UNCLASSIFIED AD NUMBER LIMITATION CHANGES

Size: px
Start display at page:

Download "UNCLASSIFIED AD NUMBER LIMITATION CHANGES"

Transcription

1 TO: UNCLASSIFIED AD NUMBER AD LIMITATION CHANGES Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 23 MAY Other requests shall be referred to Office of Naval Research, 875 North Randolph Street, Arlington, VA ONR ltr, 9 Nov 1977 AUTHORITY THIS PAGE IS UNCLASSIFIED

2 THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RtuEASE UNDER DOD DIRECTIVE AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED, mw'

3 UNCLASSIFIED Reproduced Armed Services Technical Information Agency ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANYWAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION IJO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT M^Y IN ^NY WAY BE RELATED THERETO. LASSIFIED

4 CONSTRAINT QUALIFICATIONS IN MAXIMIZATION PROBLEMS, II BY KENNETH J. ARROW AND HIROFUMI UZAWA TECHNICAL REPORT NO. 84 MAY 23, 1960 ^ X o < 5 2 ^ -^ > 2 r " 5 «< ^ 3 <A i i c PREPARED UNDER CONTRACT Nonr-225{50) (NR ) FOR OFFICE OF NAVAL RESEARCH A S T M k JUN 8 I960 TIPDR INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES Applied Mathematics and Statistics Laboratories STANFORD UNIVERSITY Stanford, California

5 1 CONSTRAINT QUALIFICATIONS IN MAXIMIZATION PROBLEMS, II by KENNETH J. ARROW and HIROFUMI UZAWA TECHNICAL REPORT NO. 8k May 23, I960 PREPARED UNDER CONTRACT Nonr-225(50) (NR-O ) FOR OFFICE OF NAVAL RESEARCH Reproduction in Whole or in Part is Permitted for Any Purpose of the United States Government INSTITUTE FOR MATHEMATICAL STUDIES IN SOCIAL SCIENCES Applied Mathematics and Statistics Lahoratories STANFORD UNIVERSITY Stanford, California

6 CONSTRAINT QUALIFICATIONS IN MAXIMIZATION PROBUMS, II Kenneth J. Arrow and Hlrofumi Uzawa 1. Introduction In the previous article [h], an investigation was made of the interrelationship between various conditions under which the classical Lagrange method remains valid for maximization problems subject to inequality constraints. In the present paper, further results on the subject will be discussed and simplified proofs given. First, the Kuhn-Tucker Constraint Qualification ([5], p. U83) will be slightlyweakened so that the meaning of the qualification becomes more straightforward. It will be shown in Theorem 1 below that the Lagrangian method can be applied to those constraint maxima for which the present version of the Constraint Qualification is satisfied. Then we show that the Constraint Qualification in the present formulation is the weakest requirement for the Lagrange method to be applicable; namely, in Theorem 2 below, it is proved that if the Lagrange method is justified for any differentiable maximand, then the constraint function satisfies the Constraint Qualification provided the constraint set is convex. Finally, in Section k it will be shown that the Constraint Qualification is implied by the condition that the constraint functions corresponding to a certain set of indices are convex. The latter condition Includes all those given earlier in [3] and [2].

7 2. Definitions and Preliminary Remarks. Let g(x) = [g (x),..., g (x)] be an m-vector valued function defined for n-vectors x = (x., x...., x ). The set of all n-vectors x 1 n for which 6(x) > 0 will he called the constraint set defined hy g(x), denoted by C; I.e., (1) C = (x:g(x) > 0) Given an n-vector x In C and an arbitrary n-vector I = (i-i> > I )> 'the contained path with origin x and direction Is defined as an n-vector valued function ^(s) satisfying: (2) \ /(e) Is defined and Is continuous for all 0 < 9 < 9 with some positive 9; (3) + (0) = x; \ ;(e) e C for all 0 < 9 < 9; (k) i/ib) has a right-hand derivative at 9=0 such that i'(o) =. An n-vector for which there Is a contained path with origin x and direction will be referred to as an attainable direction; and the set of all attainable directions will be denoted by A. The closure of the convex cone spanned by A will be denoted by K ; the elements of K will be referred to as weakly attainable directions.

