Using an Artificial Regulatory Network to Investigate Neural Computation

Size: px
Start display at page:

Download "Using an Artificial Regulatory Network to Investigate Neural Computation"

Transcription

1 Using an Artificial Regulatory Network to Investigate Neural Computation W. Garrett Mitchener College of Charleston January 6, 25 W. Garrett Mitchener (C of C) UM January 6, 25 / 4

2 Evolution and Computing Section Evolution and Computing W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

3 Evolution and Computing Computation: sequential register machine Short list of fixed-width registers Large external memory Each instruction makes small modification from Waldspurger & Weihl 994 W. Garrett Mitchener (C of C) UM January 6, 25 3 / 4

4 Evolution and Computing Computation: Expression trees Expression tree Evaluated by reductions = power multiply 4 add W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

5 Evolution and Computing Computation: Minimalist syntax John gave Fred a book TP John T' [tense=past] VP John V give vp Fred v' give v give book W. Garrett Mitchener (C of C) UM January 6, 25 5 / 4

6 Evolution and Computing Computation: Minimalist syntax Who gave Fred a book? CP C' who give[past] TP who T' [tense=past] VP who V give vp Fred v' give v give book W. Garrett Mitchener (C of C) UM January 6, 25 6 / 4

7 Evolution and Computing Bio-computing: Genes and transcription regulation laci repressor laci disabled by lactose lacz enzyme lacy laca lactose lac operon galactose glucose Molecules in solution: ions, proteins, DNA, RNA,... Many simultaneous reactions W. Garrett Mitchener (C of C) UM January 6, 25 7 / 4

8 Evolution and Computing Biological Computation: Action potentials Electrical pulses sent via ions, neurotransmitters Detect coincidences, crossing of threshold Vast neural networks, active cardiac tissue W. Garrett Mitchener (C of C) UM January 6, 25 8 / 4

9 Utrecht Machine Section 2 Utrecht Machine W. Garrett Mitchener (C of C) UM January 6, 25 9 / 4

10 Utrecht Machine Utrecht Machine: State patterns: transcription factors (integer) activation: molecule count (integer) p A[p] W. Garrett Mitchener (C of C) UM January 6, 25 / 4

11 Utrecht Machine Utrecht Machine: Instructions j : A[p switch ] θ A[p p ] A[p down ] j: instruction number p switch : switch pattern θ: threshold p p : pattern to increment If the activation of p switch is at least θ, add one to the activation of p p and subtract one from the activation of p down. p down : pattern to decrement W. Garrett Mitchener (C of C) UM January 6, 25 / 4

12 Utrecht Machine UM Example: NAND : A[] A[] A[7] : A[] A[6] A[7] 2: A[2] A[6] A[7] 3: A[4] A[7] A[6] 4: A[5] A[7] A[6] Input via A[4] and A[5] utput is A[6]? 3 Stop when A[] 4 W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

13 Utrecht Machine UM Example: NAND : A[] A[] A[7] : A[] A[6] A[7] 2: A[2] A[6] A[7] 3: A[4] A[7] A[6] 4: A[5] A[7] A[6] Input via A[4] and A[5] utput is A[6]? 3 Stop when A[] 4 A[s] θ A[p p ] A[p down ] θ p up s θ p down W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

14 Utrecht Machine UM Example: NAND : A[] A[] A[7] : A[] A[6] A[7] Input NAND 2: A[2] A[6] A[7] 3: A[4] A[7] A[6] 4: A[5] A[7] A[6] Input via A[4] and A[5] utput utput is A[6]? 3 Stop when A[] Show only efficacious genes and arrows W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

15 M P P nm ng U S ng P og M nm 65.9 st position nm 2 nd rd P og P og G nm (hydrophobic) P nm Utrecht Machine Biological genetic code H H 3C H H 2N H 2N H 3 C H 2N H H 2N H 2N H 2N H 2N H 2N H CH 3 CH 3 H 2N H H 2N H Glutamic acid Glu H H Aspartic acid Asp H Alanine Ala Valine Val Arginine Arg Serine Ser Lysine Lys H Asparagine Asn H H 3 C H Threonine Thr S H 2N Methionine Met H 2N H V H Glycine Gly A G UC U CA R S K N G A C U G A D UC AG A G UCA G UCA G UCA A GUC C U C U G A A C G G A U Phenylalanine Phe E G F L S U G C A A G U C G U A C C UG G A A CU GA CU T MW = 49.2 Da M I Isoleucine Ile H 2N H 3 C CH 3 HN U C H R NH NH 2 H 2N Q A G Y G U CA G U C A G U C H Arginine Arg H 2N H Leucine Leu P C W L H 3C H 3C Stops H H 2N H Serine Ser Tyrosine Tyr Cysteine Cys Stop H 2N Tryptophan Trp Leucine Leu Proline Pro H Histidine His Glutamine Gln H N H NH H 3C H 3C NH NH 2 HS NH H 2N Basic Acidic Polar Nonpolar S - M - P - U - nm - og - ng - H 2N H 2N H 2N H 2N H 2N Modification Sumo Methyl Phospho Ubiquitin N-Methyl -glycosyl N-glycosyl H H amino acid H H H H H st base U C A G 2nd base U C A G UUU UCU UAU UGU U UUC Phenylalanine UCC UAC Tyrosine UGC Cysteine C UUA UCA Serine UAA Stop (chre) UGA Stop (pal) A UUG UCG UAG Stop (Amber) UGG Tryptophan G 3rd base CUU CCU CAU CGU U CUC Leucine CCC CAC Histidine CGC C CUA CCA Proline CAA CGA Arginine A CUG CCG CAG Glutamine CGG G AUU ACU AAU AGU U AUC ACC AAC Asparagine AGC Serine C Isoleucine AUA ACA Threonine AAA AGA A AUG Methionine ACG AAG Lysine AGG Arginine G GUU GCU GAU GGU U GUC Valine GCC Alanine GAC Aspartic acid GGC Glycine C GUA GCA GAA GGA A GUG GCG GAG Glutamic acid GGG G W. Garrett Mitchener (C of C) UM January 6, 25 3 / 4

