Supplement: Hoffman s Error Bounds

Size: px
Start display at page:

Download "Supplement: Hoffman s Error Bounds"

Transcription

1 IE Supplement: Hoffman s Error Bounds

2 IE In Lecture 1 we learned that linear program and its dual problem (P ) min c T x s.t. (D) max b T y s.t. Ax = b x 0, A T y + s = c s 0 under the Slater condition, admits the analytical central path {(x(µ), y(µ), s(µ)) Ax(µ) = b, A T y(µ) + s(µ) = c, x(µ) > 0, s(µ) > 0, x i (µ)s i (µ) = µ, for i = 1,..., n; µ > 0} and that lim µ 0 (x(µ), y(µ), s(µ)) = (x(0), y(0), s(0)) exists, and the limits are optimal solutions for (P ) and (D) respectively.

3 IE Now let c = e. One can easily show that y(µ) = (AX(µ)A T ) 1 b µ(ax(µ)a T ) 1 e, and x(µ) = X(µ)A T (AX(µ)A T ) 1 b+µe µx(µ)a T (AX(µ)A T ) 1 Ae. (1) But why write it in this particular way? There is an amazing fact to note here (Dikin, Stewart, and Todd): χ(a) := sup{ DA T (ADA T ) 1 D diagonal and D 0} <.

4 IE Let us try to understand why is χ(a) a finite number. Another way of writing χ(a) is the following { } y χ(a) = sup c y = argmin D1/2 (A T y c), D 0 diagonal, c R n. Denote λ(a) = max{ A 1 I I = m with A I invertible}. Clearly, λ(a) is finite. Theorem 1 χ(a) = λ(a).

5 IE Proof. For any I with I = m and A I non-singular, we let D ϵ be diagonal and Dii ϵ = 1 for i I and Dϵ ii = ϵ for i I. Clearly, D ϵ A T (AD ϵ A T ) 1 A 1 I as ϵ 0 and so λ(a) χ(a). To show χ(a) λ(a), we choose a fixed 0 c R n and a fixed positive diagonal matrix D. Consider the unique y(c, D) that minimizes D 1/2 (A T y c). Obviously the rank of the active constraints at y(c, D) must be equal to m. Let J be such that J = m, A J non-singular and A T J y(c, D) = c J. Hence y(c, D) = A T J c J. This shows that χ(a) sup{ A T J c J / c 0 c R n, J = m and A J non-singular} sup{ A T J J = m and A J non-singular} = λ(a). Combining the two inequalities the proposition follows.

6 IE A related quantity is: χ(a) := sup{ DA T (ADA T ) 1 A D diagonal and D 0} <. The above quantities play an important role in the complexity analysis for linear programming. Anyway, continuing from (1) we have x(µ) χ(a) b + nµ + n χ(a)µ. Therefore, x(0) χ(a) b.

7 IE But we assumed the Slater condition. What if the Slater condition does not hold? (though the problem itself is still feasible.) Let δ > 0, and consider {x Ax = b + δae, x 0}. The above system always satisfies the Slater condition. We then know that for any δ > 0, there is x δ 0 such that Ax δ = b + δae, x δ χ(a) b + δae. Therefore, by taking limit (on possibly a subsequence) there is always a feasible solution x satisfies the bound x χ(a) b. Theorem 2 For linear programming (P ), if it is feasible then it has a feasible solution whose norm is no more than χ(a) b ; if it has an optimal solution then it has a an optimal solution whose norm is no more than χ(a) b.

8 IE Another fact that follows immediately is the following: Lemma 1 Let J be a subset of {1, 2,..., n}. Denote A J (and x J ) to be a submatrix (subvector) of A (and x) in such a way that it collects all the columns (and components) of A (and x) whose indices belong to J. Suppose that A J x J = b, x J 0 is feasible. Then it always has a feasible solution x J such that x J χ(a) b. One way to see this is to observe the linear program ( P ) min e T J x J s.t. Ax = b x 0, is feasible and has a solution. Applying Theorem 2, the result follows.