8 r - 3 The set of Indices {1,..., m) Is divided Into two parts E and F. E is the set of all Indices effective Indices at x; namely. tfz\ (5) E = {J:g d (x) = 0], and F is the set of all ineffective indices at x; namely, (6) F = [j : g J C*) >0). Let K- he the set of n-vectors defined hy (7) K 2 = u-sl i>o) ; the elements of K may be termed locally constrained directions. constrained. Lemma 1. Every weakly attainable direction is locally Proof: Let t( e ) lde a contained path with origin x and direction. Then, for any j e E, Hence g J IX0)] = 0 and g J [*(9)] > 0. g^ I > 0. Q.E.D.

9 I k - A function g(x) will be called to satisfy the (Kuhn-Tucker) Constraint Qualification at x if (CQ) K 2 C ^ ^ i.e., every locally constrained direction is weakly attainable. Kuhn and Tucker ([5]^ P> ^83) required that every locally constrained direction be attainable. Let us define the set K by (8) K = the closure of the set {\(x-x):\ > 0, x e C). Lemma 2. If the constraint set C ±s_ convex, then K 3 CK l * Proof; If x e C, then by the convexity of the set C, x + e(x - x) C for all 0 < e < 1 Hence, x - x is attainable and therefore weakly attainable. Since K- is a cone, the conclusion follows.

10 T Let B be any set of vectors. The negative polar cone, to be denoted by B", IS defined by B" = {u:ux < 0 for all x e B} We have (see, e.g., Fenchel [k], pp. 8-10), (9) B' IS a closed convex conej (10) B ic- B 2 lm P lies that B i ^B2 j (11) if B is a closed convex cone, B" = B. 3. lagrange Regularity and the Constraint Qualification. The classical lagrange method for constrained maxima (see, e.g. [l], p. 153) has been adapted by Kuhn and Tucker ([5], Theorem 1, p. h6h). (L) If x maximizes a differentlable function f(x) subject to x e C, then there exists a nonnegative m-vector y such that (12) f x + y 8 X = 0, (13) y g(x) = 0.

11 f - 6 An m-vector valued function g(x) will be termed lagrange regular If, for any dlfferentlable function f(x), the condition (L) holds. Lemma 3. If x maximizes f(x) subject to x 6 C, then f x e ^ ' vhere KL - i_s the negative polar cone of JL. direction, then Proof; Let i r(9) be a contained path with origin x and Then f[ilf(e)] < fu(0)] = f(x) for all 0 < 6 <. f x I = f x ' (0) < 0, for any in A and, by continuity and convexity, for any K. Q.E.D. Theorem 1. If g(x) satisfies the Constraint Qualification (CQ), then g(x) is Lagrange regular.

12 Proof; Let f (x) be a dlfferentiable function and x maximize f (x) subject to x C. Then, by Lemma 3> f ^C On the other hand, the condition (CQ) implies, from (lo), that Hence, we have (Ik) f x c K- (Ik), By applying the Minkowski-Farkas Lemma we have from (7) and -E -E -E -f = y g for some y > 0. x " D x ^ Define - /-E -F» -F y = (y, y ) with y = 0. Then, y satisfies conditions (12) and (13). Q.E.D. Theorem 1 is the basic necessity theorem for non-linear programming ([5]> Theorem l) extended to the weaker constraint qualification of this paper.

13 fl Theorem 2. If g(x) l lagrange regular and if the constraint set C defined ^t It Is. a convex set, then g(x) satisfies the Constraint Qualification (CQ). Proof: It will be first shown that (15) K 3 CK 2 Let a e K ; then for \ = 1, (16) a(x - x) < 0 for all x c C Then x maximizes the function f (x) = ax subject to x e C. By the Lagrange regularity of g(x), there is an m-vector y such that (17) a + y g x = 0 ; y > o, and (18) y g(x) = 0. The conditions (17) and (18) imply that (19) _E -E a + y g x = 0, y E > 0

14 The condition (19) Implies that ag < 0 for all such that g > 0 ; namely, a e K Hence, we have the relation (15). Then, by (lo) and (ll). (20) K 3 3K 2 Applying Lemma 2, ^ 3)K 3 DK 2 Q.E.D. k. A Sufficient Condition for the Constraint Qualification. Let E' be a subset of the effective Indices defined by (21) E' ={J:jeE, ug =0, for some u > 0 with u > 0) x = J Theorem 3- If g (x) Is convex for every J e E', then g(x) satisfies the Constraint Qualification (CQ) at x.

