π in terms of φ via the Machin s Route

Size: px
Start display at page:

Download "π in terms of φ via the Machin s Route"

Transcription

1 in terms of φ via the Machin s Route Hei-Chi Chan Mathematical Science Program, University of Illinois at Springfield Springfield, IL chan.hei-chi@uis.edu Abstract In this paper, we prove some formulas for that are expressed in terms of the powers of the reciprocal of the Golden Ratio φ. These formulas depend on Machin-type identities like the following: =2arctan φ 3 + arctan φ 5. Introduction In a recent paper [8], we proved several formulas of which are expressed in terms of the reciprocal of the Golden Ratio φ; for example = 5 2+φ 2 φ n=0 5n 2φ 5n (5n +2) 2 2 φ 3 (5n +3) 2 3 φ 3 (5n +) () These formulas were inspired by the work of Bailey, Borwein and Plouffe (BBP) [6], who proved a family of amazing formulas for with the aid of the powerful PSLQ

2 algorithm [9]. As an example, they proved that = n=0 ( 6 n 8n + 2 8n + 8n +5 ). (2) 8n +6 For an introduction and generalizations of (2), see, e.g., [, 2, 7]; see also the lucid account in Hijab s book [20]. For a compendium of currently known results of BBPtype formulas, see Bailey s A Compendium of BBP-Type Formulas for Mathematical Constants, which is available at dhbailey. In this paper, we prove several formulas for that share similarities with (): they express in terms of the reciprocal of the Golden Ratio φ: = ( ) k 2k + 2k+ + φ ( ) k 2k+, (3) 2k + φ 3 = 2 = 3 ( ) k 2k+ + 2k + ( ) k 2k+ + 2k + φ 3 ( ) k 2k+, () 2k + φ 6 ( ) k 2k+. (5) 2k + φ 5 The derivations of these formulas (cf. the next section) are analogous to the formula discovered by Machin ( ). Machin s discovery starts with the following observation: = arctan arctan. (6) By applying to (6) the power series of arctan x, i.e., arctan x = we have the Machin s formula for : ( ) k x2k+ 2k +, (7) = ( ) k 2k + 2k+ 5 2 ( ) k 2k+. (8) 2k + 239

3 Machin s discovery plays a key role in computing the digits of, see [7]. See also [8, 3]. For generalizations of Machin s formula, see [5, 7]. See also Weisstein s article [22]. It should be note that there are Machin-Type formulas that are closely related to the Fibonacci numbers. For example, we have = k= arctan. F 2k+ Cf. chapter 2 of Koshy s book [2]. See also Ron Knott s award-winning webstie at We also remark that in an interesting paper [], Jon Borwein, David Borwein and William Galway explored a class of Machin-type BBP formulas. Next, we will turn to the proof of (3)-(5). 2 Proofs of the Main Formulas To prove (3)-(5), all we need to do is to establish the following identities: = arctan + arctan, (9) φ φ 3 = 2 arctan + arctan, (0) φ 6 = 3 arctan + arctan. () φ 3 φ 5 By using (7), it follows at once that (9) leads to (3), (0) to () and () to (5). We will say a few words on how these identities were discovered in the next section. 3

4 First, we recall two identities that will be useful in our proof: for n 2 φ n = F n φ + F n (2) and for n, φ n =( ) n F n φ +( ) n F n+ (3) Here, F n is the n th Fibonnaci number. For proofs, see p. 78 of [2], or p. 38 in [2]. The latter is based on probablistic approach; see also the papers [9, 0, ]. Let us define γ = arctan (/φ 3 ). In order to prove (), we need to show that ( ) tan 3γ = φ. () 5 First, we claim that Indeed, we have tan(2γ) = 2. (5) tan 2γ = = = 2tanγ tan 2 γ = 2φ 3 φ 6 2 φ 3 φ 3 2 F 3 φ + F 2 (F 3 φ F ) = 2. Note that we have used (2) and (3) for φ ±3 to derive the third equality. Next, we show that in a similar manner Indeed, by using (5) for tan 2γ we have tan 3γ = tan(3γ) = 3+2φ +φ. (6) tan γ +tan2γ tan γ tan 2γ = 2+φ3 2φ 3 = 3+2φ +φ. Note that we have used (2) and (3) to obtain the last equality.

