Study of a numerical scheme for miscible two-phase flow in porous media. R. Eymard, Université Paris-Est

Size: px
Start display at page:

Download "Study of a numerical scheme for miscible two-phase flow in porous media. R. Eymard, Université Paris-Est"

Transcription

1 Study of a numerical scheme for miscible two-phase flow in porous media R. Eymard, Université Paris-Est in collaboration with T. Gallouët and R. Herbin, Aix-Marseille Université C. Guichard, Université Paris 6 R. Masson, Université Nice V. Schleper, Universität Stuttgart october, 23

2 Water and gas flow in porous media Conservation equations Φ(x) t(s(q)ρ w ) div(λρ w k w (S(q)) p w ) = ρ w f w Φ(x) t(s(q)ρ w X (p g ) + ( S(q))ρ g ) div[λρ w k w (S(q))X (p g ) p w + Λρ g k g (S(q)) p g + Dρ w S(q) X (p g )] = ρ g f g with q = p w p g s(q) X (pg) X q pg Existence of continuous solution under various hypotheses : see F. Caro, B. Saad, M. Saad

3 Formal weak sense p g L 2 (, T ; H ()), p w L 2 (, T ; H ()), α = ρw ρ g, D = T + T Φ(x) ( ts(q)t w + t ( αs(q)x (pg ) + ( S(q)) ) T g ) dxdt ( kw (S(q)) p w T w + ( k w (S(q))αX (p g ) p w + k g (S(q)) p g ) Tg ) dxdt = T (f w T w + f g T g ) dxdt T w, T g L 2 (, T ; H ())

4 Space estimates : formal computation on continuous equations set Choose q S(q) := S (τ)τ dτ p X (p) := X (τ)τ dτ T w = p w α p g X (p)dp T g = p g remarkable property ts(q)t w + t ( αs(q)x (pg ) + ( S(q)) ) T g = t ( S(q) + αs(q) X (pg ) ) k w (S(q)) p w T w + ( k w (S(q))αX (p g ) p w + k g (S(q)) p g ) Tg = k w (S(q)) pw 2 + k g (S(q)) pg 2 thanks to p w ( p g X (p)dp ) + X (p g ) p w p g = need of a nonlinear function of p g as test function and Stampacchia s result (ν(u))(x) = ν (u(x)) u(x), for a.e. x, u H (), ν Lip(R)

5 Need of regularization for strong convergence of S(q) and X (p g ) s(q) S max S min q k w (S(q)) pw 2 + k g (S(q)) pg 2 C( pw 2 + pg 2 )

6 Time estimates : formal computation on continuous equations ( ) 2 Φ(x) ( ts(q)) ω dx C p w 2 L 2 () ω 2 L 2 () Φ t(αsx ) = div ( ) (αx + )k w (S) p w + k g (S) p g ( ) 2 Φ t(s(q)x (p g ))ω dx C( p w 2 L 2 () + p g 2 L 2 ()) ω 2 L 2 () bounds ts(q) L 2 (,T ;H C and ( Φ ()) t S(q)X (pg ) ) L 2 (,T ;H C Φ ()) with { v H := sup () Φ Φ(x)v(x)ω(x) dx strong convergence of S(q) and S(q)X (p g ) } ω H () with ω H () = use of regularization for strong convergence of X (p g ) X (p g ) = S(q)X (pg ) S(q)

7 Numerical Scheme : first idea for reproducing continuous estimates set D = (X D,, Π D, D) and look for p w (n+), p g (n+) X D, such that with T ( Φ(x) δ (n+ 2 ) D S(q)Π DT w + δ (n+ 2 ) ( D αs(q)x (pg ) + ( S(q)) ) ) Π DT g dxdt T ( + k w (S(Π Dq)) Dp w DT w + ( ) ) kw (S(Π Dq))αX (Π Dp g ) Dp w + k g (S(Π Dq)) Dp g DT g dxdt T = (f w Π DT w + f g Π DT g ) dxdt T w, T g X D, δ (n+ 2 ) S (n+) S (n) D S = Π D δ (n+ δt (n+ 2 ) D Main problem : reproduce the remarkable property 2 ) (SX ) = Π D S (n+) X (n+) S (n) X (n) ( p g Dp w D X (p)dp ) + X (Π Dp g ) Dp w Dp g = δt (n+ 2 ) unfortunately no hope on general meshes and gradient schemes except if X (p g ) = meaning no dissolution (extension of Richards Problem)