15 10 - Proof: By the Mlnkowskl-Parkas Lemma, an Index J belongs to E' If and only If (22) ^ = 0 for a11 6 such that 8 k 6 ^ 0 > k e E, k / J. Hence, for any J e E" = E - E', there exists J such that (23) '4 I* > 0 ' ü J > 0 for all k e E, k ^ J, * Let i2k) I* = I l J JeE" Then, by (23) we have (25) -E" * g I > 0. By (22) and the definition (7) of K, we have Hence, -E 1 g x l=o for all I e K (26) gxl =0 for all I e L, where L is the linear space spanned by K. 1

16 11 - Since g J (x) is convex for J e E 1, the condition (26) implies that gj d (x + ) has its minimum in L at = 0; hence. (27) g E, (x + ) > 0 for all I e L, since E 1 C E^ so that g^ (x) =0. We shall now prove that IC is contained in KL. Let 6 be any element of IC. For any positive a > 0, define (28) *(e) = 5 + ( + ag*) e. From (27), (29) g [t(e)] > 0 for all 9 > 0 From (25) and the definition (7) of K, dg E "u(e)] de e=o -E"/. *\ E" _E" * = g x (I + a ) = g x 6 + a gj I > 0 Since E' C E, we have g^'t^o)] = 0; hence. (30) g*" [ + (9)] > 0 for 9 > 0 and sufficiently small.

17 12 Finally, g [+(0)] > 0, so that (31) ^[^(e)] > 0 for 6 > 0 and sufficiently small. The relations (29-31) imply that g[+(e)] > 0 for 9 sufficiently small.. Hence ${6) is a contained path, and + 0^ Is an attainable direction for all a > 0. Therefore, being a limit of + a as a tends to zero, is weakly attainable. Q.E.D. Obviously, the conclusion of Theorem 3 will hold if either g J (x) is convex for all j or E' is the null set. Corollary 1: If g J (x) ls_ convex (in particular, linear) for every J, then g(x) satisfies the Constraint Qualification. Corollary 1 extends Theorem 2 of [3]. Corollary 2; ([3], Theorem 3). Suppose g(x) i concave, and g (x ) > 0 for some x. Then g(x) satisfies the Constraint Qualification. I

18 13 Proof; Since g (x) Is concave. g (x ) - g (x) < g x (x - x) E ** E But g (x ) > 0 and g (x) = 0; hence. i^(x* - x) > 0 If ug x = 0, then ug x (x - x) = 0, which, for u > 0, Is only possible for u = 0. Then E 1 is null. Q.E.D. ' This condition was used by Slater [6] for f(x) concave. Corollary 3; ([2], Theorem 2, p. 18). Suppose (32) g(x) l quasi-concave; (33) g (x ) > 0, for some x ; and (3^) for each J e E, either g J (x) concave or ß^ ^ 0. Then the Constraint Qualification is satisfied. Proof: If g (x) is concave, for j E, then by (33) (35) 6^/0

19 - Ik. Hence, by assumption (3^), the relation (35) holds for all J e E. Since the set C Is convex, x - x Is attainable for all x e C (see Lemma 2). Since x is an interior point of C, x - x is an Interior point of A; hence, the set L, the space spanned by K_, is the entire space. If, for some j e E, <e -0 for all I e JC Then g^i =0 for all? j hence -4.0, contradicting (35). Therefore, the set E' is null. Q.E.D. Corollary k: (non-degeneracy). If g has a rank equal to the number of effective constraints, then g(x) satisfies the Constraint Qualification. Proof: By the assumption of the maximum rank -E ug =0 implies u = 0 j hence, the set E' is null. Q.E.D. 1

20 1^^* 15 Remark: The case of nonlinear equality contraints Is not handled hy Theorem 3 or Corollaries 1-3- Indeed, It could easily happen In that case there Is no linear contained path. Corollary h does remain valid if some or all constraints are equalities; see [3]> Appendix 1. -