16 Utrecht Machine Utrecht Machine: Genetic code, majority-of-three Two robust codons: decodes to decodes to Takes two substitutions to change interpretation Six fragile codons:,, : Decode to,, : Decode to ne substitution can change W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

17 Utrecht Machine Utrecht Machine: Genetic code Genome & instructions : A[] A[] A[7] : A[] A[6] A[7] 2: A[2] A[6] A[7] 3: A[4] A[7] A[6] 4: A[5] A[7] A[6] W. Garrett Mitchener (C of C) UM January 6, 25 5 / 4

18 Utrecht Machine UM: Point substitutions W. Garrett Mitchener (C of C) UM January 6, 25 6 / 4

19 Utrecht Machine UM: Deletions W. Garrett Mitchener (C of C) UM January 6, 25 7 / 4

20 Utrecht Machine UM: Duplications W. Garrett Mitchener (C of C) UM January 6, 25 8 / 4

21 Utrecht Machine UM: Crossover W. Garrett Mitchener (C of C) UM January 6, 25 9 / 4

22 Utrecht Machine Communication problem setup Input Sender Receiver utput W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

23 Utrecht Machine Example solution: Sample Run 47, agent Input Sender Receiver utput W. Garrett Mitchener (C of C) UM January 6, 25 2 / 4

24 Utrecht Machine Selective breeding Breed 2 children from highest Breed children from whole population New population = 2 old agents with the highest rating + 3 new agents... W. Garrett Mitchener (C of C) UM January 6, / 4

25 Utrecht Machine Evolutionary overview 8k 6k Maximum score of first n agents created as a function of n 8 32 V 843 4k 2k k 23k W. Garrett Mitchener (C of C) UM January 6, / 4

26 Utrecht Machine Running to saturation k 7k 6k 2 5k 4k 3k 2k k ne perfect solution takes many generations to saturate the population. V 843 W. Garrett Mitchener (C of C) UM January 6, / 4

27 Utrecht Machine Implicit selection for robustness First perfect solution found 2 Runs to saturation 3 Competition for 2 survivor slots 4 Favors agents whose offspring are more likely to have perfect scores 5 favors robustness against mutation and crossover W. Garrett Mitchener (C of C) UM January 6, / 4

28 Utrecht Machine Measuring robustness: Deleterious mutations Mutations that lower performance are deleterious Measure of robustness g = base genome with perfect score M(g) = all possible mutations G = set of genomes one mutation away from g G = { g m m M(g) } How many genomes in G score less than g? What fraction of genomes in G score less than g? W. Garrett Mitchener (C of C) UM January 6, / 4

29 Utrecht Machine Sample Run 43: Deleterious mutations frac del muts a. num genes b generations W. Garrett Mitchener (C of C) UM January 6, / 4

30 Sample Run 7: Synaptic Code Section 3 Sample Run 7: Synaptic Code W. Garrett Mitchener (C of C) UM January 6, / 4

31 Sample Run 7: Synaptic Code Sample Run 7: Synaptic Codes W. Garrett Mitchener (C of C) UM January 6, / 4

32 Sample Run 7: Synaptic Code Sample Run 7: Synaptic Codes Activation times: t, t, t, t W. Garrett Mitchener (C of C) UM January 6, / 4

33 Sample Run 7: Synaptic Code Sample Run 7: Synaptic Codes Activation times: t, t, t, t Synaptic timing gap: STG = min, t t W. Garrett Mitchener (C of C) UM January 6, / 4

34 Sample Run 7: Synaptic Code Sample Run 7: Synaptic timing gap distribution Fraction of perfectly scoring agents with STG of, 2, 3 as a function of generation number W. Garrett Mitchener (C of C) UM January 6, 25 3 / 4

35 Sample Run 47: Simplification, Redundancy, Codon bias Section 4 Sample Run 47: Simplification, Redundancy, Codon bias W. Garrett Mitchener (C of C) UM January 6, 25 3 / 4

36 Sample Run 47: Simplification, Redundancy, Codon bias Sample Run 47, agent Input 9 Sender Receiver 3 utput First perfect solution. W. Garrett Mitchener (C of C) UM January 6, / 4