8 Case X (p g ) = : sufficient conditions for convergence (D m = (X Dm,, Π Dm, Dm )) m N Piecewise constant reconstruction Π D(g(u)) = g(π Du) and Π D(uv) = Π DuΠ Dv Π Dv L Coercivity C D = max 2 () v X D, \{} v D discrete Poincaré inequality C Dm remains bounded Consistency : S Dm (ϕ) ( ) ϕ H (), S D(ϕ) = min ΠDv ϕ L v X 2 () + Dv ϕ L 2 () d D, Limit-conformity : W Dm (ϕ) ϕ H div (), W D (ϕ) = max u X D, \{} u D ( D u ϕ + Π D u divϕ) dx Compactness For all bounded sequence u m X Dm,, m N, sequence Π Dm u m rel. compacte in L 2 () (implies coercivity)

9 Case X (p g ) = : convergence analysis estimates lead to existence thanks to topological degree method 2 Dp w, Dp g bounded implies Π Dp w,π Dp g bounded (coercivity) implies Π Dp w,π Dp g weakly converge to some p w, p g 3 Dp w, Dp g bounded implies control on space translate of Π Dp w, Π Dp g (compactness), implies control on space translate of S(p w p g ) 4 time control (piecewise const. rec.) on S(q) implies convergence in L 2 ( (, T )) of S(q) to some S 5 Minty s trick implies S = S( p w p g ) 6 Interpolation of regular test functions, consistency and limit conformity imply limits are solution of weak formulation Examples of gradient scheme?

10 Conforming finite elements with mass lumping N N finite element basis (ϕ i ) i=,...,n, with ϕ i H () X D, = R N Π Du = N u i ϕ i and Π Du = i= N u i χ Ki i= Du = N u i ϕ i = Π Du i= K i Then Π Du Π Du L 2 () h Π Du L 2 () d implies Poincaré inequality coercivity S D(ϕ) Ch D Ŵ D(ϕ) = Rellich theorem consistency limit conformity compactness

11 Mixed finite elements (φ i ) i=,...,n L 2 () characteristic functions of a mesh of V h H div () finite dimensional subspace { } X D, = u = (u,..., u N ) Π Du = N Du V h s.t. for all ψ V h, u i φ i ( ψ Du + Π ) Dudivψ dx = i= Then C D defined by L.B.B. constant Convergence of MFE on linear problems Approximation in H div () coercivity consistency limit conformity compactness

12 Vertex Approximate Gradient scheme X D = { discrete value u K at the cell center x K and u s at the vertex s } Barycentric cutting of a cell in tetrahedra x σ = s V σ CardV σ x s, u σ = s V σ CardV σ u s x s Local discrete gradient on each tetrahedra T T u = s V σ (u s u K )g s T x K x σ x s Piecewise constant gradient in L 2 () d Du = T u on each tetrahedra T Reconstruction operator Π Du(x) = u K on K VAG is vertex-centered : unknowns u K can be eliminated in the linear system

13 The Multi Point Flux Approximation O-scheme on cubes X D, values in K and σ, s Π Du(x) = u K, x K K,s u = (u σ,s u K ) n K,σ d K,σ σ E K,s Du(x) = K,s u, x V K,s x K s x σ

14 The Mixed Mimetic Hybrid Family : the example of the SUSHI scheme u X D, = R M Π Du(x) = u K, x K u σ = aσ K u K K K u = σ K (uσ u K ) n K,σ σ E K R K,σ u = u σ u K K u (x σ x K ) 3 K,σ u = K u + R K,σ u n K,σ d K,σ Du(x) = K,σ u, x D K,σ C D C P S D(ϕ) Ch D W D(ϕ) Ch D discrete func.anal. coercivity consistency limit conformity compactness x K x σ