21 ii REFERENCES [l] Apostol, T. M. Mathematical Analysis; A Modern Approach to Advanced Calculus. Reading, Mass.: Add ison-wesley, [2] Arrow, K. J., and A. C. Enthoven. "Quasi-Concave Programming". The RAND Corporation, P-1847, December 16, [3] Arrow, K. J., and L. Hurwicz. "Reduction of Constrained Maxima to Saddle-Point Problems." Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles: University of California Press, 1956, Volume V, pp [h] Arrow, K. J., L. Hurwicz, and H. Uzawa. "Constraint Qualification in Maximization Problems," Naval Research Logistics Quarterly, (forthcoming). [5] Fenchel, W. Convex Cones, Sets and Functions, Princeton University, 1953 (hectographed). [6] Kuhn, H. W., and A. W. Tucker. "Nonlinear Programming", In J. Neyman (ed) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley and Los Angeles: University of California Press, 1951, pp. 481-^92. [7] Slater, M. "lägrange Multipliers Revisited; A Contribution to Non-linear Prograinmlng." Cowles Commission Discussion Paper, Math. 1+03, November, V

UNCLASSIFIED. .n ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED. .n ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED.n 260610 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are

More information

Constrained maxima and Lagrangean saddlepoints

Constrained maxima and Lagrangean saddlepoints Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 10: Constrained maxima and Lagrangean saddlepoints 10.1 An alternative As an application

More information

UNCLASSIFIED Reptoduced. if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED Reptoduced. if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED . UNCLASSIFIED. 273207 Reptoduced if ike ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications

More information

TO Approved for public release, distribution unlimited

TO Approved for public release, distribution unlimited UNCLASSIFIED AD NUMBER AD463752 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED AD 295 792 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are

More information

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTO 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTO 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED AD273 591 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTO 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are

More information

S 3 j ESD-TR W OS VL, t-i 1 TRADE-OFFS BETWEEN PARTS OF THE OBJECTIVE FUNCTION OF A LINEAR PROGRAM

S 3 j ESD-TR W OS VL, t-i 1 TRADE-OFFS BETWEEN PARTS OF THE OBJECTIVE FUNCTION OF A LINEAR PROGRAM I >> I 00 OH I vo Q CO O I I I S 3 j ESD-TR-65-363 W-07454 OS VL, t-i 1 P H I CO CO I LU U4 I TRADE-OFFS BETWEEN PARTS OF THE OBECTIVE FUNCTION OF A LINEAR PROGRAM ESD RECORD COPY ESD ACCESSION LIST ESTI

More information

UNCLASSIFIED AD Mhe ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA U NCLASSI1[FIED

UNCLASSIFIED AD Mhe ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA U NCLASSI1[FIED UNCLASSIFIED AD26 8 046 Mhe ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA w U NCLASSI1[FIED NOTICE: When government or other drawings, specifications or other

More information

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGT0 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGT0 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED AD 295 456 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGT0 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are

More information

Title Problems. Citation 経営と経済, 65(2-3), pp ; Issue Date Right

Title Problems. Citation 経営と経済, 65(2-3), pp ; Issue Date Right NAOSITE: Nagasaki University's Ac Title Author(s) Vector-Valued Lagrangian Function i Problems Maeda, Takashi Citation 経営と経済, 65(2-3), pp.281-292; 1985 Issue Date 1985-10-31 URL http://hdl.handle.net/10069/28263

More information

Modern Optimization Theory: Concave Programming

Modern Optimization Theory: Concave Programming Modern Optimization Theory: Concave Programming 1. Preliminaries 1 We will present below the elements of modern optimization theory as formulated by Kuhn and Tucker, and a number of authors who have followed

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization Etienne de Klerk (UvT)/Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos Course WI3031 (Week 4) February-March, A.D. 2005 Optimization Group 1 Outline

More information

Sharpening the Karush-John optimality conditions

Sharpening the Karush-John optimality conditions Sharpening the Karush-John optimality conditions Arnold Neumaier and Hermann Schichl Institut für Mathematik, Universität Wien Strudlhofgasse 4, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at,

More information

Summary Notes on Maximization

Summary Notes on Maximization Division of the Humanities and Social Sciences Summary Notes on Maximization KC Border Fall 2005 1 Classical Lagrange Multiplier Theorem 1 Definition A point x is a constrained local maximizer of f subject

More information

UNCLASSIFIED 'K AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED 'K AD ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED 'K AD2 8 3 4 4 1 ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution Outline Roadmap for the NPP segment: 1 Preliminaries: role of convexity 2 Existence of a solution 3 Necessary conditions for a solution: inequality constraints 4 The constraint qualification 5 The Lagrangian

More information

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation 239 A DUALITY THEOREM FOR N-LINEAR PROGRAMMING* BY PHILIP WOLFE The RAND Corporation Summary. A dual problem is formulated for the mathematical programming problem of minimizing a convex function under