9 IE Now let us consider the following problem. Suppose that S = {y A T y c}. Let z R m be not in S. The question is: Can we reasonably estimate the distance from z to S? This is the point when the issue of error bounds arises. Essentially we wish to have some computable measure f(z) which tells us something about the unknown quantity dist(z, S). Consider 1 min 2 z y 2 s.t. A T y c.

10 IE Let y be the optimal solution (the projection). Applying the KKT condition we know that this implies the existence of J {1, 2,..., n} (with J being its complement), such that y z = A J x J, s = c A T y, x 0, s 0, s T x = 0, s J = 0, x J = 0. In fact, once the index set J is identified, we may choose any x J 0 satisfying y z = A J x J, and the above KKT condition ensures that y is the projection. In particular, by Theorem 2 there is a short solution x with x χ(a) y z.

11 IE Putting things together, we have y z 2 = (y z) T Ax = (A T z A T y ) T x = (A T z c) T x + (c A T y ) T x (A T z c) T +x (A T z c) + x χ(a) (A T z c) + y z. Therefore, y z χ(a) (A T z c) +. This gives rise to an important result, known as Hoffman s error bound: Theorem 3 Suppose that S = {y A T y c}. Then, dist(z, S) χ(a) (A T z c) +.

12 IE It is easy to check that there is C > 0, such that (A T z c) + C dist(z, S). Therefore dist(z, S) = O ( (A T z c) + ). An interesting related result to Hoffman s error bound is as follows: If an affine subspace A and the polyhedral cone R n + do not intersect, then there must be a positive distance between them. Moreover, there are two points ˆx A and ŷ R n +, such that dist(ˆx, ŷ) = dist(a, R n +). To show this, it will be sufficient to prove a slightly more general result: Lemma 2 Suppose that Q 0. Let ϵ k 0 be a sequence. Let P be a polyhedron. Suppose that {x P x T Qx + c ϵ k } = for all k. Then {x P x T Qx + c 0} =.

13 IE Proof. Let x k = argmin { x x T Qx + c ϵ k, x P }, k = 1, 2,... If {x k k = 1, 2,..., } contains a bounded subsequence, then there will be a finite cluster point, which will be in the set {x P x T Qx + c 0}. Let us consider the case where x k is divergent. Then there will be a subsequence k K such that lim k K x k / x k = d. Since we have Qd = 0. ( ) T ( ) xk xk Q x k x k + ct x k x k 2 ϵ k x k 2

14 IE Without losing generality, write P = {x Ax = b, x 0}. For each k, let us construct a system Qx = Qx k Ax = b x 0. Clearly, it is feasible (e.g. x k is a feasible solution). Now, by Theorem 2 we know that it has a feasible solution y k such that y k χ ( Qx k + b ). By dividing x k on both sides we have y k / x k 0 as k K, which contradicts with the fact that x k is smallest in norm.

15 IE As a consequence, the shortest distance problem min x y 2 s.t. Ax = b, y R n + always has an attainable optimal solution. Therefore if {x Ax = b, x R n +} = then we can strictly separate the affine space {x Ax = b} from the cone R n +; i.e. there is λ R n such that λ T x < c for all Ax = b and λ T x > c for all x R n +. This implies: (i) λ 0; (ii) c 0; (iii) A T λ = 0; (iv) λ T b < 0. The above is the famous Farkas lemma!

16 IE One important implication of this analysis is that the projection of a polyhedron is always closed. Theorem 4 Let L be any affine mapping, and P is a polyhedron. Then L(P ) is always a polyhedron itself.

17 IE Key References: J.S. Pang, Error Bounds in Mathematical Programming, Mathematical Programming, 79, , S. Zhang, Global Error Bounds for Convex Conic Problems, SIAM Journal on Optimization, 10, , Z.Q. Luo and S. Zhang, On Extensions of the Frank-Wolfe Theorems, Computational Optimization and Applications, 13, , 1999.

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

Lecture 10. Primal-Dual Interior Point Method for LP

Lecture 10. Primal-Dual Interior Point Method for LP IE 8534 1 Lecture 10. Primal-Dual Interior Point Method for LP IE 8534 2 Consider a linear program (P ) minimize c T x subject to Ax = b x 0 and its dual (D) maximize b T y subject to A T y + s = c s 0.