37 Sample Run 47: Simplification, Redundancy, Codon bias Sample Run 47, agent Input Sender Receiver utput Dangerous extra link is gone W. Garrett Mitchener (C of C) UM January 6, / 4

38 Sample Run 47: Simplification, Redundancy, Codon bias Sample Run 47, agent Input 9 Sender 3 Receiver utput Redundancy appears W. Garrett Mitchener (C of C) UM January 6, / 4

39 Sample Run 47: Simplification, Redundancy, Codon bias Codon bias two robust codons six fragile codons Each gene has 22 codons If uniformly random expect 5.5 robust codons per gene If robustness favored expect more Consider genes with 6 or more robust codons frac eff robust frac ineff robust generations a b W. Garrett Mitchener (C of C) UM January 6, / 4

40 Sample Run 59: Genome Rearrangement Section 5 Sample Run 59: Genome Rearrangement W. Garrett Mitchener (C of C) UM January 6, / 4

41 Sample Run 59: Genome Rearrangement Sample Run 59: First perfect solution, generation 36 Sender Input 9 4 Receiver utput = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, / 4

42 Sample Run 59: Genome Rearrangement Sample Run 59: Perfect solution from generation 7 Input Sender 9 Receiver utput = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, / 4

43 Sample Run 59: Genome Rearrangement Sample Run 59: Perfect solution from generation 27 Input 9 2 Sender Receiver utput = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, / 4

44 Sample Run 59: Genome Rearrangement Sample Run 59: Genome rearrangement = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

45 Sample Run 59: Genome Rearrangement Sample Run 59: Genome rearrangement = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

46 Sample Run 59: Genome Rearrangement Sample Run 59: Genome rearrangement = inefficacious. = part of sender. = part of receiver. = part of both. W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

47 Sample Run 59: Genome Rearrangement About me Web site: W. Garrett Mitchener (C of C) UM January 6, 25 4 / 4

Aoife McLysaght Dept. of Genetics Trinity College Dublin

Aoife McLysaght Dept. of Genetics Trinity College Dublin Aoife McLysaght Dept. of Genetics Trinity College Dublin Evolution of genome arrangement Evolution of genome content. Evolution of genome arrangement Gene order changes Inversions, translocations Evolution

More information

Objective: You will be able to justify the claim that organisms share many conserved core processes and features.

Objective: You will be able to justify the claim that organisms share many conserved core processes and features. Objective: You will be able to justify the claim that organisms share many conserved core processes and features. Do Now: Read Enduring Understanding B Essential knowledge: Organisms share many conserved

More information

Genetic code on the dyadic plane

Genetic code on the dyadic plane Genetic code on the dyadic plane arxiv:q-bio/0701007v3 [q-bio.qm] 2 Nov 2007 A.Yu.Khrennikov, S.V.Kozyrev June 18, 2018 Abstract We introduce the simple parametrization for the space of codons (triples

More information

A modular Fibonacci sequence in proteins

A modular Fibonacci sequence in proteins A modular Fibonacci sequence in proteins P. Dominy 1 and G. Rosen 2 1 Hagerty Library, Drexel University, Philadelphia, PA 19104, USA 2 Department of Physics, Drexel University, Philadelphia, PA 19104,

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

Proteins: Characteristics and Properties of Amino Acids

Proteins: Characteristics and Properties of Amino Acids SBI4U:Biochemistry Macromolecules Eachaminoacidhasatleastoneamineandoneacidfunctionalgroupasthe nameimplies.thedifferentpropertiesresultfromvariationsinthestructuresof differentrgroups.thergroupisoftenreferredtoastheaminoacidsidechain.

More information

In previous lecture. Shannon s information measure x. Intuitive notion: H = number of required yes/no questions.

In previous lecture. Shannon s information measure x. Intuitive notion: H = number of required yes/no questions. In previous lecture Shannon s information measure H ( X ) p log p log p x x 2 x 2 x Intuitive notion: H = number of required yes/no questions. The basic information unit is bit = 1 yes/no question or coin

More information

Biology 155 Practice FINAL EXAM

Biology 155 Practice FINAL EXAM Biology 155 Practice FINAL EXAM 1. Which of the following is NOT necessary for adaptive evolution? a. differential fitness among phenotypes b. small population size c. phenotypic variation d. heritability

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable

More information

Genetic Code, Attributive Mappings and Stochastic Matrices

Genetic Code, Attributive Mappings and Stochastic Matrices Genetic Code, Attributive Mappings and Stochastic Matrices Matthew He Division of Math, Science and Technology Nova Southeastern University Ft. Lauderdale, FL 33314, USA Email: hem@nova.edu Abstract: In

More information

CHEMISTRY 9701/42 Paper 4 Structured Questions May/June hours Candidates answer on the Question Paper. Additional Materials: Data Booklet

CHEMISTRY 9701/42 Paper 4 Structured Questions May/June hours Candidates answer on the Question Paper. Additional Materials: Data Booklet Cambridge International Examinations Cambridge International Advanced Level CHEMISTRY 9701/42 Paper 4 Structured Questions May/June 2014 2 hours Candidates answer on the Question Paper. Additional Materials:

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *1166350738* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CEMISTRY 9701/43 Paper 4 Structured Questions October/November