More information

UNCLASSIFIED AD NUMBER LIMITATION CHANGES

UNCLASSIFIED AD NUMBER LIMITATION CHANGES TO: UNCLASSIFIED AD NUMBER AD450636 LIMITATION CHANGES Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

Army Air Forces Specification 7 December 1945 EQUIPMENT: GENERAL SPECIFICATION FOR ENVIRONMENTAL TEST OF

Army Air Forces Specification 7 December 1945 EQUIPMENT: GENERAL SPECIFICATION FOR ENVIRONMENTAL TEST OF Army Air Forces 41065 Specification 7 December 1945 EQUIPMENT: GENERAL SPECIFICATION FOR ENVIRONMENTAL TEST OF A. APPLICABLE SPECIFICATIONS A-1. The current issue of the following specifications, in effect

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces Introduction to Optimization Techniques Nonlinear Optimization in Function Spaces X : T : Gateaux and Fréchet Differentials Gateaux and Fréchet Differentials a vector space, Y : a normed space transformation

More information

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS A Dissertation Submitted For The Award of the Degree of Master of Philosophy in Mathematics Neelam Patel School of Mathematics

More information

THE INFRARED SPECTRA AND VIBRATIONAL ASSIGNMENTS FOR SOME ORGANO-METALLIC COMPOUNDS

THE INFRARED SPECTRA AND VIBRATIONAL ASSIGNMENTS FOR SOME ORGANO-METALLIC COMPOUNDS ' S C I- THE INFRARED SPECTRA AND VIBRATIONAL ASSIGNMENTS FOR SOME ORGANO-METALLIC COMPOUNDS FRED W. BEHNKE C. TAMBORSKI TECHNICAL DOCUMENTARY REPORT No. ASD-TDR-62-224 FEBRUARY 1962 DIRECTORATE OF MATERIALS

More information

Linear programming: Theory

Linear programming: Theory Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analsis and Economic Theor Winter 2018 Topic 28: Linear programming: Theor 28.1 The saddlepoint theorem for linear programming The

More information

GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION

GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION Chapter 4 GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION Alberto Cambini Department of Statistics and Applied Mathematics University of Pisa, Via Cosmo Ridolfi 10 56124

More information

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TCHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TCHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFIED AD.4101 13 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TCHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA UNCLASSIFIED.i NOTICE: Nen government or other dravings, specifications

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION. ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION. ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFIED AD 424039 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION. ALEXANDRIA. VIRGINIA UNCLASSIFIED NOTICE: When goverment or other drawings, specifications

More information

Nonlinear Programming and the Kuhn-Tucker Conditions

Nonlinear Programming and the Kuhn-Tucker Conditions Nonlinear Programming and the Kuhn-Tucker Conditions The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization problems, a generalization of the first-order conditions we

More information

The Karush-Kuhn-Tucker (KKT) conditions

The Karush-Kuhn-Tucker (KKT) conditions The Karush-Kuhn-Tucker (KKT) conditions In this section, we will give a set of sufficient (and at most times necessary) conditions for a x to be the solution of a given convex optimization problem. These

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Session: 15 Aug 2015 (Mon), 10:00am 1:00pm I. Optimization with

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

TO Approved for public release, distribution unlimited

TO Approved for public release, distribution unlimited UNCLASSIFIED AD NUMBER AD403008 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

UNCLASSIFED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFED AD 4 6470 1 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS Xiaofei Fan-Orzechowski Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

UNCLASSIFIED AD NUMBER LIMITATION CHANGES

UNCLASSIFIED AD NUMBER LIMITATION CHANGES TO: UNCLASSIFIED AD NUMBER AD241738 LIMITATION CHANGES Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS GERD WACHSMUTH Abstract. Kyparisis proved in 1985 that a strict version of the Mangasarian- Fromovitz constraint qualification (MFCQ) is equivalent to

More information

THE MINIMUM NUMBER OF LINEAR DECISION FUNCTIONS TO IMPLEMENT A DECISION PROCESS DECEMBER H. Joksch D. Liss. Prepared for

THE MINIMUM NUMBER OF LINEAR DECISION FUNCTIONS TO IMPLEMENT A DECISION PROCESS DECEMBER H. Joksch D. Liss. Prepared for PJSD-TDR-64-171 TM-03903 THE MINIMUM NUMBER OF LINEAR DECISION FUNCTIONS TO IMPLEMENT A DECISION PROCESS TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-64-171 DECEMBER 1964 H. Joksch D. Liss Prepared for DIRECTORATE