5 With (6), we can establish (): ( ) tan 3γ = tan 3γ +tan3γ = φ 3φ +2 = φ φ = φ. 5 In the third equality, we have used φ =φ (i.e., n = in (3)) to rewrite the numerator, and 3φ +2=φ (i.e., n = in (2)) to rewrite the denominator. This establishes () and implies (5). The proofs of the other two equations, namely, (9) and (0), follow the same pattern and we briefly comment on these proofs. For (9), let us define α = arctan (/φ). Then, ( ) tan α = tan α +tanα = φ φ + = φ φ = 2 φ. 3 Note that we have used the fact that φ =φ (i.e., n = in (3)) and = φ + (i.e., n = 2 in (2)). This proves (9). For (0), let us define β = arctan (/ ). Then, we have tan 2β = 2tanβ tan 2 β = 2 φ 2 = 2 2φ. Note that we have used (2) and (3) to obtain the last line. Finally, ( ) tan 2β = tan 2β +tan2β = 2φ 3 2φ + = φ 3 φ = 3 φ. 6 This proves (0). As a by-product, we note that (5) implies the following identity arctan = φ 3 2 arctan. 2 3 Looking Back and Ahead Originally, identities (9) to () were discovered in a series of numerical experiments using Mathematica. The following is an account of how we discovered (0). 5

6 Motivated by Machin formula (6), we first set out to look for an identity of the following form: = A arctan + B arctan. (7) φ k Our goal was to determine constants A, B and k. Next, we treated the first term in (7) as a first order approximation of /: A arctan. We compared this approximation with the following numerical result 2.5 arctan. This motivated us to set A = 2 in (7): = 2 arctan + B arctan. (8) φ k We then looked for B and k that would make (8) an identity. We performed a series of numerical experiments for this purpose. Precisely, we used Mathematica to compute, for a range of k, the following ratio which represents B (cf. (8)): 2 arctan φ 2. arctan φ k Gladly, we found that at k = 6 (a relatively small k!), Mathematica computed the ratio to be (where we requested the software to give the first 30 decimal places). This suggested that we should try to prove or disprove the identity? = 2 arctan + arctan. (9) φ 6 6

7 With joy and gratitude, we found that (9) turned out to be an exact identity. One can generalize the present work by considering recursions with three or more terms. See [22]. We believe that more sophisticated numerical experiments, along the overall theme suggested in [5, 6], may point to more discoveries of this type of identities. See also [3,, 5]. Acknowledgment. I would like to thank Scott Ebbing for his valuable comments on this work. References [] V. Adamchik and S. Wagon, : A 2000-Year Search Changes Direction, Mathematica in Education and Research (996), 9. [2] V. Adamchik and S. Wagon, A Simple Formula for Pi, Amer. Math. Monthly 0 (997), [3] D. H. Bailey and J. M. Borwein, Experimental Mathematics: Recent Developments and Future Outlook, in Mathematics Unlimited 200 and Beyond, Bjorn Engquist and Wilfried Schmid, ed., Springer, New York, 200, [] D. H. Bailey and J. M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices Amer. Math. Soc. 52 (2005), [5] D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, Ten Problems in Experimental Mathematics, MAA Monthly to appear. [6] D. H. Bailey, P. B. Borwein and S. Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Math. Comp. 66 (997),

8 [7] D. H. Bailey and S. Plouffe, Recognizing Numerical Constants, in The Organic Mathematics Project Proceedings, April 2, 996; hard copy version: Canadian Mathematical Society Conference Proceedings 20 (997) [8] P. Beckmann, The History of, 3 rd ed., St. Martin s Griffin, New York, 976. [9] A. T. Benjamin, C. R.H. Hanusa and F. E. Su, Linear Recurrences Through Tilings and Markov Chains Utilitas Mathematica 6 (2003), 3 7. [0] A. T. Benjamin, G. M. Levin, K. Mahlburg and J. J. Quinn, Random Approaches to Fibonacci Identities Amer. Math. Monthly 07 (2000), [] A. T. Benjamin, J. D. Neer, D. E. Otero and J. A. Sellers, A Probabilistic View of Certain Weighted Fibonacci Sums The Fibonacci Quart. (2003), [2] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: the Art of Combinatorial Proof, MAA, Washington, [3] D. Blatner, The Joy of, Walker and Company, New York, 997. [] D. Borwein, J. M. Borwein, and W. F. Galway, Finding and Excluding -ary Machin-Type BBP Formulae, Canadian J. Math 56 (200), [5] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 2st Century, A K Peters, Massachusetts, 200. [6] J. M. Borwein, D. H. Bailey, R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Massachusetts,

9 [7] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, CMS Series of Monographs and Advanced books in Mathematics, John Wiley, New Jersey, 987. [8] H. C. Chan, in terms of φ, Fibonacci Quart., to appear. [9] H. R. P. Ferguson, D. H. Bailey and S. Arno, Analysis of PSLQ, An Integer Relation Finding Algorithm, Mathematics of Computation 68 (999), [20] O. Hijab, Introduction to Calculus and Classical Analysis, Springer-Verlag, New York, 997. [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 200. [22] E. W. Weisstein. Machin-Like Formulas. From MathWorld A Wolfram Web Resource. AMS Subject Classification: A05 9

Two Identities Involving Generalized Fibonacci Numbers

Two Identities Involving Generalized Fibonacci Numbers Two Identities Involving Generalized Fibonacci Numbers Curtis Cooper Dept. of Math. & Comp. Sci. University of Central Missouri Warrensburg, MO 64093 U.S.A. email: cooper@ucmo.edu Abstract. Let r 2 be

