross product, or vector product, is defined in 3 dimensions only. Let aa = aa 1, aa 2, aa 3 bb = bb 1, bb 2, bb 3 then aa bb = aa 2 bb

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN International Journal of Mathematical Archive-5(3), 214, 189-195 Available online through www.ijma.info ISSN 2229 546 COMMON FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN INTUITIONISTIC

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

7.3 The Jacobi and Gauss-Seidel Iterative Methods

7.3 The Jacobi and Gauss-Seidel Iterative Methods 7.3 The Jacobi and Gauss-Seidel Iterative Methods 1 The Jacobi Method Two assumptions made on Jacobi Method: 1.The system given by aa 11 xx 1 + aa 12 xx 2 + aa 1nn xx nn = bb 1 aa 21 xx 1 + aa 22 xx 2

More information

Gradient expansion formalism for generic spin torques

Gradient expansion formalism for generic spin torques Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424. Outline 1. Spintronics a. Magnetoresistance and spin torques

More information

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction For pedagogical reasons, OLS is presented initially under strong simplifying assumptions. One of these is homoskedastic errors,

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

Charged-Particle Interactions in Matter

Charged-Particle Interactions in Matter Radiation Dosimetry Attix 8 Charged-Particle Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction When you perform statistical inference, you are primarily doing one of two things: Estimating the boundaries

More information

3. Mathematical Modelling

3. Mathematical Modelling 3. Mathematical Modelling 3.1 Modelling principles 3.1.1 Model types 3.1.2 Model construction 3.1.3 Modelling from first principles 3.2 Models for technical systems 3.2.1 Electrical systems 3.2.2 Mechanical

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Data Preprocessing. Jilles Vreeken IRDM 15/ Oct 2015

Data Preprocessing. Jilles Vreeken IRDM 15/ Oct 2015 Data Preprocessing Jilles Vreeken 22 Oct 2015 So, how do you pronounce Jilles Yill-less Vreeken Fray-can Okay, now we can talk. Questions of the day How do we preprocess data before we can extract anything

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

A Circular Cylinder. 1 Introduction. RITA CHOUDHURY 1 and BIBHASH DEKA 2

A Circular Cylinder. 1 Introduction. RITA CHOUDHURY 1 and BIBHASH DEKA 2 MHD V -E F F H T A Circular Cylinder RITA CHOUDHURY 1 and BIBHASH DEKA 2 1,2 Department of Mathematics, Gauhati University, Guwahati-78114, Assam, INDIA. 1 E-mail: rchoudhury66@yahoo.in 2 E-mail: bibhashdeka66@gmail.com

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS

APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS SINET: Ethiop. J. Sci., 38():7 28, 205 ISSN: 0379 2897 (Print) College of Natural Sciences, Addis Ababa University, 205 2520 7997 (Online) APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED

More information

Math, Stats, and Mathstats Review ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Math, Stats, and Mathstats Review ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Math, Stats, and Mathstats Review ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Outline These preliminaries serve to signal to students what tools they need to know to succeed in ECON 360 and refresh their

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT

Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT Topics Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT 1.1 STRIP FOUNDATION ON GRANULAR SOIL REINFORCED BY METALLIC STRIPS Mode of Failure Location of Failure Surface

More information

Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions

Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions Extreme value statistics: from one dimension to many Lecture 1: one dimension Lecture 2: many dimensions The challenge for extreme value statistics right now: to go from 1 or 2 dimensions to 50 or more

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

Non-Parametric Weighted Tests for Change in Distribution Function

Non-Parametric Weighted Tests for Change in Distribution Function American Journal of Mathematics Statistics 03, 3(3: 57-65 DOI: 0.593/j.ajms.030303.09 Non-Parametric Weighted Tests for Change in Distribution Function Abd-Elnaser S. Abd-Rabou *, Ahmed M. Gad Statistics

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

A semi-device-independent framework based on natural physical assumptions

A semi-device-independent framework based on natural physical assumptions AQIS 2017 4-8 September 2017 A semi-device-independent framework based on natural physical assumptions and its application to random number generation T. Van Himbeeck, E. Woodhead, N. Cerf, R. García-Patrón,

More information

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Inferring the origin of an epidemic with a dynamic message-passing algorithm Inferring the origin of an epidemic with a dynamic message-passing algorithm HARSH GUPTA (Based on the original work done by Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, and Lenka Zdeborová) Paper Andrey

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I Topics Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY 1.1 THE GENERAL BEARING CAPACITY EQUATION Bearing Capacity Factors General Comments 1.2 EFFECT OF SOIL COMPRESSIBILITY 1.3 ECCENTRICALLY

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter Murat Akcakaya Department of Electrical and Computer Engineering University of Pittsburgh Email: akcakaya@pitt.edu Satyabrata

More information

PHY103A: Lecture # 9

PHY103A: Lecture # 9 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 9 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 20-Jan-2018 Summary of Lecture # 8: Force per unit

More information

Introduction to Density Estimation and Anomaly Detection. Tom Dietterich

Introduction to Density Estimation and Anomaly Detection. Tom Dietterich Introduction to Density Estimation and Anomaly Detection Tom Dietterich Outline Definition and Motivations Density Estimation Parametric Density Estimation Mixture Models Kernel Density Estimation Neural

More information

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

 = Y(#,$) % R(r) = 1 4& %  = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V, Recitation Problems: Week 4 1. Which of the following combinations of quantum numbers are allowed for an electron in a one-electron atom: n l m l m s 2 2 1! 3 1 0 -! 5 1 2! 4-1 0! 3 2 1 0 2 0 0 -! 7 2-2!