More information

Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function

Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function arxiv:1805.03847v1 [math.oc] 10 May 2018 Vsevolod I. Ivanov Department of Mathematics, Technical

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

University of California, Davis Department of Agricultural and Resource Economics ARE 252 Lecture Notes 2 Quirino Paris

University of California, Davis Department of Agricultural and Resource Economics ARE 252 Lecture Notes 2 Quirino Paris University of California, Davis Department of Agricultural and Resource Economics ARE 5 Lecture Notes Quirino Paris Karush-Kuhn-Tucker conditions................................................. page Specification

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS. Carmen Astorne-Figari Washington University in St. Louis.

Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS. Carmen Astorne-Figari Washington University in St. Louis. Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS Carmen Astorne-Figari Washington University in St. Louis August 12, 2010 INTRODUCTION General form of an optimization problem: max x f

More information

1 Lagrange Multiplier Method

1 Lagrange Multiplier Method 1 Lagrange Multiplier Method Near a maximum the decrements on both sides are in the beginning only imperceptible. J. Kepler When a quantity is greatest or least, at that moment its flow neither increases

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Optimization Theory. Lectures 4-6

Optimization Theory. Lectures 4-6 Optimization Theory Lectures 4-6 Unconstrained Maximization Problem: Maximize a function f:ú n 6 ú within a set A f ú n. Typically, A is ú n, or the non-negative orthant {x0ú n x$0} Existence of a maximum:

More information

Nonlinear Programming (NLP)

Nonlinear Programming (NLP) Natalia Lazzati Mathematics for Economics (Part I) Note 6: Nonlinear Programming - Unconstrained Optimization Note 6 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 3 and 5) and Simon and Blume

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

ARE202A, Fall Contents

ARE202A, Fall Contents ARE202A, Fall 2005 LECTURE #2: WED, NOV 6, 2005 PRINT DATE: NOVEMBER 2, 2005 (NPP2) Contents 5. Nonlinear Programming Problems and the Kuhn Tucker conditions (cont) 5.2. Necessary and sucient conditions

More information

Optimization. A first course on mathematics for economists

Optimization. A first course on mathematics for economists Optimization. A first course on mathematics for economists Xavier Martinez-Giralt Universitat Autònoma de Barcelona xavier.martinez.giralt@uab.eu II.3 Static optimization - Non-Linear programming OPT p.1/45

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

"UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA UNCLASSIFIED.

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA UNCLASSIFIED. UNCLASSIFIED AD 2 24385 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA. VIRGINIA "UNCLASSIFIED /,i NOTICE: When government or other drnwings, specifications

More information

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 October 2003 The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 by Asuman E. Ozdaglar and Dimitri P. Bertsekas 2 Abstract We consider optimization problems with equality,

More information

Mathematical Appendix

Mathematical Appendix Ichiro Obara UCLA September 27, 2012 Obara (UCLA) Mathematical Appendix September 27, 2012 1 / 31 Miscellaneous Results 1. Miscellaneous Results This first section lists some mathematical facts that were

More information

SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA

SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305-4022 00 0 NIN DTIC A Monotone Complementarity Problem in Hilbert Space by Jen-Chih Yao fl

More information

g(x,y) = c. For instance (see Figure 1 on the right), consider the optimization problem maximize subject to

g(x,y) = c. For instance (see Figure 1 on the right), consider the optimization problem maximize subject to 1 of 11 11/29/2010 10:39 AM From Wikipedia, the free encyclopedia In mathematical optimization, the method of Lagrange multipliers (named after Joseph Louis Lagrange) provides a strategy for finding the

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA BULL. AUSRAL. MAH. SOC. VOL. 24 (1981), 357-366. 9C3 INVEX FUNCIONS AND CONSRAINED LOCAL MINIMA B.D. CRAVEN If a certain weakening of convexity holds for the objective and all constraint functions in a

More information

UNCLASSIFIED A ARMED SERVICES TECHNICAL INFORMATON A ARLINGTON HALL STATION ARLINGION 12, VIRGINIA UNCLASSIFIED

UNCLASSIFIED A ARMED SERVICES TECHNICAL INFORMATON A ARLINGTON HALL STATION ARLINGION 12, VIRGINIA UNCLASSIFIED UNCLASSIFIED A 2 9 5 90 3 ARMED SERVICES TECHNICAL INFORMATON A ARLINGTON HALL STATION ARLINGION 12, VIRGINIA UNCLASSIFIED Best Available Copy NOTICE: When goverinnt or other drawings, specifications or

More information

GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1

GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1 GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO GRAMS AND /^-CONSTRAINED /^-APPROXIMATION PROBLEMS 1 BY ELMOR L. PETERSON AND J. G. ECKER Communicated by L.