15 Case X (p g ) > : second idea : TP - two-point flux approximation see R.E., T. Gallouët, C. Guichard, R. Herbin, R. Masson finite volume mesh with (x K, x L ) σ K,L div(λ u)dx = K λ u n K,σ ds σ E K σ σ E K F K,σ σ xk dσ σ EK EL dσ nk,σ xl Dσ L λ σ on D σ with D σ = σ dσ d Dσ K u K,σ = u L for σ E K E L, u K,σ = for σ F K,σ = λ σ σ d σ (u K,σ u K ), σ E K F K,σ + F L,σ = gradients on D σ σu = d u K,σ u K n K,σ d σ σv n K,σ = v K,σ v K d σ v K F K,σ = Π Eλ Du Dvdx = K M σ E K σ λ σ (u L u K )(v L v K ) + d σ σ E K E L Π Eλ Du Dudx = d σ E K,σ λ σ σ d σ u K v K Π Eλ Du 2 dx

16 Resulting scheme with T ( Φ(x) δ (n+ 2 ) D S(q)Π DT w + δ (n+ 2 ) ( D αs(q)x (pg ) + ( S(q)) ) ) Π DT g dxdt T ( + k w (S(Π Eq)) Dp w DT w + ( kw (S(Π Eq))αX (Π Ep g ) Dp w + k g (S(Π Eq)) ) ) Dp g DT g dxdt T = (f w Π DT w + f g Π DT g ) dxdt T w, T g X D, δ (n+ 2 ) S (n+) S (n) D S = Π D δ (n+ δt (n+ 2 ) D 2 ) (SX ) = Π D S (n+) X (n+) S (n) X (n) δt (n+ 2 ) Reproduction of the remarkable property with definition of X (Π Ep g ) Dp w ( p g D X (p)dp ) + X (Π Ep g ) Dp w Dp g = pg,k ensured for σ E K E L under the condition pg,l X (p)dp X (p)dp = pg,l p g,k X (p)dp = X (p g,σ)(p g,l p g,k )

17 Convergence analysis Mimicks continuous estimates provide existence by topological degree method Pass to the limit in Π Eλ Du Dϕ dx λ ū ϕdx weak convergence of Du by conservativity strong convergence of Π Eλ and of Dϕ by consistency

18 Numerical example D injection of gas on the left in pure water Φ(x) =.2 Λ(x) = 2 ρ w = 3 kg m 3 ρ g = kg m 3 f w (t, x) = f g (t, x) = D = S(q) = (( ) n ) m with n = 2, m = /3, p = 5 Pa max{ q,} p + X (p g ) = min{c pp g, X } with X =. k w (S) = max{ S 2 µ w, 5 } with µ w = 3 ( S)2 k g (S) = max{, 5 } with µ g = 5. µ g p g (, x) = 5 Pa p g (t, ) = 3 5 Pa p w (t, ) = 5 Pa p w (, x) = 5 Pa p g (t, L) = 5 Pa p w (t, L) = 5 Pa.

19 Results c p = 3 7 L = 3 m S(q). X(p g ) x x 5 p g.5 5 x.2 5 x.5 x 5 p w x X does not attain its maximum value

20 Results c p = 3.5 7, L = 4. S(q). X(p g ) x x 5 p g.5 5 x.2 5 x.5 x 5 p w x X does attain its maximum value

21 Conclusion Convergence of gradient schemes if X (p g ) = Not clear that possible to relax TP if X (p g ) > Open problem : relax regularization of S(q) with TP scheme (difficult)

Gradient Schemes for an Obstacle Problem

Gradient Schemes for an Obstacle Problem Gradient Schemes for an Obstacle Problem Y. Alnashri and J. Droniou Abstract The aim of this work is to adapt the gradient schemes, discretisations of weak variational formulations using independent approximations

More information

Convergence of the MAC scheme for incompressible flows

Convergence of the MAC scheme for incompressible flows Convergence of the MAC scheme for incompressible flows T. Galloue t?, R. Herbin?, J.-C. Latche??, K. Mallem????????? Aix-Marseille Universite I.R.S.N. Cadarache Universite d Annaba Calanque de Cortiou

More information

The gradient discretisation method

The gradient discretisation method The gradient discretisation method Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaele Herbin To cite this version: Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard,

More information

Uniform-in-time convergence of numerical schemes for Richards and Stefan s models.