More information

A p-adic Model of DNA Sequence and Genetic Code 1

A p-adic Model of DNA Sequence and Genetic Code 1 ISSN 2070-0466, p-adic Numbers, Ultrametric Analysis and Applications, 2009, Vol. 1, No. 1, pp. 34 41. c Pleiades Publishing, Ltd., 2009. RESEARCH ARTICLES A p-adic Model of DNA Sequence and Genetic Code

More information

Lecture IV A. Shannon s theory of noisy channels and molecular codes

Lecture IV A. Shannon s theory of noisy channels and molecular codes Lecture IV A Shannon s theory of noisy channels and molecular codes Noisy molecular codes: Rate-Distortion theory S Mapping M Channel/Code = mapping between two molecular spaces. Two functionals determine

More information

Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part II)

Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part II) Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part II) Matthew He, Ph.D. Professor/Director Division of Math, Science, and Technology Nova Southeastern University, Florida, USA December

More information

A Minimum Principle in Codon-Anticodon Interaction

A Minimum Principle in Codon-Anticodon Interaction A Minimum Principle in Codon-Anticodon Interaction A. Sciarrino a,b,, P. Sorba c arxiv:0.480v [q-bio.qm] 9 Oct 0 Abstract a Dipartimento di Scienze Fisiche, Università di Napoli Federico II Complesso Universitario

More information

The Genetic Code Degeneracy and the Amino Acids Chemical Composition are Connected

The Genetic Code Degeneracy and the Amino Acids Chemical Composition are Connected 181 OPINION AND PERSPECTIVES The Genetic Code Degeneracy and the Amino Acids Chemical Composition are Connected Tidjani Négadi Abstract We show that our recently published Arithmetic Model of the genetic

More information

The degeneracy of the genetic code and Hadamard matrices. Sergey V. Petoukhov

The degeneracy of the genetic code and Hadamard matrices. Sergey V. Petoukhov The degeneracy of the genetic code and Hadamard matrices Sergey V. Petoukhov Department of Biomechanics, Mechanical Engineering Research Institute of the Russian Academy of Sciences petoukhov@hotmail.com,

More information

Reducing Redundancy of Codons through Total Graph

Reducing Redundancy of Codons through Total Graph American Journal of Bioinformatics Original Research Paper Reducing Redundancy of Codons through Total Graph Nisha Gohain, Tazid Ali and Adil Akhtar Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

THE GENETIC CODE INVARIANCE: WHEN EULER AND FIBONACCI MEET

THE GENETIC CODE INVARIANCE: WHEN EULER AND FIBONACCI MEET Symmetry: Culture and Science Vol. 25, No. 3, 261-278, 2014 THE GENETIC CODE INVARIANCE: WHEN EULER AND FIBONACCI MEET Tidjani Négadi Address: Department of Physics, Faculty of Science, University of Oran,

More information

Lect. 19. Natural Selection I. 4 April 2017 EEB 2245, C. Simon

Lect. 19. Natural Selection I. 4 April 2017 EEB 2245, C. Simon Lect. 19. Natural Selection I 4 April 2017 EEB 2245, C. Simon Last Time Gene flow reduces among population variability, reduces structure Interaction of climate, ecology, bottlenecks, drift, and gene flow

More information

Natural Selection. Nothing in Biology makes sense, except in the light of evolution. T. Dobzhansky

Natural Selection. Nothing in Biology makes sense, except in the light of evolution. T. Dobzhansky It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp

More information

A Mathematical Model of the Genetic Code, the Origin of Protein Coding, and the Ribosome as a Dynamical Molecular Machine

A Mathematical Model of the Genetic Code, the Origin of Protein Coding, and the Ribosome as a Dynamical Molecular Machine A Mathematical Model of the Genetic Code, the Origin of Protein Coding, and the Ribosome as a Dynamical Molecular Machine Diego L. Gonzalez CNR- IMM Is)tuto per la Microele4ronica e i Microsistemi Dipar)mento

More information

Crystal Basis Model of the Genetic Code: Structure and Consequences

Crystal Basis Model of the Genetic Code: Structure and Consequences Proceeings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 2, 481 488. Crystal Basis Moel of the Genetic Coe: Structure an Consequences L. FRAPPAT, A. SCIARRINO an P. SORBA Laboratoire

More information

Foundations of biomaterials: Models of protein solvation

Foundations of biomaterials: Models of protein solvation Foundations of biomaterials: Models of protein solvation L. Ridgway Scott The Institute for Biophysical Dynamics, The Computation Institute, and the Departments of Computer Science and Mathematics, The

More information

Three-Dimensional Algebraic Models of the trna Code and 12 Graphs for Representing the Amino Acids

Three-Dimensional Algebraic Models of the trna Code and 12 Graphs for Representing the Amino Acids Life 2014, 4, 341-373; doi:10.3390/life4030341 Article OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Three-Dimensional Algebraic Models of the trna Code and 12 Graphs for Representing the Amino

More information

Analysis of Codon Usage Bias of Delta 6 Fatty Acid Elongase Gene in Pyramimonas cordata isolate CS-140