More information

Serie slowly convergent

Serie slowly convergent Serie slowly convergent Edgar Valdebenito We exhibit a serie slowly convergent for pi: abstract π = 3.459265358979... = 0.383098868379... π I. Serie de convergencia lenta π = (-) n 3 (/2) n 32 2 n 2 +

More information

The Miraculous Bailey-Borwein-Plouffe Pi Algorithm

The Miraculous Bailey-Borwein-Plouffe Pi Algorithm Overview: 10/1/95 The Miraculous Bailey-Borwein-Plouffe Pi Algorithm Steven Finch, Research and Development Team, MathSoft, Inc. David Bailey, Peter Borwein and Simon Plouffe have recently computed the

More information

Formulae for some classical constants

Formulae for some classical constants Formulae for some classical constants Alexandru Lupaş (to appear in Proceedings of ROGER-000 The goal of this paper is to present formulas for Apéry Constant, Archimede s Constant, Logarithm Constant,

More information

Integer Relation Methods : An Introduction

Integer Relation Methods : An Introduction Integer Relation Methods : An Introduction Special Session on SCIENTIFIC COMPUTING: July 9 th 2009 Jonathan Borwein, FRSC www.carma.newcastle.edu.au/~jb616 Laureate Professor University of Newcastle, NSW

More information

Integral approximations to π with nonnegative integrands

Integral approximations to π with nonnegative integrands Integral approximations to π with nonnegative integrands S.K. Lucas Department of Mathematics and Statistics James Madison University Harrisonburg VA 2287 Email: lucassk@jmu.edu May 27 One of the more

More information

arxiv: v3 [math.co] 6 Aug 2016

arxiv: v3 [math.co] 6 Aug 2016 ANALOGUES OF A FIBONACCI-LUCAS IDENTITY GAURAV BHATNAGAR arxiv:1510.03159v3 [math.co] 6 Aug 2016 Abstract. Sury s 2014 proof of an identity for Fibonacci and Lucas numbers (Identity 236 of Benjamin and

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

π-day, 2013 Michael Kozdron

π-day, 2013 Michael Kozdron π-day, 2013 Michael Kozdron What is π? In any circle, the ratio of the circumference to the diameter is constant. We are taught in high school that this number is called π. That is, for any circle. π =

More information

Extracting Hexadecimal Digits of π

Extracting Hexadecimal Digits of π Extracting Hexadecimal Digits of π William Malone William Malone is currently a senior Mathematics major at Ball State University. Upon graduation he plans to pursue graduate studies starting in the fall

More information

Construction Of Binomial Sums For π And Polylogarithmic Constants Inspired By BBP Formulas

Construction Of Binomial Sums For π And Polylogarithmic Constants Inspired By BBP Formulas Applied Mathematics E-Notes, 77, 7-46 c ISSN 67-5 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Construction Of Binomial Sums For π And Polylogarithmic Constants Inspired By BBP

More information

arxiv: v1 [math.co] 11 Aug 2015

arxiv: v1 [math.co] 11 Aug 2015 arxiv:1508.02762v1 [math.co] 11 Aug 2015 A Family of the Zeckendorf Theorem Related Identities Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Abstract

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab

Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab All truths are easy to understand once they are discovered; the point is to discover them. Galileo Galilei Algorithms

More information

FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS

FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS FIBONACCI EXPRESSIONS ARISING FROM A COIN-TOSSING SCENARIO INVOLVING PAIRS OF CONSECUTIVE HEADS MARTIN GRIFFITHS Abstract. In this article we study a combinatorial scenario which generalizes the wellknown

More information

Expectations on Fractal Sets

Expectations on Fractal Sets Expectations on Fractal Sets David H. Bailey http://www.davidhbailey.com Lawrence Berkeley Natl. Lab. (retired) Computer Science Dept., University of California, Davis Co-authors: Jonathan M. Borwein (CARMA,

More information

Identities for the arctangent function by enhanced midpoint integration and the high-accuracy computation of pi

Identities for the arctangent function by enhanced midpoint integration and the high-accuracy computation of pi arxiv:1604.03752v1 [math.gm] 10 Apr 2016 Identities for the arctangent function by enhanced midpoint integration and the high-accuracy computation of pi S. M. Abrarov and B. M. Quine April 10, 2016 Abstract

More information

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD #A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD Reza Kahkeshani 1 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan,

More information

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia #A2 INTEGERS 9 (209) COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia imartinjak@phy.hr Helmut Prodinger Department of Mathematics,

More information

Combinatorial Proof of the Hot Spot Theorem

Combinatorial Proof of the Hot Spot Theorem Combinatorial Proof of the Hot Spot Theorem Ernie Croot May 30, 2006 1 Introduction A problem which has perplexed mathematicians for a long time, is to decide whether the digits of π are random-looking,