More information

Lecture 9 Monotone VIs/CPs Properties of cones and some existence results. October 6, 2008

Lecture 9 Monotone VIs/CPs Properties of cones and some existence results. October 6, 2008 Lecture 9 Monotone VIs/CPs Properties of cones and some existence results October 6, 2008 Outline Properties of cones Existence results for monotone CPs/VIs Polyhedrality of solution sets Game theory:

More information

Lecture 5. The Dual Cone and Dual Problem

Lecture 5. The Dual Cone and Dual Problem IE 8534 1 Lecture 5. The Dual Cone and Dual Problem IE 8534 2 For a convex cone K, its dual cone is defined as K = {y x, y 0, x K}. The inner-product can be replaced by x T y if the coordinates of the

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

1 Review of last lecture and introduction

1 Review of last lecture and introduction Semidefinite Programming Lecture 10 OR 637 Spring 2008 April 16, 2008 (Wednesday) Instructor: Michael Jeremy Todd Scribe: Yogeshwer (Yogi) Sharma 1 Review of last lecture and introduction Let us first

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

On well definedness of the Central Path

On well definedness of the Central Path On well definedness of the Central Path L.M.Graña Drummond B. F. Svaiter IMPA-Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro-RJ CEP 22460-320 Brasil

More information

MAT-INF4110/MAT-INF9110 Mathematical optimization

MAT-INF4110/MAT-INF9110 Mathematical optimization MAT-INF4110/MAT-INF9110 Mathematical optimization Geir Dahl August 20, 2013 Convexity Part IV Chapter 4 Representation of convex sets different representations of convex sets, boundary polyhedra and polytopes:

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Farkas Lemma. Rudi Pendavingh. Optimization in R n, lecture 2. Eindhoven Technical University. Rudi Pendavingh (TUE) Farkas Lemma ORN2 1 / 15

Farkas Lemma. Rudi Pendavingh. Optimization in R n, lecture 2. Eindhoven Technical University. Rudi Pendavingh (TUE) Farkas Lemma ORN2 1 / 15 Farkas Lemma Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture 2 Rudi Pendavingh (TUE) Farkas Lemma ORN2 1 / 15 Today s Lecture Theorem (Farkas Lemma, 1894) Let A be an m n matrix,

More information

The Karush-Kuhn-Tucker (KKT) conditions

The Karush-Kuhn-Tucker (KKT) conditions The Karush-Kuhn-Tucker (KKT) conditions In this section, we will give a set of sufficient (and at most times necessary) conditions for a x to be the solution of a given convex optimization problem. These

More information

Integer Programming, Part 1

Integer Programming, Part 1 Integer Programming, Part 1 Rudi Pendavingh Technische Universiteit Eindhoven May 18, 2016 Rudi Pendavingh (TU/e) Integer Programming, Part 1 May 18, 2016 1 / 37 Linear Inequalities and Polyhedra Farkas

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Appendix B Convex analysis

Appendix B Convex analysis This version: 28/02/2014 Appendix B Convex analysis In this appendix we review a few basic notions of convexity and related notions that will be important for us at various times. B.1 The Hausdorff distance

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 3 Dr. Ted Ralphs IE406 Lecture 3 1 Reading for This Lecture Bertsimas 2.1-2.2 IE406 Lecture 3 2 From Last Time Recall the Two Crude Petroleum example.

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

On Conic QPCCs, Conic QCQPs and Completely Positive Programs

On Conic QPCCs, Conic QCQPs and Completely Positive Programs Noname manuscript No. (will be inserted by the editor) On Conic QPCCs, Conic QCQPs and Completely Positive Programs Lijie Bai John E.Mitchell Jong-Shi Pang July 28, 2015 Received: date / Accepted: date

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

Facial Reduction and Geometry on Conic Programming

Facial Reduction and Geometry on Conic Programming Facial Reduction and Geometry on Conic Programming Masakazu Muramatsu UEC Bruno F. Lourenço, and Takashi Tsuchiya Seikei University GRIPS Based on the papers of LMT: 1. A structural geometrical analysis