Analysis of Codon Usage Bias of Delta 6 Fatty Acid Elongase Gene in Pyramimonas cordata isolate CS-140 Analysis of Codon Usage Bias of Delta 6 Fatty Acid Elongase Gene in Pyramimonas cordata isolate CS-140 Xue Wei Dong 1, You Zhi Li 1, Yu Ping Bi 2, Zhen Ying Peng 2, Qing Fang He 2,3* 1. College of Life

More information

PROTEIN SYNTHESIS INTRO

PROTEIN SYNTHESIS INTRO MR. POMERANTZ Page 1 of 6 Protein synthesis Intro. Use the text book to help properly answer the following questions 1. RNA differs from DNA in that RNA a. is single-stranded. c. contains the nitrogen

More information

The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts. Sergey V. Petoukhov

The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts. Sergey V. Petoukhov The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts Sergey V. Petoukhov Head of Laboratory of Biomechanical System, Mechanical Engineering Research Institute of the Russian Academy of

More information

ATTRIBUTIVE CONCEPTION OF GENETIC CODE, ITS BI-PERIODIC TABLES AND PROBLEM OF UNIFICATION BASES OF BIOLOGICAL LANGUAGES *

ATTRIBUTIVE CONCEPTION OF GENETIC CODE, ITS BI-PERIODIC TABLES AND PROBLEM OF UNIFICATION BASES OF BIOLOGICAL LANGUAGES * Symmetry: Culture and Science Vols. 14-15, 281-307, 2003-2004 ATTRIBUTIVE CONCEPTION OF GENETIC CODE, ITS BI-PERIODIC TABLES AND PROBLEM OF UNIFICATION BASES OF BIOLOGICAL LANGUAGES * Sergei V. Petoukhov

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Ribosome kinetics and aa-trna competition determine rate and fidelity of peptide synthesis

Ribosome kinetics and aa-trna competition determine rate and fidelity of peptide synthesis University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Hendrik J. Viljoen Publications Chemical and Biomolecular Research Papers -- Faculty Authors Series October 2007 Ribosome

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Natural Selection. Nothing in Biology makes sense, except in the light of evolution. T. Dobzhansky

Natural Selection. Nothing in Biology makes sense, except in the light of evolution. T. Dobzhansky It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp

More information

2013 Japan Student Services Origanization

2013 Japan Student Services Origanization Subject Physics Chemistry Biology Chemistry Marking Your Choice of Subject on the Answer Sheet Choose and answer two subjects from Physics, Chemistry, and Biology. Use the

More information

NSCI Basic Properties of Life and The Biochemistry of Life on Earth

NSCI Basic Properties of Life and The Biochemistry of Life on Earth NSCI 314 LIFE IN THE COSMOS 4 Basic Properties of Life and The Biochemistry of Life on Earth Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ WHAT IS LIFE? HARD TO DEFINE,

More information

Abstract Following Petoukhov and his collaborators we use two length n zero-one sequences, α and β,

Abstract Following Petoukhov and his collaborators we use two length n zero-one sequences, α and β, Studying Genetic Code by a Matrix Approach Tanner Crowder 1 and Chi-Kwong Li 2 Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23185, USA E-mails: tjcrow@wmedu, ckli@mathwmedu

More information

Get started on your Cornell notes right away

Get started on your Cornell notes right away UNIT 10: Evolution DAYSHEET 100: Introduction to Evolution Name Biology I Date: Bellringer: 1. Get out your technology and go to www.biomonsters.com 2. Click the Biomonsters Cinema link. 3. Click the CHS

More information

Chemistry Chapter 22

Chemistry Chapter 22 hemistry 2100 hapter 22 Proteins Proteins serve many functions, including the following. 1. Structure: ollagen and keratin are the chief constituents of skin, bone, hair, and nails. 2. atalysts: Virtually

More information

Amino Acids and Peptides

Amino Acids and Peptides Amino Acids Amino Acids and Peptides Amino acid a compound that contains both an amino group and a carboxyl group α-amino acid an amino acid in which the amino group is on the carbon adjacent to the carboxyl

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

Protein Struktur. Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep. wake up at slide 39

Protein Struktur. Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep. wake up at slide 39 Protein Struktur Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep wake up at slide 39 Andrew Torda, Wintersemester 2016/ 2017 Andrew Torda 17.10.2016 [ 1 ] Proteins - who cares?

More information

A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation

A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation W. Garrett Mitchener College of Charleston Mathematics Department July, 22 http://mitchenerg.people.cofc.edu mitchenerg@cofc.edu

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

Recent Evidence for Evolution of the Genetic Code

Recent Evidence for Evolution of the Genetic Code MICROBIOLOGICAL REVIEWS, Mar. 1992, p. 229-264 Vol. 56, No. 1 0146-0749/92/010229-36$02.00/0 Copyright 1992, American Society for MicrobiologY Recent Evidence for Evolution of the Genetic Code SYOZO OSAWA,1*

More information

CODING A LIFE FULL OF ERRORS

CODING A LIFE FULL OF ERRORS CODING A LIFE FULL OF ERRORS PITP ϕ(c 5 ) c 3 c 4 c 5 c 6 ϕ(c 1 ) ϕ(c 2 ) ϕ(c 3 ) ϕ(c 4 ) ϕ(c i ) c i c 7 c 8 c 9 c 10 c 11 c 12 IAS 2012 PART I What is Life? (biological and artificial) Self-replication.