More information

Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes

Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes 3 47 6 3 Journal of Integer Sequences, Vol. 6 003), Article 03.3.7 Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes Marc Chamberland Department of Mathematics and Computer Science

More information

#A6 INTEGERS 17 (2017) AN IMPLICIT ZECKENDORF REPRESENTATION

#A6 INTEGERS 17 (2017) AN IMPLICIT ZECKENDORF REPRESENTATION #A6 INTEGERS 17 (017) AN IMPLICIT ZECKENDORF REPRESENTATION Martin Gri ths Dept. of Mathematical Sciences, University of Essex, Colchester, United Kingdom griffm@essex.ac.uk Received: /19/16, Accepted:

More information

In Search of Combinatorial Fibonacci Identities

In Search of Combinatorial Fibonacci Identities Summer Research 2010 Duncan McGregor Mike Rowell Department of Mathematics and Computer Science Pacific University, Oregon NUMS, April 9, 2011 Outline 1 2 Fibonacci Sequence Defined Recursively: f 0 =

More information

Counting on Continued Fractions

Counting on Continued Fractions appeared in: Mathematics Magazine 73(2000), pp. 98-04. Copyright the Mathematical Association of America 999. All rights reserved. Counting on Continued Fractions Arthur T. Benjamin Francis Edward Su Harvey

More information

Several Generating Functions for Second-Order Recurrence Sequences

Several Generating Functions for Second-Order Recurrence Sequences 47 6 Journal of Integer Sequences, Vol. 009), Article 09..7 Several Generating Functions for Second-Order Recurrence Sequences István Mező Institute of Mathematics University of Debrecen Hungary imezo@math.lte.hu

More information

ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS

ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS MATHEMATICS OF COMPUTATION Volume 66 Number 218 April 1997 Pages 903 913 S 0025-5718(97)00856-9 ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS DAVID BAILEY PETER BORWEIN AND SIMON PLOUFFE

More information

COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS

COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS LE MATEMATICHE Vol LXXIII 2018 Fasc I, pp 179 189 doi: 104418/201873113 COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS MURAT SAHIN - ELIF TAN - SEMIH YILMAZ Let {a i },{b i } be real numbers for 0 i r 1,

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007)

SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007) SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007) 2. (b) Answer: (n 3 + 3n 2 + 8n)/6, which is 13 for n = 3. For a picture, see M. Gardner, The 2nd Scientific American Book of Mathematical

More information

CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE.

CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE. CALCULATION OF EXPECTED DISTANCE ON A UNIT CUBE. JOHAN PHILIP Abstract. We calculate the expected distance between two random points on different faces of a unit cube. The problem is solved before, but

More information

Counting on Chebyshev Polynomials

Counting on Chebyshev Polynomials DRAFT VOL. 8, NO., APRIL 009 1 Counting on Chebyshev Polynomials Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@hmc.edu Daniel Walton UCLA Los Angeles, CA 90095555 waltond@ucla.edu

More information

Identities Inspired by the Ramanujan Notebooks Second Series

Identities Inspired by the Ramanujan Notebooks Second Series Identities Inspired by the Ramanujan Notebooks Second Series by Simon Plouffe First draft August 2006 Revised March 4, 20 Abstract A series of formula is presented that are all inspired by the Ramanujan

More information

The Golden Ratio and Viète s Formula

The Golden Ratio and Viète s Formula / (04), 43 54 The Golden Ratio and Viète s Formula Esther M. García Caballero, Samuel G. Moreno and Michael P. Prophet Abstract. Viète s formula uses an infinite product to express π. In this paper we

More information

A Geometric Proof that e is Irrational and a New Measure of its Irrationality

A Geometric Proof that e is Irrational and a New Measure of its Irrationality A Geometric Proof that e is Irrational and a New Measure of its Irrationality Jonathan Sondow. INTRODUCTION. While there exist geometric proofs of irrationality for 2 [2], [27], no such proof for e, π,

More information

On Certain Hypergeometric Summation Theorems Motivated by the Works of Ramanujan, Chudnovsky and Borwein

On Certain Hypergeometric Summation Theorems Motivated by the Works of Ramanujan, Chudnovsky and Borwein www.ccsenet.org/jmr Journal of Mathematics Research Vol., No. August 00 On Certain Hypergeometric Summation Theorems Motivated by the Works of Ramanujan, Chudnovsky and Borwein M. I. Qureshi Department

More information

A hidden signal in the Ulam sequence. Stefan Steinerberger Research Report YALEU/DCS/TR-1508 Yale University May 4, 2015

A hidden signal in the Ulam sequence. Stefan Steinerberger Research Report YALEU/DCS/TR-1508 Yale University May 4, 2015 The Ulam sequence is defined as a 1 = 1, a 2 = 2 and a n being the smallest integer that can be written as the sum of two distinct earlier elements in a unique way. This gives 1, 2, 3, 4, 6, 8, 11, 13,