More information

Econ Slides from Lecture 1

Econ Slides from Lecture 1 Econ 205 Sobel Econ 205 - Slides from Lecture 1 Joel Sobel August 23, 2010 Warning I can t start without assuming that something is common knowledge. You can find basic definitions of Sets and Set Operations

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Least Sparsity of p-norm based Optimization Problems with p > 1

Least Sparsity of p-norm based Optimization Problems with p > 1 Least Sparsity of p-norm based Optimization Problems with p > Jinglai Shen and Seyedahmad Mousavi Original version: July, 07; Revision: February, 08 Abstract Motivated by l p -optimization arising from

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

A new primal-dual path-following method for convex quadratic programming

A new primal-dual path-following method for convex quadratic programming Volume 5, N., pp. 97 0, 006 Copyright 006 SBMAC ISSN 00-805 www.scielo.br/cam A new primal-dual path-following method for convex quadratic programming MOHAMED ACHACHE Département de Mathématiques, Faculté

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods Renato D. C. Monteiro Jerome W. O Neal Takashi Tsuchiya March 31, 2003 (Revised: December 3, 2003) Abstract Solving

More information

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ.

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ. Convexity in R n Let E be a convex subset of R n. A function f : E (, ] is convex iff f(tx + (1 t)y) (1 t)f(x) + tf(y) x, y E, t [0, 1]. A similar definition holds in any vector space. A topology is needed

More information

Chapter 6 Interior-Point Approach to Linear Programming

Chapter 6 Interior-Point Approach to Linear Programming Chapter 6 Interior-Point Approach to Linear Programming Objectives: Introduce Basic Ideas of Interior-Point Methods. Motivate further research and applications. Slide#1 Linear Programming Problem Minimize

More information

More First-Order Optimization Algorithms

More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Nonlinear Programming 3rd Edition. Theoretical Solutions Manual Chapter 6

Nonlinear Programming 3rd Edition. Theoretical Solutions Manual Chapter 6 Nonlinear Programming 3rd Edition Theoretical Solutions Manual Chapter 6 Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts 1 NOTE This manual contains

More information

Convex Optimization Lecture 6: KKT Conditions, and applications

Convex Optimization Lecture 6: KKT Conditions, and applications Convex Optimization Lecture 6: KKT Conditions, and applications Dr. Michel Baes, IFOR / ETH Zürich Quick recall of last week s lecture Various aspects of convexity: The set of minimizers is convex. Convex

More information

On duality gap in linear conic problems

On duality gap in linear conic problems On duality gap in linear conic problems C. Zălinescu Abstract In their paper Duality of linear conic problems A. Shapiro and A. Nemirovski considered two possible properties (A) and (B) for dual linear

More information

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology for Some for Asteroide Santana, Santanu S. Dey School of Industrial Systems Engineering, Georgia Institute of Technology December 4, 2016 1 / 38 1 1.1 Conic integer programs for Conic integer programs

More information

On the projection onto a finitely generated cone

On the projection onto a finitely generated cone Acta Cybernetica 00 (0000) 1 15. On the projection onto a finitely generated cone Miklós Ujvári Abstract In the paper we study the properties of the projection onto a finitely generated cone. We show for

More information

An interior-point gradient method for large-scale totally nonnegative least squares problems

An interior-point gradient method for large-scale totally nonnegative least squares problems An interior-point gradient method for large-scale totally nonnegative least squares problems Michael Merritt and Yin Zhang Technical Report TR04-08 Department of Computational and Applied Mathematics Rice

More information

On the relation between concavity cuts and the surrogate dual for convex maximization problems

On the relation between concavity cuts and the surrogate dual for convex maximization problems On the relation between concavity cuts and the surrogate dual for convex imization problems Marco Locatelli Dipartimento di Ingegneria Informatica, Università di Parma Via G.P. Usberti, 181/A, 43124 Parma,

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Linear programming: theory, algorithms and applications

Linear programming: theory, algorithms and applications Linear programming: theory, algorithms and applications illes@math.bme.hu Department of Differential Equations Budapest 2014/2015 Fall Vector spaces A nonempty set L equipped with addition and multiplication

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Solutions Chapter 5. The problem of finding the minimum distance from the origin to a line is written as. min 1 2 kxk2. subject to Ax = b.