More information

Studies Leading to the Development of a Highly Selective. Colorimetric and Fluorescent Chemosensor for Lysine

Studies Leading to the Development of a Highly Selective. Colorimetric and Fluorescent Chemosensor for Lysine Supporting Information for Studies Leading to the Development of a Highly Selective Colorimetric and Fluorescent Chemosensor for Lysine Ying Zhou, a Jiyeon Won, c Jin Yong Lee, c * and Juyoung Yoon a,

More information

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other.

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other. hapter 25 Biochemistry oncept heck 25.1 Two common amino acids are 3 2 N alanine 3 2 N threonine Write the structural formulas of all of the dipeptides that they could form with each other. The carboxyl

More information

Haploid & diploid recombination and their evolutionary impact

Haploid & diploid recombination and their evolutionary impact Haploid & diploid recombination and their evolutionary impact W. Garrett Mitchener College of Charleston Mathematics Department MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Introduction The basis

More information

Slide 1 / 54. Gene Expression in Eukaryotic cells

Slide 1 / 54. Gene Expression in Eukaryotic cells Slide 1 / 54 Gene Expression in Eukaryotic cells Slide 2 / 54 Central Dogma DNA is the the genetic material of the eukaryotic cell. Watson & Crick worked out the structure of DNA as a double helix. According

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas Informal inductive proof of best alignment path onsider the last step in the best

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Sequence comparison: Score matrices

Sequence comparison: Score matrices Sequence comparison: Score matrices http://facultywashingtonedu/jht/gs559_2013/ Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best

More information

In Silico Modelling and Analysis of Ribosome Kinetics and aa-trna Competition

In Silico Modelling and Analysis of Ribosome Kinetics and aa-trna Competition In Silico Modelling and Analysis o Ribosome Kinetics and aa-trna Competition D. Bošnački 1 T.E. Pronk 2 E.P. de Vink 3 Dept. o Biomedical Engineering, Eindhoven University o Technology Swammerdam Institute

More information

Transcription Attenuation

Transcription Attenuation Transcription Attenuation ROBERT LANDICK, CHARLES L. TURNBOUGH, JR., AND CHARLES YANOFSKY 81 Introduction / 1263 Early HistOlY / 1264 Objectives of Transcription Attenuation as a Regulatory Mechanism /

More information

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov 2018 Biochemistry 110 California Institute of Technology Lecture 2: Principles of Protein Structure Linus Pauling (1901-1994) began his studies at Caltech in 1922 and was directed by Arthur Amos oyes to

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best alignment path onsider the last step in

More information

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN EXAMINATION NUMBER DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN BIOLOGY 3201 PUBLIC EXAMINATION November, 2001 Value: 100 marks Time: 3 hours GENERAL INSTRUCTIONS Candidates

More information

Translation - Prokaryotes

Translation - Prokaryotes 1 Translation - Prokaryotes Shine-Dalgarno (SD) Sequence rrna 3 -GAUACCAUCCUCCUUA-5 mrna...ggagg..(5-7bp)...aug Influences: Secondary structure!! SD and AUG in unstructured region Start AUG 91% GUG 8 UUG

More information

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 A Plausible Model Correlates Prebiotic Peptide Synthesis with Primordial Genetic Code Jianxi Ying,

More information

Practical Bioinformatics

Practical Bioinformatics 5/2/2017 Dictionaries d i c t i o n a r y = { A : T, T : A, G : C, C : G } d i c t i o n a r y [ G ] d i c t i o n a r y [ N ] = N d i c t i o n a r y. h a s k e y ( C ) Dictionaries g e n e t i c C o

More information

Answers to Chapter 6 (in-text & asterisked problems)

Answers to Chapter 6 (in-text & asterisked problems) Introduction to Bioorganic Chemistry and Chemical Biology 1 Answers to Chapter 6 (intext & asterisked problems) Answer 6.1 olve the equation. Convert temperature in C to K by adding 273. Plug the numbers

More information

Potentiometric Titration of an Amino Acid. Introduction

Potentiometric Titration of an Amino Acid. Introduction NAME: Course: DATE Sign-Off: Performed: Potentiometric Titration of an Amino Acid Introduction In previous course-work, you explored the potentiometric titration of a weak acid (HOAc). In this experiment,

More information

UNIT TWELVE. a, I _,o "' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I "-oh

UNIT TWELVE. a, I _,o ' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I -oh UNT TWELVE PROTENS : PEPTDE BONDNG AND POLYPEPTDES 12 CONCEPTS Many proteins are important in biological structure-for example, the keratin of hair, collagen of skin and leather, and fibroin of silk. Other

More information

CHEMISTRY ATAR COURSE DATA BOOKLET

CHEMISTRY ATAR COURSE DATA BOOKLET CHEMISTRY ATAR COURSE DATA BOOKLET 2018 2018/2457 Chemistry ATAR Course Data Booklet 2018 Table of contents Periodic table of the elements...3 Formulae...4 Units...4 Constants...4 Solubility rules for

More information

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS Int. J. LifeSc. Bt & Pharm. Res. 2012 Kaladhar, 2012 Research Paper ISSN 2250-3137 www.ijlbpr.com Vol.1, Issue. 1, January 2012 2012 IJLBPR. All Rights Reserved PROTEIN SECONDARY STRUCTURE PREDICTION:

More information

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay. Primary Structure. Secondary Structure. Tertiary Structure. Quaternary Structure.