More information

BINARY BBP-FORMULAE FOR LOGARITHMS AND GENERALIZED GAUSSIAN-MERSENNE PRIMES. Marc Chamberland

BINARY BBP-FORMULAE FOR LOGARITHMS AND GENERALIZED GAUSSIAN-MERSENNE PRIMES. Marc Chamberland 1 BINARY BBP-FORMULAE FOR LOGARITHMS AND GENERALIZED GAUSSIAN-MERSENNE PRIMES Marc Chamberland Department of Mathematics and Computer Science Grinnell College Grinnell, IA, 5011 E-mail: chamberl@math.grinnell.edu

More information

A rational approximation of the arctangent function and a new approach in computing pi

A rational approximation of the arctangent function and a new approach in computing pi arxiv:63.33v math.gm] 4 Mar 6 A rational approimation of the arctangent function and a new approach in computing pi S. M. Abrarov and B. M. Quine March 4, 6 Abstract We have shown recently that integration

More information

Some Background on Kanada s Recent Pi Calculation David H. Bailey 16 May 2003

Some Background on Kanada s Recent Pi Calculation David H. Bailey 16 May 2003 Some Background on Kanada s Recent Pi Calculation David H. Bailey 6 May 2003 History I will first give some historical background, condensed from []. Several of the commonly used algorithms for calculating

More information

Sierpinski s Triangle and the Lucas Correspondence Theorem

Sierpinski s Triangle and the Lucas Correspondence Theorem Sierpinski s Triangle and the Lucas Correspondence Theorem Julian Trujillo, and George Kreppein Western Washington University November 30, 2012 History of Sierpinski s Triangle Sierpinski s triangle also

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

Combinatorial Proofs and Algebraic Proofs I

Combinatorial Proofs and Algebraic Proofs I Combinatorial Proofs and Algebraic Proofs I Shailesh A Shirali Shailesh A Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP).

More information

ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS. David Bailey, Peter Borwein 1 and Simon Plouffe

ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS. David Bailey, Peter Borwein 1 and Simon Plouffe ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS David Bailey, Peter Borwein 1 and Simon Plouffe Abstract. We give algorithms for the computation of the d-th digit of certain transcendental

More information

arxiv: v2 [math.co] 29 Jun 2016

arxiv: v2 [math.co] 29 Jun 2016 arxiv:1508.04949v2 [math.co] 29 Jun 2016 Complementary Families of the Fibonacci-Lucas Relations Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Helmut

More information

An iteration procedure for a two-term Machin-like formula for pi with small Lehmer s measure

An iteration procedure for a two-term Machin-like formula for pi with small Lehmer s measure arxiv:706.08835v3 [math.gm] 6 Jul 07 An iteration procedure for a two-term Machin-like formula for pi with small Lehmer s measure S. M. Abrarov and B. M. Quine July 6, 07 Abstract In this paper we present

More information

SUBTRACTIVE BLACK HOLES AND BLACK LOOPS

SUBTRACTIVE BLACK HOLES AND BLACK LOOPS Texas College Mathematics Journal Volume 2, Number 1, Pages 1-9 Article electronically published on August 17, 2005 SUBTRACTIVE BLACK HOLES AND BLACK LOOPS MURRAY H. SIEGEL, WASIN SO AND PETER A. COOPER

More information

Inverse Symbolic Calculation: Jonathan Borwein, FRSC Computer Assisted Research Mathematics and Applications CARMA

Inverse Symbolic Calculation: Jonathan Borwein, FRSC   Computer Assisted Research Mathematics and Applications CARMA Inverse Symbolic Calculation: symbols from numbers Jonathan Borwein, FRSC www.carma.newcastle.edu.au/~jb616 Laureate Professor University of Newcastle, NSW Director, Centre for Computer Assisted Research

More information

Parametric Euler Sum Identities

Parametric Euler Sum Identities Parametric Euler Sum Identities David Borwein, Jonathan M. Borwein, and David M. Bradley September 23, 2004 Introduction A somewhat unlikely-looking identity is n n nn x m m x n n 2 n x, valid for all

More information

LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU

LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU LINEAR RECURRENCES THROUGH TILINGS AND MARKOV CHAINS ARTHUR T. BENJAMIN, CHRISTOPHER R. H. HANUSA, AND FRANCIS EDWARD SU ABSTRACT. We present a tiling interpretation for k-th order linear recurrences,

More information

The sum of the series of reciprocals of the quadratic polynomial with different negative integer roots

The sum of the series of reciprocals of the quadratic polynomial with different negative integer roots RATIO MATHEMATICA ISSUE N. 30 206 pp. 59-66 ISSN print: 592-745 ISSN online: 2282-824 The sum of the series of reciprocals of the quadratic polynomial with different negative integer roots Radovan Potůček

More information

TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS. Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN , USA

TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS. Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN , USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (008), #A18 TILING PROOFS OF SOME FIBONACCI-LUCAS RELATIONS Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN

More information

A formula for pi involving nested radicals

A formula for pi involving nested radicals arxiv:60.0773v [math.gm] 7 Apr 08 A formula for pi involving nested radicals S. M. Abrarov and B. M. Quine April 7, 08 Abstract We present a new formula for pi involving nested radicals with rapid convergence.