Uniform-in-time convergence of numerical schemes for Richards and Stefan s models. Uniform-in-time convergence of numerical schemes for Richards and Stefan s models. Jérôme Droniou, Robert Eymard and Cindy Guichard Abstract We prove that all Gradient Schemes which include Finite Element,

More information

Finite Volume Methods Schemes and Analysis course at the University of Wroclaw

Finite Volume Methods Schemes and Analysis course at the University of Wroclaw Finite Volume Methods Schemes and Analysis course at the University of Wroclaw Robert Eymard 1, Thierry Gallouët 2 and Raphaèle Herbin 3 April, 2008 1 Université Paris-Est Marne-la-Vallée 2 Université

More information

On a class of numerical schemes. for compressible flows

On a class of numerical schemes. for compressible flows On a class of numerical schemes for compressible flows R. Herbin, with T. Gallouët, J.-C. Latché L. Gastaldo, D. Grapsas, W. Kheriji, T.T. N Guyen, N. Therme, C. Zaza. Aix-Marseille Université I.R.S.N.

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data

Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data arxiv:1505.02567v2 [math.na] 24 Feb 2016 J. Droniou 1 February 25, 2016 Abstract

More information

Convection and total variation flow

Convection and total variation flow Convection and total variation flow R. Eymard joint work wit F. Boucut and D. Doyen LAMA, Université Paris-Est marc, 2nd, 2016 Flow wit cange-of-state simplified model for Bingam fluid + Navier-Stokes

More information

On quasi-richards equation and finite volume approximation of two-phase flow with unlimited air mobility

On quasi-richards equation and finite volume approximation of two-phase flow with unlimited air mobility On quasi-richards equation and finite volume approximation of two-phase flow with unlimited air mobility B. Andreianov 1, R. Eymard 2, M. Ghilani 3,4 and N. Marhraoui 4 1 Université de Franche-Comte Besançon,

More information

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 22, Northern Arizona University Some methods using monotonicity for solving quasilinear parabolic

More information

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Navier-Stokes equations in thin domains with Navier friction boundary conditions Navier-Stokes equations in thin domains with Navier friction boundary conditions Luan Thach Hoang Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu

More information

Finite difference MAC scheme for compressible Navier-Stokes equations

Finite difference MAC scheme for compressible Navier-Stokes equations Finite difference MAC scheme for compressible Navier-Stokes equations Bangwei She with R. Hošek, H. Mizerova Workshop on Mathematical Fluid Dynamics, Bad Boll May. 07 May. 11, 2018 Compressible barotropic

More information

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Marie Hélène Vignal UMPA, E.N.S. Lyon 46 Allée d Italie 69364 Lyon, Cedex 07, France abstract. We are interested

More information

LECTURE 3: DISCRETE GRADIENT FLOWS

LECTURE 3: DISCRETE GRADIENT FLOWS LECTURE 3: DISCRETE GRADIENT FLOWS Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA Tutorial: Numerical Methods for FBPs Free Boundary Problems and

More information

Mathematical study of a petroleum-engineering scheme

Mathematical study of a petroleum-engineering scheme Mathematical study of a petroleum-engineering scheme Robert EYMARD, Raphaèle HERBIN, and Anthony MICHE October 8, 22 Abstract Models of two phase flows in porous media, used in petroleum engineering, lead

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems

Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems Weierstrass Institute for Applied Analysis and Stochastics Special Session 36 Reaction Diffusion Systems 8th AIMS Conference on Dynamical Systems, Differential Equations & Applications Dresden University

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

Young measures and nonlinear PDEs. Norbert Hungerbühler

Young measures and nonlinear PDEs. Norbert Hungerbühler Young measures and nonlinear PDEs Norbert Hungerbühler Birmingham, October 1999 Contents Introduction 1 1 A refinement of Ball s Theorem on Young measures 3 1.1 The fundamental theorem on Young measures.............