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay. Primary Structure. Secondary Structure. Tertiary Structure. Quaternary Structure. Dr. anjeeva rivastava Primary tructure econdary tructure Tertiary tructure Quaternary tructure Amino acid residues α Helix Polypeptide chain Assembled subunits 2 1 Amino acid sequence determines 3-D structure

More information

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Lesson Overview. Ribosomes and Protein Synthesis 13.2 13.2 The Genetic Code The first step in decoding genetic messages is to transcribe a nucleotide base sequence from DNA to mrna. This transcribed information contains a code for making proteins. The Genetic

More information

Solutions In each case, the chirality center has the R configuration

Solutions In each case, the chirality center has the R configuration CAPTER 25 669 Solutions 25.1. In each case, the chirality center has the R configuration. C C 2 2 C 3 C(C 3 ) 2 D-Alanine D-Valine 25.2. 2 2 S 2 d) 2 25.3. Pro,, Trp, Tyr, and is, Trp, Tyr, and is Arg,

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Principles of Biochemistry

Principles of Biochemistry Principles of Biochemistry Fourth Edition Donald Voet Judith G. Voet Charlotte W. Pratt Chapter 4 Amino Acids: The Building Blocks of proteins (Page 76-90) Chapter Contents 1- Amino acids Structure: 2-

More information

In Silico Modelling and Analysis of Ribosome Kinetics and aa-trna Competition

In Silico Modelling and Analysis of Ribosome Kinetics and aa-trna Competition In Silico Modelling and Analysis of Ribosome Kinetics and aa-trna Competition D. Bošnački 1,, T.E. Pronk 2,, and E.P. de Vink 3, 1 Dept. of Biomedical Engineering, Eindhoven University of Technology 2

More information

Protein Structure Bioinformatics Introduction

Protein Structure Bioinformatics Introduction 1 Swiss Institute of Bioinformatics Protein Structure Bioinformatics Introduction Basel, 27. September 2004 Torsten Schwede Biozentrum - Universität Basel Swiss Institute of Bioinformatics Klingelbergstr

More information

Practice Problems 6. a) Why is there such a big difference between the length of the HMG CoA gene found on chromosome 5 and the length of the mrna?

Practice Problems 6. a) Why is there such a big difference between the length of the HMG CoA gene found on chromosome 5 and the length of the mrna? Life Sciences 1a Practice Probems 6 1. HMG CoA Reductase is an enzyme invoved in the biosynthesis of choestero. The protein and mrna sequences were identified before the genomic sequence, and it was determined

More information

BIS Office Hours

BIS Office Hours BIS103-001 001 ffice ours TUE (2-3 pm) Rebecca Shipman WED (9:30-10:30 am) TUE (12-1 pm) Stephen Abreu TUR (12-1 pm) FRI (9-11 am) Steffen Abel Lecture 2 Topics Finish discussion of thermodynamics (ΔG,

More information

Lecture 14 - Cells. Astronomy Winter Lecture 14 Cells: The Building Blocks of Life

Lecture 14 - Cells. Astronomy Winter Lecture 14 Cells: The Building Blocks of Life Lecture 14 Cells: The Building Blocks of Life Astronomy 141 Winter 2012 This lecture describes Cells, the basic structural units of all life on Earth. Basic components of cells: carbohydrates, lipids,

More information

Molecular Evolution and Phylogenetic Analysis

Molecular Evolution and Phylogenetic Analysis Molecular Evolution and Phylogenetic Analysis David Pollock and Richard Goldstein Introduction All of biology is based on evolution. Evolution is the organizing principle for understanding the shared history

More information

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I 2009 Dr. Glen B Legge This is a Scantron exam. All answers should be transferred to the Scantron sheet using a #2 pencil. Write and bubble

More information

Lecture'18:'April'2,'2013

Lecture'18:'April'2,'2013 CM'224' 'rganic'chemistry'ii Spring'2013,'Des'Plaines' 'Prof.'Chad'Landrie 2 3 N cysteine (Cys) S oxidation S S 3 N cystine N 3 Lecture'18:'April'2,'2013 Disaccharides+&+Polysaccharides Amino+acids++(26.1926.3)

More information

Towards Understanding the Origin of Genetic Languages

Towards Understanding the Origin of Genetic Languages Towards Understanding the Origin of Genetic Languages Why do living organisms use 4 nucleotide bases and 20 amino acids? Apoorva Patel Centre for High Energy Physics and Supercomputer Education and Research

More information

Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis

Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis Proc. Natl. Acad. Sci. USA Vol. 96, pp. 4482 4487, April 1999 Evolution Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis LAURENT DURET

More information

NIH Public Access Author Manuscript J Theor Biol. Author manuscript; available in PMC 2009 April 21.