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

Quantum Chosen-Ciphertext Attacks against Feistel Ciphers

Quantum Chosen-Ciphertext Attacks against Feistel Ciphers SESSION ID: CRYP-R09 Quantum Chosen-Ciphertext Attacks against Feistel Ciphers Gembu Ito Nagoya University Joint work with Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki and Tetsu Iwata Overview 3-round

More information

Statistical Learning with the Lasso, spring The Lasso

Statistical Learning with the Lasso, spring The Lasso Statistical Learning with the Lasso, spring 2017 1 Yeast: understanding basic life functions p=11,904 gene values n number of experiments ~ 10 Blomberg et al. 2003, 2010 The Lasso fmri brain scans function

More information

Independent Component Analysis and FastICA. Copyright Changwei Xiong June last update: July 7, 2016

Independent Component Analysis and FastICA. Copyright Changwei Xiong June last update: July 7, 2016 Independent Component Analysis and FastICA Copyright Changwei Xiong 016 June 016 last update: July 7, 016 TABLE OF CONTENTS Table of Contents...1 1. Introduction.... Independence by Non-gaussianity....1.

More information

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas The Elasticity of Quantum Spacetime Fabric Viorel Laurentiu Cartas The notion of gravitational force is replaced by the curvature of the spacetime fabric. The mass tells to spacetime how to curve and the

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 9. Switched Capacitor Filters Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Motivation Transmission of voice signals requires an active RC low-pass filter with very low ff cutoff

More information

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities These 2 lessons can easily be taught in 2 class periods. If you like these lessons, please consider using other Eureka lessons as well.

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation Big Bang Planck Era Source: http://www.crystalinks.com/bigbang.html Source: http://www.odec.ca/index.htm This theory: cosmological model of the universe that is best supported by several aspects of scientific

More information

International Journal of Mathematical Archive-4(7), 2013, Available online through ISSN

International Journal of Mathematical Archive-4(7), 2013, Available online through   ISSN International Journal of Mathematical Archive-4(7), 2013, 310-317 Available online through www.ijma.info ISSN 2229 5046 RESULT ON RADIATION EFFECTS ON A UNSTEADY MHD FLOW 1 M.V.S.S. Kiran Kumar*, 2 D.Atchutha

More information

Solving Fuzzy Nonlinear Equations by a General Iterative Method

Solving Fuzzy Nonlinear Equations by a General Iterative Method 2062062062062060 Journal of Uncertain Systems Vol.4, No.3, pp.206-25, 200 Online at: www.jus.org.uk Solving Fuzzy Nonlinear Equations by a General Iterative Method Anjeli Garg, S.R. Singh * Department

More information

Aeroacoustic optimisation by means of adjoint sensitivity maps

Aeroacoustic optimisation by means of adjoint sensitivity maps Aeroacoustic optimisation by means of adjoint sensitivity maps CHRISTOS KAPELLOS GOFUN 2018 21.02.2018 AGENDA Continuous adjoint method for external aerodynamics Physical mechanisms of sound propagation

More information

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE Expectation Propagation performs smooth gradient descent 1 GUILLAUME DEHAENE In a nutshell Problem: posteriors are uncomputable Solution: parametric approximations 2 But which one should we choose? Laplace?

More information

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers 10. Digital 10.1 Basic principle of digital control 10.2 Digital PID controllers 10.2.1 A 2DOF continuous-time PID controller 10.2.2 Discretisation of PID controllers 10.2.3 Implementation and tuning 10.3

More information

Quantum state measurement

Quantum state measurement Quantum state measurement Introduction The rotation properties of light fields of spin are described by the 3 3 representation of the 0 0 SO(3) group, with the generators JJ ii we found in class, for instance

More information

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster Integrating Rational functions by the Method of Partial fraction Decomposition By Antony L. Foster At times, especially in calculus, it is necessary, it is necessary to express a fraction as the sum of

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Lecture 11: Polar codes construction

Lecture 11: Polar codes construction 15-859: Information Theory and Applications in TCS CMU: Spring 2013 Lecturer: Venkatesan Guruswami Lecture 11: Polar codes construction February 26, 2013 Scribe: Dan Stahlke 1 Polar codes: recap of last

More information