Realization of squeezing of single photons and a dynamic squeezing gate -- linear and nonlinear feedforward --

Size: px
Start display at page:

Download "Realization of squeezing of single photons and a dynamic squeezing gate -- linear and nonlinear feedforward --"

Transcription

1 Isaac Newton Institute for Mathematical Sciences QCE seminar, July 22, 2014 Realization of squeezing of single photons and a dynamic squeezing gate -- linear and nonlinear feedforward -- Akira Furusawa Department of Applied Physics The University of Tokyo

2 Collaborators A. Furusawa Univ. of Tokyo J. Yoshikawa, S. Yokoyama, K. Miyata, K. Makino, M. Fuwa, H. Ogawa, T. Kaji, Y. Hashimoto, H. Odan, T. Serikawa, Y. Shiozawa, M. Taguchi, T. Tohyama, R. Nakamura, K. Muramoto, S. Suzuki, S. C. Armstrong (ANU), G. Masada (Tamagawa), J. Meinecke (Bristol) P. van Loock (Mainz), R. Filip (Palacky), L. Mista (Palacky), P. Marek (Palacky), J. L. O Brien (Bristol), A. Politi (Southampton), E. H. Huntington (ADFA), T. Ralph (UQ), H. Wiseman (GU), N. Menicucci (Sydney), H. Yonezawa (ADFA), S. Takeda (IMS)

3 Quantum noise reduction with squeezed light

4 Quantum noise reduction with squeezed light linear feedforward

5 Quantum noise reduction with nonclassical state of light linear and nonlinear feedforward

6 Realization Quantum of noise universal reduction quantum Quantum state of light p information with nonclassical processing state of light linear feedforward x We need at least one non-linear gate p Linear (Gaussian) operations x p Displacement Squeezing Rotation x p x S. Lloyd and S. L. Braunstein, PRL 82, 1784 (1999) Non-linear (non-gaussian) operations Cubic phase gate nonlinear feedforward p x

7 Squeezing of single photons and Schrödinger cat states linear feedforward for non-gaussian states Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, Phys. Rev. Lett. 113, (2014)

8 High-fidelity universal squeezer with gate teleportation Gate teleportation BS X p-measurement Input T tunability of squeezing level with T Displace in p Feedforward Beam Splitter OPO linear feedforward Squeezed vacuum p x R. Filip, P. Marek, and U. L. Andersen, PRA 71, (2005)

9 Experimental set-up Input Squeezed Light OPO-2 Output LO OPO-1 SC FC-1 FC-2 APD BS (T) 50%R LO ~12m 99.4%R EOM HD-2 Oscilloscope Single Photon Source Alternative 3%R HD-1 Classical Channel Squeezer Trigger Signal OPO-1 CSS Source FC-1 FC-2 APD Y. Miwa et al., PRL 113, (2014)

10 Squeezing of a single photon From particles to waves X BS Y. Miwa et al., PRL 113, (2014) without any correction!!

11 Squeezing of a single photon From particles to waves X BS amplitude phase [/ rad] Y. Miwa et al., PRL 113, (2014) without any correction!!

12 Squeezing of Schrödinger cat From waves to particles Probability Photon number X BS Probability Photon number without any correction!! Y. Miwa et al., PRL 113, (2014)

13 Quantum Non-Demolition (QND) interaction QND gate CV-CNOT gate (G=1) p SQZ BS BS QND SQZ x

14 QND interaction with universal squeezers B Universal squeezer Mode 1 Mode 2 QND gate -4.2 db of squeezing A Universal squeezer

15 Experimental results After QND Before QND Inputs Outputs Theoretical values with finite squeezing of ancillae: -4.9dB J. Yoshikawa et al., Phys. Rev. Lett. 101, (2008)

16 Now working on QND on single photons

17 Dynamic squeezing gate For realization of nonlinear quantum gates nonlinear feedforward K. Miyata, H. Ogawa, H. Yonezawa, P. Marek, R. Filip, and A. Furusawa, in preparation.