NIH Public Access Author Manuscript J Theor Biol. Author manuscript; available in PMC 2009 April 21. NIH Public Access Author Manuscript Published in final edited form as: J Theor Biol. 2008 April 21; 251(4): 616 627. THE TRI-FRAME MODEL Elsje Pienaar and Hendrik J. Viljoen * Department of Chemical and

More information

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration: PTEI STUTUE ydrolysis of proteins with aqueous acid or base yields a mixture of free amino acids. Each type of protein yields a characteristic mixture of the ~ 20 amino acids. AMI AIDS Zwitterion (dipolar

More information

Chemistry Chapter 26

Chemistry Chapter 26 Chemistry 2100 Chapter 26 The Central Dogma! The central dogma of molecular biology: Information contained in DNA molecules is expressed in the structure of proteins. Gene expression is the turning on

More information

Molecular Selective Binding of Basic Amino Acids by a Water-soluble Pillar[5]arene

Molecular Selective Binding of Basic Amino Acids by a Water-soluble Pillar[5]arene Electronic supplementary information Molecular Selective Binding of Basic Amino Acids y a Water-solule Pillar[5]arene Chunju Li,* a, Junwei Ma, a Liu Zhao, a Yanyan Zhang, c Yihua Yu, c Xiaoyan Shu, a

More information

Collision Cross Section: Ideal elastic hard sphere collision:

Collision Cross Section: Ideal elastic hard sphere collision: Collision Cross Section: Ideal elastic hard sphere collision: ( r r 1 ) Where is the collision cross-section r 1 r ) ( 1 Where is the collision distance r 1 r These equations negate potential interactions

More information

THE GENETIC CODE AND EVOLUTION

THE GENETIC CODE AND EVOLUTION Scientific Insights into the Evolution of the Universe and of Life Pontifical Academy of Sciences, Acta 20, 2009 www.pas.va/content/dam/accademia/pdf/acta20/acta20-nirenberg.pdf THE GENETIC CODE AND EVOLUTION

More information

arxiv: v2 [physics.bio-ph] 8 Mar 2018

arxiv: v2 [physics.bio-ph] 8 Mar 2018 Deciphering mrna Sequence Determinants of Protein Production Rate Juraj Szavits-Nossan SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United

More information

AP Biology Spring Review

AP Biology Spring Review 1 1. In analyzing the number of different bases in a DNA sample, which result would be consistent with the base-pairing rules? A. A+G = C+T B. A+T = G+T C. A=G D. G=T E. A=C 2. Which of the following represents

More information

Codon Distribution in Error-Detecting Circular Codes

Codon Distribution in Error-Detecting Circular Codes life Article Codon Distribution in Error-Detecting Circular Codes Elena Fimmel, * and Lutz Strüngmann Institute for Mathematical Biology, Faculty of Computer Science, Mannheim University of Applied Sciences,

More information

Structure and Function. Overview of BCOR 11. Various forms of Carbon molecules and functional groups

Structure and Function. Overview of BCOR 11. Various forms of Carbon molecules and functional groups verview of BR 11 Structure and Function (These are just some of the many themes we have talked about this semester) Water 1. ohesion/surface tension 2. Temperature moderation 3. Solvent Ability ydrophilicity

More information

Student Handout 2. Human Sepiapterin Reductase mrna Gene Map A 3DMD BioInformatics Activity. Genome Sequencing. Sepiapterin Reductase

Student Handout 2. Human Sepiapterin Reductase mrna Gene Map A 3DMD BioInformatics Activity. Genome Sequencing. Sepiapterin Reductase Project-Based Learning ctivity Human Sepiapterin Reductase mrn ene Map 3DMD BioInformatics ctivity 498 ---+---------+--------- ---------+---------+---------+---------+---------+---------+---------+---------+---------+---------

More information

7.05 Spring 2004 February 27, Recitation #2

7.05 Spring 2004 February 27, Recitation #2 Recitation #2 Contact Information TA: Victor Sai Recitation: Friday, 3-4pm, 2-132 E-mail: sai@mit.edu ffice ours: Friday, 4-5pm, 2-132 Unit 1 Schedule Recitation/Exam Date Lectures covered Recitation #2

More information

The Trigram and other Fundamental Philosophies

The Trigram and other Fundamental Philosophies The Trigram and other Fundamental Philosophies by Weimin Kwauk July 2012 The following offers a minimal introduction to the trigram and other Chinese fundamental philosophies. A trigram consists of three

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Week 6: Protein sequence models, likelihood, hidden Markov models

Week 6: Protein sequence models, likelihood, hidden Markov models Week 6: Protein sequence models, likelihood, hidden Markov models Genome 570 February, 2016 Week 6: Protein sequence models, likelihood, hidden Markov models p.1/57 Variation of rates of evolution across

More information

Protein Threading. Combinatorial optimization approach. Stefan Balev.

Protein Threading. Combinatorial optimization approach. Stefan Balev. Protein Threading Combinatorial optimization approach Stefan Balev Stefan.Balev@univ-lehavre.fr Laboratoire d informatique du Havre Université du Havre Stefan Balev Cours DEA 30/01/2004 p.1/42 Outline

More information

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.

More information