More information

ENHANCING THE CONCEPTUAL UNDERSTANDING OF SEQUENCES AND SERIES WITH TECHNOLOGY. Jay L. Schiffman. Rowan University. 201 Mullica Hill Road

ENHANCING THE CONCEPTUAL UNDERSTANDING OF SEQUENCES AND SERIES WITH TECHNOLOGY. Jay L. Schiffman. Rowan University. 201 Mullica Hill Road ENHANCING THE CONCEPTUAL UNDERSTANDING OF SEQUENCES AND SERIES WITH TECHNOLOGY Jay L. Schiffman Rowan University 20 Mullica Hill Road Glassboro, NJ 08028-70 schiffman@rowan.edu Abstract: The TI-89 and

More information

Generalized Fibonacci Numbers and Blackwell s Renewal Theorem

Generalized Fibonacci Numbers and Blackwell s Renewal Theorem Generalized Fibonacci Numbers and Blackwell s Renewal Theorem arxiv:1012.5006v1 [math.pr] 22 Dec 2010 Sören Christensen Christian-Albrechts-Universität, Mathematisches Seminar, Kiel, Germany Abstract:

More information

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use: Mathematica Slovaca Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences Mathematica Slovaca, Vol. 43 (1993), No. 1, 31--37 Persistent URL: http://dml.cz/dmlcz/136572 Terms of use:

More information

On repdigits as product of consecutive Lucas numbers

On repdigits as product of consecutive Lucas numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 5 102 DOI: 10.7546/nntdm.2018.24.3.5-102 On repdigits as product of consecutive Lucas numbers

More information

Walking on Rational Numbers and a Self-Referential Formula

Walking on Rational Numbers and a Self-Referential Formula Walking on Rational Numbers and a Self-Referential Formula Margaret Fortman Kevin Kupiec Marina Rawlings Enrique Treviño January 15, 2018 1 Walking on Numbers In [1], Aragón Artacho, et al. describe the

More information

Some new properties of Fibonacci n-step

Some new properties of Fibonacci n-step South Asian Journal of Mathematics, Vol. 4 ( 3): 0 0 www.sajm-online.com ISSN - RESEARCH ARTICLE Some new properties of ibonacci n-step Manjusri Basu 1, Monojit Das 1 1 Department of Mathematics, University

More information

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES MARTIN GRIFFITHS Abstract. In this paper we consider the possibility for extending the domains of definition of particular Fibonacci identities

More information

The sum of squares for primes

The sum of squares for primes Notes on Number Theory and Discrete Mathematics ISSN 30 53 Vol., 05, No. 4, 7 The sum of squares for rimes J. V. Leyendekkers and A. G. Shannon,3 Faculty of Science, The University of Sydney, NSW 006,

More information

Math 200 University of Connecticut

Math 200 University of Connecticut IRRATIONALITY OF π AND e KEITH CONRAD Math 2 University of Connecticut Date: Aug. 3, 25. Contents. Introduction 2. Irrationality of π 2 3. Irrationality of e 3 4. General Ideas 4 5. Irrationality of rational

More information

Section 4.1: Sequences and Series

Section 4.1: Sequences and Series Section 4.1: Sequences and Series In this section, we shall introduce the idea of sequences and series as a necessary tool to develop the proof technique called mathematical induction. Most of the material

More information

Formulas for Odd Zeta Values and Powers of π

Formulas for Odd Zeta Values and Powers of π 3 47 6 3 Journal of Integer Sequences, Vol. 4 (0), Article..5 Formulas for Odd Zeta Values and Powers of π Marc Chamberland and Patrick Lopatto Department of Mathematics and Statistics Grinnell College

More information

arxiv: v2 [math.nt] 4 Jun 2016

arxiv: v2 [math.nt] 4 Jun 2016 ON THE p-adic VALUATION OF STIRLING NUMBERS OF THE FIRST KIND PAOLO LEONETTI AND CARLO SANNA arxiv:605.07424v2 [math.nt] 4 Jun 206 Abstract. For all integers n k, define H(n, k) := /(i i k ), where the

More information

High Performance Computing Meets Experimental Mathematics

High Performance Computing Meets Experimental Mathematics High Performance Computing Meets Experimental Mathematics David H. Bailey Lawrence Berkeley National Laboratory, USA David Broadhurst Department of Physics, Open University, UK Yozo Hida University of

More information

CATALAN DETERMINANTS A COMBINATORIAL APPROACH

CATALAN DETERMINANTS A COMBINATORIAL APPROACH CATALAN DETERMINANTS A COMBINATORIAL APPROACH ARTHUR T BENJAMIN, NAIOMI T CAMERON, JENNIFER J QUINN, AND CARL R YERGER Abstract Determinants of matrices involving the Catalan sequence have appeared throughout