More information

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth E. DiBenedetto 1 U. Gianazza 2 C. Klaus 1 1 Vanderbilt University, USA 2 Università

More information

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods Introduction In this workshop we will introduce you to the least-squares spectral element method. As you can see from the lecture notes, this method is a combination of the weak formulation derived from

More information

arxiv: v1 [math.na] 17 Jan 2017

arxiv: v1 [math.na] 17 Jan 2017 CONVERGENCE OF THE MARKER-AND-CELL SCHEME FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS T. Gallouët 1, R. Herbin 2, J.-C. Latché 3 and K. Mallem 4 arxiv:1701.04553v1 [math.na] 17

More information

Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments

Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments IMA Journal of Numerical Analysis (2005) 25, 523 548 doi:10.1093/imanum/dri007 Advance Access publication on February 7, 2005 Convergence analysis of a finite volume method for the Stokes system using

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Comparison Results for Semilinear Elliptic Equations in Equimeasurable Domains

Comparison Results for Semilinear Elliptic Equations in Equimeasurable Domains Comparison Results for Semilinear Elliptic Equations in Equimeasurable Domains François HAMEL Aix-Marseille University & Institut Universitaire de France In collaboration with Emmanuel RUSS Workshop on

More information

Entropy-dissipation methods I: Fokker-Planck equations

Entropy-dissipation methods I: Fokker-Planck equations 1 Entropy-dissipation methods I: Fokker-Planck equations Ansgar Jüngel Vienna University of Technology, Austria www.jungel.at.vu Introduction Boltzmann equation Fokker-Planck equations Degenerate parabolic

More information

FINITE ENERGY SOLUTIONS OF MIXED 3D DIV-CURL SYSTEMS

FINITE ENERGY SOLUTIONS OF MIXED 3D DIV-CURL SYSTEMS FINITE ENERGY SOLUTIONS OF MIXED 3D DIV-CURL SYSTEMS GILES AUCHMUTY AND JAMES C. ALEXANDER Abstract. This paper describes the existence and representation of certain finite energy (L 2 -) solutions of

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS Electronic Journal of Differential Equations, Vol. 2005(2005), No.??, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A PROPERTY

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

On some nonlinear parabolic equation involving variable exponents

On some nonlinear parabolic equation involving variable exponents On some nonlinear parabolic equation involving variable exponents Goro Akagi (Kobe University, Japan) Based on a joint work with Giulio Schimperna (Pavia Univ., Italy) Workshop DIMO-2013 Diffuse Interface

More information

arxiv: v3 [math.na] 27 Aug 2018

arxiv: v3 [math.na] 27 Aug 2018 THE HESSIAN DISCRETISATION METHOD FOR FOURTH ORDER LINEAR ELLIPTIC EQUATIONS arxiv:1803.06985v3 [math.na] 27 Aug 2018 Abstract. In this paper, we propose a unified framework, the Hessian discretisation

More information

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media D. A. Di Pietro, M. Vohraĺık, and S. Yousef Université Montpellier 2 Marseille,

More information

Solutions of Selected Problems

Solutions of Selected Problems 1 Solutions of Selected Problems October 16, 2015 Chapter I 1.9 Consider the potential equation in the disk := {(x, y) R 2 ; x 2 +y 2 < 1}, with the boundary condition u(x) = g(x) r for x on the derivative

More information

STUDY OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE PEACEMAN MODEL

STUDY OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE PEACEMAN MODEL SUDY OF DISCREE DUALIY FINIE VOLUME SCHEMES FOR HE PEACEMAN MODEL C. CHAINAIS-HILLAIRE, S. KRELL, AND A. MOUON Abstract. In this paper, we are interested in the finite volume approximation of a system

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

TD 1: Hilbert Spaces and Applications

TD 1: Hilbert Spaces and Applications Université Paris-Dauphine Functional Analysis and PDEs Master MMD-MA 2017/2018 Generalities TD 1: Hilbert Spaces and Applications Exercise 1 (Generalized Parallelogram law). Let (H,, ) be a Hilbert space.