18 Realization Quantum of noise universal reduction quantum Quantum state of light p information with nonclassical processing state of light linear feedforward x We need at least one non-linear gate p Linear (Gaussian) operations x p Displacement Squeezing Rotation x p x S. Lloyd and S. L. Braunstein, PRL 82, 1784 (1999) Non-linear (non-gaussian) operations Cubic phase gate nonlinear feedforward p x

19 Cubic phase gate Schrödinger picture Heisenberg picture

20 Can you make this conversion by a nonlinear crystal at single photon level? No! state preparation with strong light and then make a gate teleportation

21 Realization of a cubic phase gate with gate teleportation Schrödinger picture Gottesman et al. PRA 64, (2001) Input nonlinear feedforward Output q cubic phase state QND gate Gate teleportation

22 Realization of a cubic phase gate with gate teleportation Heisenberg picture Gottesman et al. PRA 64, (2001) Input nonlinear feedforward Output q cubic phase state QND gate

23 Cubic phase state Schrödinger picture Heisenberg picture p p p x Simulation finite squeezing x Simulation 0 & 1 photon x Experiment 0 & 1 photon

24 Realization of a cubic phase gate with gate teleportation Heisenberg picture Gottesman et al. PRA 64, (2001) Input nonlinear feedforward Output Too complicated!! q cubic phase state QND gate P. Marek et al. PRA 84, (2011)

25 The simplest scheme of Nonlinearity a cubic (Non-Gaussianity) phase gate comes from nonlinear feedforward cubic phase state squeezed vacuum Nonclassicality comes from nonclassical states input Quantum noise reduction output with nonclassical p-displacement state of light

26 The simplest scheme of a cubic phase gate cubic phase state squeezed vacuum input p-displacement output

27 The simplest scheme of a cubic phase gate cubic phase state Nonlinear feedforward squeezed vacuum input p-displacement output Dynamic squeezing gate

28 Dynamic squeezing gate cubic phase state Nonlinear feedforward squeezed vacuum input p p-displacement output 1 MHz ~ 5MHz x

29 Nonlinear feedforward cubic +, )*!"#$%&!"#$%'!"#$%( &-./ &-./ &-./ '0* '0* '0* (1* squeezed vacuum input p ~ 5MHz x p-displacement /,+ +,-. output 1 MHz ;$- %()*!"#23!&4!5&6-1 )$%! " 5678)8 )* 234 +,-. /,+ )9%! " %()* 78/%9: -0 <$-

30 Nonlinear feedforward +,!"#$%& &-./ '0* )*!"#$%'!"#$%( &-./ &-./ '0* '0* (1* /,+ +,-. ;$- %()*!"#23!&4!5&6-1 )$%! " 5678)8 )* 234 +,-. /,+ )9%! " %()* 78/%9: -0 <$-

31 Nonlinear feedforward cubic squeezed vacuum -amp 3;: ()*+,-(&.(/&0 input p p-displacement output 5// ! " <> 8? ~ 5MHz x &" 88/ 89/! "./ 012/34 6E +<%=>? )&@)A&B!"#$%&'#()*+,- 5C67 88/ 53/ 5C67! " :; / 89/ 3D/! " :;04.4./!AB

32 Nonlinear feedforward -amp 5//67 &" 88/ 89/! "./ 012/34 6E +<%=>? 5C67 88/ 53/ 5C67! " :; / 89/ 3D/!./ " :;04.4!AB

33 2 2 1MHz 0 0 p ~ 5MHz x Input amplitude squeezed vacuum anti sqz. angle (deg) input cubic p x ~ 5MHz 0 10 p-displacement output p 45º x Output amplitudes Variances (db) Time (us) x p x p 45 anti sqz. level (db) sqz. level (db) MHz Time (us)

34 2 0 p x anti sqz. angle (deg) cubic squeezed vacuum input p x ~ 5MHz p-displacement output x p anti sqz. level (db) x p sqz. level (db) Time (us) 1 MHz