More information

Chapter 3: Constrained Extrema

Chapter 3: Constrained Extrema Chapter 3: Constrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 3: Constrained Extrema 1 Implicit Function Theorem For scalar fn g : R n R with g(x ) 0 and g(x ) =

More information

On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials

On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials Int. Journal of Math. Analysis, Vol. 7, 2013, no. 18, 891-898 HIKARI Ltd, www.m-hikari.com On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials Jaddar Abdessamad Mohamed

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Finite Dimensional Optimization Part III: Convex Optimization 1

Finite Dimensional Optimization Part III: Convex Optimization 1 John Nachbar Washington University March 21, 2017 Finite Dimensional Optimization Part III: Convex Optimization 1 1 Saddle points and KKT. These notes cover another important approach to optimization,

More information

TM April 1963 ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE. L. G. Hanscom Field, Bedford, Massachusetts

TM April 1963 ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE. L. G. Hanscom Field, Bedford, Massachusetts 402 953 TM-3435 O REDUCTON OF SDE LOBES AND PONTNG ERRORS N PHASED ARRAY RADARS BY RANDOMZNG QUANTZATON STEPS TECHNCAL DOCUMENTARY REPORT NO. ESD-TDR-63-155 April 1963 C- C.1 DRECTORATE OF APPLED RESEARCH

More information

Research Article Optimality Conditions of Vector Set-Valued Optimization Problem Involving Relative Interior

Research Article Optimality Conditions of Vector Set-Valued Optimization Problem Involving Relative Interior Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2011, Article ID 183297, 15 pages doi:10.1155/2011/183297 Research Article Optimality Conditions of Vector Set-Valued Optimization

More information

UNCLASSIFIED A30 333~ ARMED SERVICES TECHNICAL INFORMION AGENCY ARLIGTON HALL STATION ARLINGTON 12, VIRGINIA "UNC LASS IFIED

UNCLASSIFIED A30 333~ ARMED SERVICES TECHNICAL INFORMION AGENCY ARLIGTON HALL STATION ARLINGTON 12, VIRGINIA UNC LASS IFIED UNCLASSIFIED A30 333~ 2 8 0 ARMED SERVICES TECHNICAL INFORMION AGENCY ARLIGTON HALL STATION ARLINGTON 12, VIRGINIA "UNC LASS IFIED NOTICe: mhen goverment or other drawings, specifications or other data

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION. (Communicated by Yang Kuang)

OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION. (Communicated by Yang Kuang) MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2015.12.503 AND ENGINEERING Volume 12, Number 3, June 2015 pp. 503 523 OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION

More information

Mathematical Foundations -1- Supporting hyperplanes. SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane

Mathematical Foundations -1- Supporting hyperplanes. SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane Mathematical Foundations -1- Supporting hyperplanes SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane Supporting Prices 2 Production efficient plans and transfer

More information

Convex Programs. Carlo Tomasi. December 4, 2018

Convex Programs. Carlo Tomasi. December 4, 2018 Convex Programs Carlo Tomasi December 4, 2018 1 Introduction In an earlier note, we found methods for finding a local minimum of some differentiable function f(u) : R m R. If f(u) is at least weakly convex,

More information

Constraint qualifications for nonlinear programming

Constraint qualifications for nonlinear programming Constraint qualifications for nonlinear programming Consider the standard nonlinear program min f (x) s.t. g i (x) 0 i = 1,..., m, h j (x) = 0 1 = 1,..., p, (NLP) with continuously differentiable functions

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Date: July 5, Contents

Date: July 5, Contents 2 Lagrange Multipliers Date: July 5, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 14 2.3. Informative Lagrange Multipliers...........