More information

Dirichlet s principle and well posedness of steady state solutions in peridynamics

Dirichlet s principle and well posedness of steady state solutions in peridynamics Dirichlet s principle and well posedness of steady state solutions in peridynamics Petronela Radu Work supported by NSF - DMS award 0908435 January 19, 2011 The steady state peridynamic model Consider

More information

Stationary mean-field games Diogo A. Gomes

Stationary mean-field games Diogo A. Gomes Stationary mean-field games Diogo A. Gomes We consider is the periodic stationary MFG, { ɛ u + Du 2 2 + V (x) = g(m) + H ɛ m div(mdu) = 0, (1) where the unknowns are u : T d R, m : T d R, with m 0 and

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) LMS

More information

Allen Cahn Equation in Two Spatial Dimension

Allen Cahn Equation in Two Spatial Dimension Allen Cahn Equation in Two Spatial Dimension Yoichiro Mori April 25, 216 Consider the Allen Cahn equation in two spatial dimension: ɛ u = ɛ2 u + fu) 1) where ɛ > is a small parameter and fu) is of cubic

More information

Partial Differential Equations, 2nd Edition, L.C.Evans The Calculus of Variations

Partial Differential Equations, 2nd Edition, L.C.Evans The Calculus of Variations Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 8 The Calculus of Variations Yung-Hsiang Huang 2018.03.25 Notation: denotes a bounded smooth, open subset of R n. All given functions are

More information

Lois de conservations scalaires hyperboliques stochastiques : existence, unicité et approximation numérique de la solution entropique

Lois de conservations scalaires hyperboliques stochastiques : existence, unicité et approximation numérique de la solution entropique Lois de conservations scalaires hyperboliques stochastiques : existence, unicité et approximation numérique de la solution entropique Université Aix-Marseille Travail en collaboration avec C.Bauzet, V.Castel

More information

REMARKS ON DISCRETIZATIONS OF CONVECTION TERMS IN HYBRID MIMETIC MIXED METHODS

REMARKS ON DISCRETIZATIONS OF CONVECTION TERMS IN HYBRID MIMETIC MIXED METHODS NETWORS AND HETEROGENEOUS MEDIA c American Institute of Mathematical Sciences Volume 5, Number 3, September 2010 doi:10.3934/nhm.2010.5.xx pp. 1 xx REMARS ON DISCRETIZATIONS OF CONVECTION TERMS IN HYBRID

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD. 1. Dirichlet integral

SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD. 1. Dirichlet integral SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD CRISTIAN E. GUTIÉRREZ FEBRUARY 3, 29. Dirichlet integral Let f C( ) with open and bounded. Let H = {u C ( ) : u = f on } and D(u) = Du(x) 2 dx.

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

Approximation of the biharmonic problem using P1 finite elements

Approximation of the biharmonic problem using P1 finite elements Approximation of the biharmonic problem using P1 finite elements Robert Eymard, Raphaèle Herbin, Mohamed Rhoudaf To cite this version: Robert Eymard, Raphaèle Herbin, Mohamed Rhoudaf. Approximation of

More information

Finite Element Methods for Maxwell Equations

Finite Element Methods for Maxwell Equations CHAPTER 8 Finite Element Methods for Maxwell Equations The Maxwell equations comprise four first-order partial differential equations linking the fundamental electromagnetic quantities, the electric field

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406.

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406. INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS II By Luan Thach Hoang IMA Preprint Series #2406 August 2012 INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF

More information

Forchheimer Equations in Porous Media - Part III

Forchheimer Equations in Porous Media - Part III Forchheimer Equations in Porous Media - Part III Luan Hoang, Akif Ibragimov Department of Mathematics and Statistics, Texas Tech niversity http://www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu Applied Mathematics

More information

Variable Exponents Spaces and Their Applications to Fluid Dynamics

Variable Exponents Spaces and Their Applications to Fluid Dynamics Variable Exponents Spaces and Their Applications to Fluid Dynamics Martin Rapp TU Darmstadt November 7, 213 Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14 Overview 1 Variable