35 The simplest scheme of a cubic phase gate cubic phase state squeezed vacuum input p-displacement output

36 Both photons are resonant to the OPO cavity.

37 Only orange photons are resonant to the OPO cavity.

38

39 The quantum teleportation chip

40

arxiv: v2 [quant-ph] 21 Sep 2017

arxiv: v2 [quant-ph] 21 Sep 2017 Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture Shuntaro Takeda and Akira Furusawa Department of Applied Physics, School of Engineering,

More information

Continuous-variable quantum optical experiments in the time domain using squeezed states and heralded non-gaussian states

Continuous-variable quantum optical experiments in the time domain using squeezed states and heralded non-gaussian states Invited Paper Continuous-variable quantum optical experiments in the time domain using squeezed states and heralded non-gaussian states Jun-ichi Yoshikawa* a,b, Yosuke Hashimoto a, Hisashi Ogawa a, Shota

More information

arxiv: v1 [quant-ph] 9 Apr 2014

arxiv: v1 [quant-ph] 9 Apr 2014 Optical Hybrid Quantum Information Processing Shuntaro Takeda and Akira Furusawa arxiv:404.2349v [quant-ph] 9 Apr 204 Abstract Historically, two complementary approaches to optical quantum information

More information

Generating superposition of up-to three photons for continuous variable quantum information processing

Generating superposition of up-to three photons for continuous variable quantum information processing Generating superposition of up-to three photons for continuous variable quantum information processing Mitsuyoshi Yukawa, 1 Kazunori Miyata, 1 Takahiro Mizuta, 1 Hidehiro Yonezawa, 1 Petr Marek, 2 Radim

More information

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium ISSN 2186-6570 Evaluation Method for Inseparability of Two-Mode Squeezed Vacuum States in a Lossy Optical Medium Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

High-fidelity continuous-variable quantum teleportation toward multistep quantum operations

High-fidelity continuous-variable quantum teleportation toward multistep quantum operations High-fidelity continuous-variable quantum teleportation toward multistep quantum operations Mitsuyoshi Yukawa,, Hugo Benichi,,3 and Akira Furusawa, Department of Applied Physics, School of Engineering,

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Miniaturization of an Optical Parametric Oscillator with a Bow-Tie. Configuration for Broadening a Spectrum of Squeezed Light

Miniaturization of an Optical Parametric Oscillator with a Bow-Tie. Configuration for Broadening a Spectrum of Squeezed Light ISSN 2186-6570 Miniaturization of an Optical Parametric Oscillator with a Bow-Tie Configuration for Broadening a Spectrum of Squeezed Light Genta Masada Quantum ICT Research Institute, Tamagawa University

More information

arxiv: v1 [quant-ph] 29 May 2015

arxiv: v1 [quant-ph] 29 May 2015 Continuous variable entanglement on a chip arxiv:1505.07895v1 [quant-ph] 29 May 2015 Genta Masada, 1,2 Kazunori Miyata, 1 Alberto Politi, 3 Toshikazu Hashimoto, 4 Jeremy L. O Brien, 5 and Akira Furusawa

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Evaluation of Second Order Nonlinearity in Periodically Poled

Evaluation of Second Order Nonlinearity in Periodically Poled ISSN 2186-6570 Evaluation of Second Order Nonlinearity in Periodically Poled KTiOPO 4 Crystal Using Boyd and Kleinman Theory Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3 ISSN 2186-6570 Efficient Generation of Second Harmonic Wave with Periodically Poled MgO:LiNbO 3 Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610,

More information

Experimental continuous-variable cloning of partial quantum information

Experimental continuous-variable cloning of partial quantum information Experimental continuous-variable cloning of partial quantum information Metin Sabuncu, 1,, * Gerd Leuchs, and Ulrik L. Andersen 1, 1 Department of Physics, Technical University of Denmark, 800 Kongens