More information

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFIED ADL 4 5 2981 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED NOTICE: When goverment or other drawings, specifications

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Centre d Economie de la Sorbonne UMR 8174

Centre d Economie de la Sorbonne UMR 8174 Centre d Economie de la Sorbonne UMR 8174 On alternative theorems and necessary conditions for efficiency Do Van LUU Manh Hung NGUYEN 2006.19 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital,

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers (Com S 477/577 Notes) Yan-Bin Jia Nov 9, 2017 1 Introduction We turn now to the study of minimization with constraints. More specifically, we will tackle the following problem: minimize

More information

Finite-Dimensional Cones 1

Finite-Dimensional Cones 1 John Nachbar Washington University March 28, 2018 1 Basic Definitions. Finite-Dimensional Cones 1 Definition 1. A set A R N is a cone iff it is not empty and for any a A and any γ 0, γa A. Definition 2.

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

UNCLASSIFIED. AD 295 1l10 ARMED SERVICES TECHNICAL INFUM ARLINGON HALL SFATION ARLINGFON 12, VIRGINIA AGCY NSO UNCLASSIFIED,

UNCLASSIFIED. AD 295 1l10 ARMED SERVICES TECHNICAL INFUM ARLINGON HALL SFATION ARLINGFON 12, VIRGINIA AGCY NSO UNCLASSIFIED, UNCLASSIFIED AD 295 1l10 ARMED SERVICES TECHNICAL INFUM ARLINGON HALL SFATION ARLINGFON 12, VIRGINIA AGCY NSO UNCLASSIFIED, NOTICE: When government or other drawings, specifications or other data are used

More information

Concave programming. Concave programming is another special case of the general constrained optimization. subject to g(x) 0

Concave programming. Concave programming is another special case of the general constrained optimization. subject to g(x) 0 1 Introduction Concave programming Concave programming is another special case of the general constrained optimization problem max f(x) subject to g(x) 0 in which the objective function f is concave and

More information

II. An Application of Derivatives: Optimization

II. An Application of Derivatives: Optimization Anne Sibert Autumn 2013 II. An Application of Derivatives: Optimization In this section we consider an important application of derivatives: finding the minimum and maximum points. This has important applications

More information

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems Applied Mathematics Volume 2012, Article ID 674512, 13 pages doi:10.1155/2012/674512 Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems Hong-Yong Fu, Bin Dan, and Xiang-Yu

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

OPTIMIZATION THEORY IN A NUTSHELL Daniel McFadden, 1990, 2003

OPTIMIZATION THEORY IN A NUTSHELL Daniel McFadden, 1990, 2003 OPTIMIZATION THEORY IN A NUTSHELL Daniel McFadden, 1990, 2003 UNCONSTRAINED OPTIMIZATION 1. Consider the problem of maximizing a function f:ú n 6 ú within a set A f ú n. Typically, A might be all of ú

More information

',,~ ""':-- -- : -,... I''! -.. w ;... I I I :. I..F 4 ;., I- -,4 -.,, " I - .. :.. --.~~~~~~ ~ - -,..,... I... I. ::,., -...,

',,~ ':-- -- : -,... I''! -.. w ;... I I I :. I..F 4 ;., I- -,4 -.,,  I - .. :.. --.~~~~~~ ~ - -,..,... I... I. ::,., -..., ..-,, I, I.~~~~~~~~ ~ li I --I -- II - I I. II ~~~~~~~,~~~~; :. ~ ~.I.-I --~ ~~~~'-.-. -~~~~~ -- I I.;. I-~~~~~~. - ~.,,? ~, ~. - >. : ~..?~. I : I - "'- - ~ '--,-..4.1... ',~,~ ~,~- ~ 1.1i I mi1. -.,

More information

Preprint Kuhn-Tucker Theorem Foundations and its Basic Application in the Mathematical Economics

Preprint Kuhn-Tucker Theorem Foundations and its Basic Application in the Mathematical Economics econstor www.econstor.eu Der Open-Access-Publikationsserver der ZBW Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Josheski,

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

Math 5311 Constrained Optimization Notes

Math 5311 Constrained Optimization Notes ath 5311 Constrained Optimization otes February 5, 2009 1 Equality-constrained optimization Real-world optimization problems frequently have constraints on their variables. Constraints may be equality

More information

Pareto Efficiency (also called Pareto Optimality)

Pareto Efficiency (also called Pareto Optimality) Pareto Efficiency (also called Pareto Optimality) 1 Definitions and notation Recall some of our definitions and notation for preference orderings. Let X be a set (the set of alternatives); we have the

More information