More information

A posteriori error control for the binary Mumford Shah model

A posteriori error control for the binary Mumford Shah model A posteriori error control for the binary Mumford Shah model Benjamin Berkels 1, Alexander Effland 2, Martin Rumpf 2 1 AICES Graduate School, RWTH Aachen University, Germany 2 Institute for Numerical Simulation,

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COUPLED SYSTEMS OF PDE. 1. Introduction

ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COUPLED SYSTEMS OF PDE. 1. Introduction ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COPLED SYSTEMS OF PDE F. CAGNETTI, D. GOMES, AND H.V. TRAN Abstract. The adjoint method, recently introduced by Evans, is used to study obstacle problems,

More information

Constitutive models. Constitutive model: determines P in terms of deformation

Constitutive models. Constitutive model: determines P in terms of deformation Constitutive models Constitutive model: determines P in terms of deformation Elastic material: P depends only on current F Hyperelastic material: work is independent of path strain energy density function

More information

PDEs in Image Processing, Tutorials

PDEs in Image Processing, Tutorials PDEs in Image Processing, Tutorials Markus Grasmair Vienna, Winter Term 2010 2011 Direct Methods Let X be a topological space and R: X R {+ } some functional. following definitions: The mapping R is lower

More information

A primer on Numerical methods for elasticity

A primer on Numerical methods for elasticity A primer on Numerical methods for elasticity Douglas N. Arnold, University of Minnesota Complex materials: Mathematical models and numerical methods Oslo, June 10 12, 2015 One has to resort to the indignity

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

The role of Wolff potentials in the analysis of degenerate parabolic equations

The role of Wolff potentials in the analysis of degenerate parabolic equations The role of Wolff potentials in the analysis of degenerate parabolic equations September 19, 2011 Universidad Autonoma de Madrid Some elliptic background Part 1: Ellipticity The classical potential estimates

More information

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations Finite Element Multigrid Framework for Mimetic Finite ifference iscretizations Xiaozhe Hu Tufts University Polytopal Element Methods in Mathematics and Engineering, October 26-28, 2015 Joint work with:

More information

A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality

A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality A Gradient Reconstruction Formula for Finite Volume chemes and Discrete Duality Boris Andreianov Mostafa Bendahmane 2 Kenneth H. Karlsen Laboratoire de Mathématiques, Université de Franche-Comté 2500 Besançon,

More information

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Martin Costabel Abstract. For sufficiently smooth bounded plane domains, the equivalence between the inequalities of Babuška Aziz

More information

Weak Convergence Methods for Energy Minimization

Weak Convergence Methods for Energy Minimization Weak Convergence Methods for Energy Minimization Bo Li Department of Mathematics University of California, San Diego E-mail: bli@math.ucsd.edu June 3, 2007 Introduction This compact set of notes present

More information

Spaces with Ricci curvature bounded from below

Spaces with Ricci curvature bounded from below Spaces with Ricci curvature bounded from below Nicola Gigli February 23, 2015 Topics 1) On the definition of spaces with Ricci curvature bounded from below 2) Analytic properties of RCD(K, N) spaces 3)

More information

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi-)norms

More information

Applications of the periodic unfolding method to multi-scale problems

Applications of the periodic unfolding method to multi-scale problems Applications of the periodic unfolding method to multi-scale problems Doina Cioranescu Université Paris VI Santiago de Compostela December 14, 2009 Periodic unfolding method and multi-scale problems 1/56

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS AND THEIR APPLICATIONS. Yalchin Efendiev.

MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS AND THEIR APPLICATIONS. Yalchin Efendiev. Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EUATIONS AND THEIR APPLICATIONS

More information

Homogenization limit for electrical conduction in biological tissues in the radio-frequency range

Homogenization limit for electrical conduction in biological tissues in the radio-frequency range Homogenization limit for electrical conduction in biological tissues in the radio-frequency range Micol Amar a,1 Daniele Andreucci a,2 Paolo Bisegna b,2 Roberto Gianni a,2 a Dipartimento di Metodi e Modelli

More information

Stability for parabolic quasiminimizers. Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson

Stability for parabolic quasiminimizers. Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson Stability for parabolic quasiminimizers Y. Fujishima, J. Habermann, J. Kinnunen and M. Masson REPORT No. 1, 213/214, fall ISSN 113-467X ISRN IML-R- -1-13/14- -SE+fall STABILITY FOR PARABOLIC QUASIMINIMIZERS

More information

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES CLAUS GERHARDT Abstract. We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

On atomistic-to-continuum couplings without ghost forces

On atomistic-to-continuum couplings without ghost forces On atomistic-to-continuum couplings without ghost forces Dimitrios Mitsoudis ACMAC Archimedes Center for Modeling, Analysis & Computation Department of Applied Mathematics, University of Crete & Institute

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Stochastic

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

Small energy regularity for a fractional Ginzburg-Landau system

Small energy regularity for a fractional Ginzburg-Landau system Small energy regularity for a fractional Ginzburg-Landau system Yannick Sire University Aix-Marseille Work in progress with Vincent Millot (Univ. Paris 7) The fractional Ginzburg-Landau system We are interest

More information

Calculus of Variations. Final Examination

Calculus of Variations. Final Examination Université Paris-Saclay M AMS and Optimization January 18th, 018 Calculus of Variations Final Examination Duration : 3h ; all kind of paper documents (notes, books...) are authorized. The total score of

More information

Derivation and Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems

Derivation and Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems Derivation Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems A. Agouzal, Naïma Debit o cite this version: A. Agouzal, Naïma Debit. Derivation Analysis of Piecewise

More information

Nonlinear elasticity and gels

Nonlinear elasticity and gels Nonlinear elasticity and gels M. Carme Calderer School of Mathematics University of Minnesota New Mexico Analysis Seminar New Mexico State University April 4-6, 2008 1 / 23 Outline Balance laws for gels

More information

Analytical Solution for Acoustic/Poroelastic Interaction

Analytical Solution for Acoustic/Poroelastic Interaction Analytical Solution for Acoustic/Poroelastic Interaction Julien Diaz,2 Abdelâaziz Ezziani 2, INRIA Bordeaux Sud-Ouest, EPI Magique 3D 2 LMA, UMR 542, Université de Pau 7 April 2009 Acoustic/Poroelastic

More information

Partial Differential Equations. William G. Faris

Partial Differential Equations. William G. Faris Partial Differential Equations William G. Faris May 17, 1999 Contents 1 The Laplace equation 5 1.1 Gradient and divergence....................... 5 1.2 Equilibrium conservation laws....................

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media

Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media Konstantin Brenner, Mayya Groza, Cindy Guichard, Roland Masson To cite this version: Konstantin

More information

Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface

Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface Patrizia Donato Université de Rouen International Workshop on Calculus of Variations and its Applications

More information

PARABOLIC CONTROL PROBLEMS IN SPACE-TIME MEASURE SPACES

PARABOLIC CONTROL PROBLEMS IN SPACE-TIME MEASURE SPACES ESAIM: Control, Optimisation and Calculus of Variations URL: http://www.emath.fr/cocv/ Will be set by the publisher PARABOLIC CONTROL PROBLEMS IN SPACE-TIME MEASURE SPACES Eduardo Casas and Karl Kunisch

More information

The Convergence of Mimetic Discretization

The Convergence of Mimetic Discretization The Convergence of Mimetic Discretization for Rough Grids James M. Hyman Los Alamos National Laboratory T-7, MS-B84 Los Alamos NM 87545 and Stanly Steinberg Department of Mathematics and Statistics University

More information

Mixed Hybrid Finite Element Method: an introduction

Mixed Hybrid Finite Element Method: an introduction Mixed Hybrid Finite Element Method: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola

More information

The heat equation in time dependent domains with Neumann boundary conditions

The heat equation in time dependent domains with Neumann boundary conditions The heat equation in time dependent domains with Neumann boundary conditions Chris Burdzy Zhen-Qing Chen John Sylvester Abstract We study the heat equation in domains in R n with insulated fast moving

More information