More information

Analog quantum error correction with encoding a qubit into an oscillator

Analog quantum error correction with encoding a qubit into an oscillator 17th Asian Quantum Information Science Conference 6 September 2017 Analog quantum error correction with encoding a qubit into an oscillator Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto Graduate School

More information

Enhanced optical communication and broadband sub-shot-noise interferometry with a stable free-running periodically poled KTiOPO 4 squeezer

Enhanced optical communication and broadband sub-shot-noise interferometry with a stable free-running periodically poled KTiOPO 4 squeezer 2702 J. Opt. Soc. Am. B/ Vol. 24, No. 10/ October 2007 Xie et al. Enhanced optical communication and broadband sub-shot-noise interferometry with a stable free-running periodically poled KTiOPO 4 squeezer

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

arxiv:quant-ph/ v2 30 May 2007

arxiv:quant-ph/ v2 30 May 2007 Ultracompact Generation of Continuous-Variable Cluster States arxiv:quant-ph/0703096v2 30 May 2007 Nicolas C. Menicucci, 1, 2, Steven T. Flammia, 3 Hussain Zaidi, 4 and Olivier Pfister 4, 1 Department

More information

Quantum cloning of continuous-variable entangled states

Quantum cloning of continuous-variable entangled states PHYICAL REVIEW A 77, 0533 008 Quantum cloning of continuous-variable entangled states Christian Weedbrook,, * Nicolai B. Grosse, Thomas ymul, Ping Koy Lam, and Timothy C. Ralph Department of Physics, University

More information

Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources

Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources a generation rate large enough to allow subsequent operations will open a wealth of possible protocols

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen Beyond Heisenberg uncertainty principle in the negative mass reference frame Eugene Polzik Niels Bohr Institute Copenhagen Trajectories without quantum uncertainties with a negative mass reference frame

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Efficient production of large-scale optical Schrödinger cat states

Efficient production of large-scale optical Schrödinger cat states Efficient production of large-scale optical Schrödinger cat states Evgeny V. Mikheev 1, Alexander S. Pugin, Dmitriy A. Kuts 1, Sergey A. Podoshvedov 1 and Nguyen Ba An 3,4 1 Department of computer modeling

More information

arxiv: v2 [quant-ph] 4 Jun 2013

arxiv: v2 [quant-ph] 4 Jun 2013 Entanglement-assisted scheme for nondemolition detection of the presence of a single photon Marek Bula 1 Karol Bartkiewicz 1 Antonín Černoch and Karel Lemr 1 1 RCPTM Joint Laboratory of Optics of Palacký

More information

Squeezed states of light - generation and applications

Squeezed states of light - generation and applications Squeezed states of light - generation and applications Eugeniy E. Mikhailov The College of William & Mary Fudan, December 24, 2013 Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 1 /

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

arxiv: v2 [quant-ph] 30 Dec 2014

arxiv: v2 [quant-ph] 30 Dec 2014 Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb Raphael Pooser 1 and Jietai Jing 2 1 Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831

More information

arxiv: v1 [quant-ph] 21 Jun 2016

arxiv: v1 [quant-ph] 21 Jun 2016 Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing arxiv:166.6688v1 [quant-ph] 21 Jun 216 Jun-ichi Yoshikawa, 1 Shota Yokoyama, 1, 2 Toshiyuki Kaji,

More information

Bright tripartite entanglement in triply concurrent parametric oscillation

Bright tripartite entanglement in triply concurrent parametric oscillation Bright tripartite entanglement in triply concurrent parametric oscillation A. S. Bradley and M. K. Olsen ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland,

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Light Sources and Interferometer Topologies - Introduction -

Light Sources and Interferometer Topologies - Introduction - Light Sources and Interferometer Topologies - Introduction - Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Light Sources and Interferometer

More information

High rate quantum cryptography with untrusted relay: Theory and experiment

High rate quantum cryptography with untrusted relay: Theory and experiment High rate quantum cryptography with untrusted relay: Theory and experiment CARLO OTTAVIANI Department of Computer Science, The University of York (UK) 1st TWQI Conference Ann Arbor 27-3 July 2015 1 In