More information

A Note on Tiling under Tomographic Constraints

A Note on Tiling under Tomographic Constraints A Note on Tiling under Tomographic Constraints arxiv:cs/8v3 [cs.cc] 9 Apr Marek Chrobak Peter Couperus Christoph Dürr Gerhard Woeginger February, 8 Abstract Given a tiling of a D grid with several types

More information

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract We conjecture that there is at least one composite term in

More information

For many years, researchers have dreamt INTEGER RELATION DETECTION T HEME ARTICLE. the Top

For many years, researchers have dreamt INTEGER RELATION DETECTION T HEME ARTICLE. the Top the Top T HEME ARTICLE INTEGER RELATION DETECTION Practical algorithms for integer relation detection have become a staple in the emerging discipline of experimental mathematics using modern computer technology

More information

Champernowne s Number, Strong Normality, and the X Chromosome. by Adrian Belshaw and Peter Borwein

Champernowne s Number, Strong Normality, and the X Chromosome. by Adrian Belshaw and Peter Borwein Champernowne s Number, Strong Normality, and the X Chromosome by Adrian Belshaw and Peter Borwein ABSTRACT. Champernowne s number is the best-known example of a normal number, but its digits are far from

More information

Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem

Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem Bijective proofs for Fibonacci identities related to Zeckendorf s Theorem Philip Matchett Wood Department of Mathematics, Rutgers University, Hill Center Busch Campus, 0 Frelinghuysen Rd, Piscataway, NJ

More information

The Value of the Zeta Function at an Odd Argument

The Value of the Zeta Function at an Odd Argument International Journal of Mathematics and Computer Science, 4(009), no., 0 The Value of the Zeta Function at an Odd Argument M CS Badih Ghusayni Department of Mathematics Faculty of Science- Lebanese University

More information

Integer Relation Detection and Lattice Reduction David H. Bailey 1. To appear in Computing in Science and Engineering

Integer Relation Detection and Lattice Reduction David H. Bailey 1. To appear in Computing in Science and Engineering Integer Relation Detection and Lattice Reduction David H. Bailey To appear in Computing in Science and Engineering. Introduction Let x =(x,x,,x n ) be a vector of real or complex numbers. x is said to

More information

UNIQUE-PERIOD PRIMES. Chris K. Caldwell 5856 Harry Daniels Road Rives, Tennessee

UNIQUE-PERIOD PRIMES. Chris K. Caldwell 5856 Harry Daniels Road Rives, Tennessee Appeared in: J. Recreational Math., 29:1 (1998) 43--48. UNIQUE-PERIOD PRIMES Chris K. Caldwell 5856 Harry Daniels Road Rives, Tennessee 38253 email: caldwell@utmartin.edu Harvey Dubner 449 Beverly Road

More information

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC #A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Received: 9/17/10, Revised:

More information

Combinatorial proofs of Honsberger-type identities

Combinatorial proofs of Honsberger-type identities International Journal of Mathematical Education in Science and Technology, Vol. 39, No. 6, 15 September 2008, 785 792 Combinatorial proofs of Honsberger-type identities A. Plaza* and S. Falco n Department

More information

Math/Music: Structure and Form Fall 2011 Worksheet on Continued Fractions

Math/Music: Structure and Form Fall 2011 Worksheet on Continued Fractions Math/Music: Structure and Form Fall 20 Worksheet on Continued Fractions Playing around with π The famous mathematical constant π is irrational, with a non-repeating, non-terminating decimal expansion.

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

arxiv: v1 [math.nt] 20 Mar 2017

arxiv: v1 [math.nt] 20 Mar 2017 On certain ratios regarding integer numbers which are both triangulars and squares arxiv:1703.06701v1 [math.nt] 0 Mar 017 Fabio Roman Abstract We investigate integer numbers which possess at the same time

More information

Diverse Factorial Operators

Diverse Factorial Operators Diverse Factorial Operators CLAUDE ZIAD BAYEH 1, 1 Faculty of Engineering II, Lebanese University EGRDI transaction on mathematics (00) LEBANON Email: claude_bayeh_cbegrdi@hotmail.com NIKOS E.MASTORAKIS

More information

Impulse Response Sequences and Construction of Number Sequence Identities

Impulse Response Sequences and Construction of Number Sequence Identities Impulse Response Sequences and Construction of Number Sequence Identities Tian-Xiao He Department of Mathematics Illinois Wesleyan University Bloomington, IL 6170-900, USA Abstract As an extension of Lucas

More information

Lucas Polynomials and Power Sums

Lucas Polynomials and Power Sums Lucas Polynomials and Power Sums Ulrich Tamm Abstract The three term recurrence x n + y n = (x + y (x n + y n xy (x n + y n allows to express x n + y n as a polynomial in the two variables x + y and xy.