More information

arxiv: v1 [quant-ph] 30 Nov 2013

arxiv: v1 [quant-ph] 30 Nov 2013 Gate sequence for continuous variable one-way quantum computation Xiaolong Su, Shuhong Hao, Xiaowei Deng, Lingyu Ma, Meihong Wang, Xiaojun Jia, Changde Xie and Kunchi Peng State Key Laboratory of Quantum

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Quantum-noise reduction techniques in a gravitational-wave detector

Quantum-noise reduction techniques in a gravitational-wave detector Quantum-noise reduction techniques in a gravitational-wave detector AQIS11 satellite session@kias Aug. 2011 Tokyo Inst of Technology Kentaro Somiya Contents Gravitational-wave detector Quantum non-demolition

More information

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics

A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Commun. Theor. Phys. 67 (2017) 391 395 Vol. 67, No. 4, April 1, 2017 A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics Ting-Ting Zhang ( 张婷婷 ), 1,2 Jie Wei ( 魏杰 ), 1,2

More information

Nonclassicality of a photon-subtracted Gaussian field

Nonclassicality of a photon-subtracted Gaussian field PHYSICAL REVIEW A 7, 043805 005 Nonclassicality of a photon-subtracted Gaussian field M. S. Kim, E. Park, P. L. Knight, and H. Jeong 3 School of Mathematics and Physics, The Queen s University, Belfast,

More information

All Optical Quantum Gates

All Optical Quantum Gates All Optical Quantum Gates T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland ralph@physics.uq.edu.au LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

Sub-Universal Models of Quantum Computation in Continuous Variables

Sub-Universal Models of Quantum Computation in Continuous Variables Sub-Universal Models of Quantum Computation in Continuous Variables Giulia Ferrini Chalmers University of Technology Genova, 8th June 2018 OVERVIEW Sub-Universal Models of Quantum Computation Continuous

More information

Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control Adriano A. Berni 1, Tobias Gehring 1, Bo M. Nielsen 1, Vitus Händchen 2, Matteo G.A. Paris 3, and Ulrik L. Andersen

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

Quantum Communication with Atomic Ensembles

Quantum Communication with Atomic Ensembles Quantum Communication with Atomic Ensembles Julien Laurat jlaurat@caltech.edu C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble Caltech Quantum Optics FRISNO 2007, February 12, 2007

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Single-photon side bands

Single-photon side bands PHYSICAL REVIEW A 77, 6387 8 Single-photon side bands T. C. Ralph, E. H. Huntington, and T. Symul 3 Department of Physics, University of Queensland, Brisbane 47, QLD, Australia Centre for Quantum Computer

More information

Entanglement swapping using nondegenerate optical parametric amplifier

Entanglement swapping using nondegenerate optical parametric amplifier 15 July 00 Physics Letters A 99 (00 47 43 www.elsevier.com/locate/pla Entanglement swapping using nondegenerate optical parametric amplifier Jing Zhang Changde Xie Kunchi Peng The State Key Laboratory

More information

Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information

Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information II. I. Introduction Squeezed states and optical interferometry III. Ramsey interferometry and cat states

More information

Gravitational-Wave Detectors

Gravitational-Wave Detectors Gravitational-Wave Detectors Roman Schnabel Institut für Laserphysik Zentrum für Optische Quantentechnologien Universität Hamburg Outline Gravitational waves (GWs) Resonant bar detectors Laser Interferometers

More information

arxiv: v2 [quant-ph] 29 Aug 2012

arxiv: v2 [quant-ph] 29 Aug 2012 Programmable Multimode Quantum Networks *Seiji Armstrong 1,,3, Jean-François Morizur 1,4, Jiri Janousek 1,, Boris Hage 1,, Nicolas Treps 4, Ping Koy Lam and Hans-A. Bachor 1 1 ARC Centre of Excellence

More information

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum non-demolition measurements: a new resource for making linear logic scalable Quantum non-demolition measurements: a new resource for making linear logic scalable Kae Nemoto 1, William J. Munro, Timothy P. Spiller, R.G. Beausoleil Trusted Systems Laboratory HP Laboratories Bristol

More information

Multimode Entanglement in. Continuous Variables

Multimode Entanglement in. Continuous Variables Multimode Entanglement in Continuous Variables Entanglement with continuous variables What are we measuring? How are we measuring it? Why are we using the Optical Parametric Oscillator? What do we learn?

More information

Quantum description of light. Quantum description of light. Content of the Lecture

Quantum description of light. Quantum description of light. Content of the Lecture University aris-saclay - IQUS Optical Quantum Engineering: From fundamentals to applications hilippe Grangier, Institut d Optique, CNRS, Ecole olytechnique. Lecture (7 March, 9:5-0:45) : Qubits, entanglement

More information

10.6 Propagating quantum microwaves

10.6 Propagating quantum microwaves AS-Chap. 10-1 10.6 Propagating quantum microwaves Propagating quantum microwaves emit Quantum - - Superconducting quantum circuits Artificial quantum matter Confined quantum states of light Does the emitted

More information

Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting PHYSICAL REVIEW A, VOLUME 65, 042304 Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting Stephen D. Bartlett 1 and Barry C. Sanders 1,2 1 Department

More information

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Optical Quantum Imaging, Computing, and Metrology: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Photon subtraction from traveling fields - recent experimental demonstrations

Photon subtraction from traveling fields - recent experimental demonstrations Progress in Informatics, No. 8, pp.5 18, (2011) 5 Special issue: Quantum information technology Review Photon subtraction from traveling fields - recent experimental demonstrations Jonas S. NEERGAARD-NIELSEN

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

Universal quantum computation on the power of quantum non-demolition measurements

Universal quantum computation on the power of quantum non-demolition measurements Universal quantum computation on the power of quantum non-demolition measurements Kae Nemoto 1, William J. Munro Trusted Systems Laboratory P Laboratories Bristol PL-2005-202 November 23, 2005* universal

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, Aberystwyth Papers J.G. M.R. James, Commun.

More information

Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors. Eleonora Capocasa

Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors. Eleonora Capocasa Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors Eleonora Capocasa 10 novembre 2016 My thesis work is dived into two parts: Participation in the

More information

Cavity optomechanics: manipulating mechanical resonators with light

Cavity optomechanics: manipulating mechanical resonators with light Cavity optomechanics: manipulating mechanical resonators with light David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy in collaboration with M. Abdi, Sh. Barzanjeh,

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator PHYSICAL REVIEW A 8, 5386 (1) Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator S. L. W. Midgley and M. K. Olsen ARC Centre of Excellence for Quantum-Atom

More information

Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement

Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement Janne Ruostekoski University of Southampton Juha Javanainen University of Connecticut

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System 2445-03 Advanced Workshop on Nanomechanics 9-13 September 2013 Quantum Measurement in an Optomechanical System Tom Purdy JILA - NIST & University of Colorado U.S.A. Tom Purdy, JILA NIST & University it

More information

Remote transfer of Gaussian quantum discord

Remote transfer of Gaussian quantum discord Remote transfer of Gaussian quantum discord Lingyu Ma and Xiaolong Su State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006,

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state Oliver Glöckl, 1, * Stefan Lorenz, 1 Christoph Marquardt, 1 Joel Heersink, 1 Michael Brownnutt,

More information

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Einstein-Podolsky-Rosen entanglement t of massive mirrors Einstein-Podolsky-Rosen entanglement t of massive mirrors Roman Schnabel Albert-Einstein-Institut t i tit t (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Outline Squeezed and two-mode

More information

Introduction to Optomechanics

Introduction to Optomechanics Centre for Quantum Engineering and Space-Time Research Introduction to Optomechanics Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational Physics (AEI)

More information

Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States

Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States Commun. Theor. Phys. 56 (2011) 664 668 Vol. 56, No. 4, October 15, 2011 Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States HE Guang-Qiang (¾Ö), ZHU Jun (ý ), and ZENG Gui-Hua