More information

A gentle introduction to PSLQ

A gentle introduction to PSLQ A gentle introduction to PSLQ Armin Straub Email: math@arminstraub.com April 0, 200 Abstract This is work in progress. Please let me know about any comments and suggestions. What PSLQ is about PSLQ is

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

Junior Villafana. Math 301. Dr. Meredith. Odd Perfect Numbers

Junior Villafana. Math 301. Dr. Meredith. Odd Perfect Numbers Junior Villafana Math 301 Dr. Meredith Odd Perfect Numbers Arguably the oldest unsolved problem in mathematics is still giving mathematicians a headache, even with the aid of technology; the search for

More information

Experimental Determination of Apéry-like Identities for ζ(2n +2)

Experimental Determination of Apéry-like Identities for ζ(2n +2) Experimental Determination of Apéry-lie Identities for ζ(n + David H. Bailey, Jonathan M. Borwein, and David M. Bradley CONTENTS. Introduction. Discovering Theorem. 3. Proof of Theorem.. An Identity for

More information

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES NATHAN HAMLIN AND WILLIAM A. WEBB Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known. Fraenkel

More information

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX #A05 INTEGERS 9 (2009), 53-64 TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 shattuck@math.utk.edu

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

David H. Bailey. NASA Ames Research Center. December 11, where high-precision numerical computations, together with advanced integer relation

David H. Bailey. NASA Ames Research Center. December 11, where high-precision numerical computations, together with advanced integer relation Finding New Mathematical Identities via Numerical Computations David H. Bailey NASA Ames Research Center December 11, 1997 Ref: ACM SIGNUM, vol. 33, no. 1 (Jan. 1998), pg. 17-22 Abstract This note gives

More information

Georgia Tech HSMC 2010

Georgia Tech HSMC 2010 Georgia Tech HSMC 2010 Varsity Multiple Choice February 27 th, 2010 1. A cube of SPAM defined by S = {(x, y, z) 0 x, y, z 1} is cut along the planes x = y, y = z, z = x. How many pieces are there? (No

More information

Finding and Excluding b-ary Machin-Type Individual Digit Formulae

Finding and Excluding b-ary Machin-Type Individual Digit Formulae DRAFT: Canad. J. Math. July 6, 2004 14:27 File: borwein3298 pp.1 29 Page 1 Sheet 1 of 29 Canad. J. Math. Vol. XX (Y), ZZZZ pp. 1 29 Finding and Excluding b-ary Machin-Type Individual Digit Formulae Jonathan

More information

(1) = 0 = 0,

(1) = 0 = 0, GALLERY OF WALKS ON THE SQUARE LATTICE BY A TURING PLOTTER FOR BINARY SEQUENCES RICHARD J. MATHAR Abstract. We illustrate infinite walks on the square lattice by interpretation of binary sequences of zeros

More information

On the possible quantities of Fibonacci numbers that occur in some type of intervals

On the possible quantities of Fibonacci numbers that occur in some type of intervals On the possible quantities of Fibonacci numbers that occur in some type of intervals arxiv:1508.02625v1 [math.nt] 11 Aug 2015 Bakir FARHI Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes

More information

ON YANG MEANS III. Edward Neuman

ON YANG MEANS III. Edward Neuman BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 113-122 DOI: 10.7251/BIMVI1801113N Former BULLETIN

More information

The Combinatorialization of Linear Recurrences

The Combinatorialization of Linear Recurrences The Combinatorialization of Linear Recurrences Arthur T Benjamin Harvey Mudd College Claremont, CA, USA benjamin@hmcedu Jennifer J Quinn University of Washington Tacoma Tacoma, WA USA jjquinn@uwedu Halcyon

More information

THE CONCEPT OF SUBTRACTIVE BLACK HOLES AND BLACK LOOPS

THE CONCEPT OF SUBTRACTIVE BLACK HOLES AND BLACK LOOPS THE CONCEPT OF SUBTRACTIVE BLACK HOLES AND BLACK LOOPS R.SHARMILA M.Sc., ASSISTANT PROFESSOR, DEPARTMENT OF MATHAMETICS, SIR AKILANDESWARI WOMENS COLLEGE, VANDAVASI. ABSTRACT Subtractive black holes and

More information

Approximation of π by Numerical Methods Mathematics Coursework (NM)

Approximation of π by Numerical Methods Mathematics Coursework (NM) Approximation of π by Numerical Methods Mathematics Coursework (NM) Alvin Šipraga Magdalen College School, Brackley April 1 1 Introduction There exist many ways to approximate 1 π, usually employed in

More information

A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION. 1. Introduction. 1 n s, k 2 = n 1. k 3 = 2n(n 1),

A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION. 1. Introduction. 1 n s, k 2 = n 1. k 3 = 2n(n 1), Journal of Mathematical Inequalities Volume, Number 07, 09 5 doi:0.753/jmi--0 A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION LIN XIN AND LI XIAOXUE Communicated by J. Pečarić Abstract. This paper,

More information