More information

Resonantly Enhanced Microwave Photonics

Resonantly Enhanced Microwave Photonics Resonantly Enhanced Microwave Photonics Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://www.ece.nus.edu.sg/stfpage/tmk/

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Correcting noise in optical fibers via dynamic decoupling

Correcting noise in optical fibers via dynamic decoupling Introduction CPMG Our results Conclusions Correcting noise in optical fibers via dynamic decoupling Bhaskar Bardhan 1, Petr Anisimov 1, Manish Gupta 1, Katherine Brown 1, N. Cody Jones 2, Hwang Lee 1,

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

arxiv:quant-ph/ v1 30 May 2006

arxiv:quant-ph/ v1 30 May 2006 Non-Gaussian, Mixed Continuous-Variable Entangled States A. P. Lund and T. C. Ralph Centre for Quantum Computer Technology, Department of Physics, University of Queensland, St Lucia, QLD 407, Australia

More information

arxiv: v2 [quant-ph] 25 Nov 2009

arxiv: v2 [quant-ph] 25 Nov 2009 Time gating of heralded single photons for atomic memories B. Melholt Nielsen, 1 J. S. Neergaard-Nielsen, 1 and E. S. Polzik 1, arxiv:0909.0646v2 [quant-ph] 25 Nov 2009 1 Niels Bohr Institute, Danish National

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

Continuous-variable quantum information processing

Continuous-variable quantum information processing Laser & Photon. Rev. 4, No. 3, 337 354 (2010) / DOI 10.1002/lpor.200910010 337 Abstract Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements

More information

Entanglement concentration of continuous-variable quantum states

Entanglement concentration of continuous-variable quantum states PHYSICAL REVIEW A 67, 0304 003 Entanglement concentration of continuous-variable quantum states Jaromír Fiurášek, Ladislav Mišta, Jr., and Radim Filip Department of Optics, Palacký University, 17. listopadu

More information

arxiv: v1 [quant-ph] 23 Oct 2017

arxiv: v1 [quant-ph] 23 Oct 2017 Squeezed state evolution and entanglement in lossy coupled resonator optical waveguides Hossein Seifoory and Marc. M. Dignam Department of Physics, Engineering Physics and Astronomy, Queen s University,

More information

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling

QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling QUANTUM SENSORS: WHAT S NEW WITH N00N STATES? Jonathan P. Dowling Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge, Louisiana quantum.phys.lsu.edu SPIE F&N 23 May 2007 Statue

More information

Two-mode excited entangled coherent states and their entanglement properties

Two-mode excited entangled coherent states and their entanglement properties Vol 18 No 4, April 2009 c 2009 Chin. Phys. Soc. 1674-1056/2009/18(04)/1328-05 Chinese Physics B and IOP Publishing Ltd Two-mode excited entangled coherent states and their entanglement properties Zhou

More information

Graphical description of local Gaussian operations for continuous-variable weighted graph states

Graphical description of local Gaussian operations for continuous-variable weighted graph states Graphical description of local Gaussian operations for continuous-variable weighted graph states Jing Zhang ( 张靖 * State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

arxiv: v2 [quant-ph] 24 Mar 2017

arxiv: v2 [quant-ph] 24 Mar 2017 Breeding the optical Schrödinger s cat state ariv:69.845v [quant-ph] 4 Mar 7 Demid V. Sychev, Alexander. Ulanov,, Anastasia A. Pushkina,, Matthew W. Richards 4, Ilya A. Fedorov,, and A. I. Lvovsky,,4 Russian

More information

Quantum Measurements and Back Action (Spooky and Otherwise)

Quantum Measurements and Back Action (Spooky and Otherwise) Quantum Measurements and Back Action (Spooky and Otherwise) SM Girvin Yale University Thanks to Michel, Rob, Michael, Vijay, Aash, Simon, Dong, Claudia for discussions and comments on Les Houches notes.

More information