Solutions Chapter 5. The problem of finding the minimum distance from the origin to a line is written as. min 1 2 kxk2. subject to Ax = b. Solutions Chapter 5 SECTION 5.1 5.1.4 www Throughout this exercise we will use the fact that strong duality holds for convex quadratic problems with linear constraints (cf. Section 3.4). The problem of

More information

Week 3 Linear programming duality

Week 3 Linear programming duality Week 3 Linear programming duality This week we cover the fascinating topic of linear programming duality. We will learn that every minimization program has associated a maximization program that has the

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization

Spring 2017 CO 250 Course Notes TABLE OF CONTENTS. richardwu.ca. CO 250 Course Notes. Introduction to Optimization Spring 2017 CO 250 Course Notes TABLE OF CONTENTS richardwu.ca CO 250 Course Notes Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4, 2018 Table

More information

On duality theory of conic linear problems

On duality theory of conic linear problems On duality theory of conic linear problems Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 3332-25, USA e-mail: ashapiro@isye.gatech.edu

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE LECTURE 10 LECTURE OUTLINE Min Common/Max Crossing Th. III Nonlinear Farkas Lemma/Linear Constraints Linear Programming Duality Convex Programming Duality Optimality Conditions Reading: Sections 4.5, 5.1,5.2,

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity On smoothness properties of optimal value functions at the boundary of their domain under complete convexity Oliver Stein # Nathan Sudermann-Merx June 14, 2013 Abstract This article studies continuity

More information

Strong Duality: Without Simplex and without theorems of alternatives. Somdeb Lahiri SPM, PDPU. November 29, 2015.

Strong Duality: Without Simplex and without theorems of alternatives. Somdeb Lahiri SPM, PDPU.   November 29, 2015. Strong Duality: Without Simplex and without theorems of alternatives By Somdeb Lahiri SPM, PDPU. email: somdeb.lahiri@yahoo.co.in November 29, 2015. Abstract We provide an alternative proof of the strong

More information

Positive semidefinite matrix approximation with a trace constraint

Positive semidefinite matrix approximation with a trace constraint Positive semidefinite matrix approximation with a trace constraint Kouhei Harada August 8, 208 We propose an efficient algorithm to solve positive a semidefinite matrix approximation problem with a trace

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Lecture 7: Semidefinite programming

Lecture 7: Semidefinite programming CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 7: Semidefinite programming This lecture is on semidefinite programming, which is a powerful technique from both an analytic and computational

More information

A Strongly Polynomial Simplex Method for Totally Unimodular LP

A Strongly Polynomial Simplex Method for Totally Unimodular LP A Strongly Polynomial Simplex Method for Totally Unimodular LP Shinji Mizuno July 19, 2014 Abstract Kitahara and Mizuno get new bounds for the number of distinct solutions generated by the simplex method

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

5.5 Quadratic programming

5.5 Quadratic programming 5.5 Quadratic programming Minimize a quadratic function subject to linear constraints: 1 min x t Qx + c t x 2 s.t. a t i x b i i I (P a t i x = b i i E x R n, where Q is an n n matrix, I and E are the

More information

Boundary Behavior of Excess Demand Functions without the Strong Monotonicity Assumption

Boundary Behavior of Excess Demand Functions without the Strong Monotonicity Assumption Boundary Behavior of Excess Demand Functions without the Strong Monotonicity Assumption Chiaki Hara April 5, 2004 Abstract We give a theorem on the existence of an equilibrium price vector for an excess

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

3.3 Easy ILP problems and totally unimodular matrices

3.3 Easy ILP problems and totally unimodular matrices 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

POLARS AND DUAL CONES

POLARS AND DUAL CONES POLARS AND DUAL CONES VERA ROSHCHINA Abstract. The goal of this note is to remind the basic definitions of convex sets and their polars. For more details see the classic references [1, 2] and [3] for polytopes.

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

The Trust Region Subproblem with Non-Intersecting Linear Constraints

The Trust Region Subproblem with Non-Intersecting Linear Constraints The Trust Region Subproblem with Non-Intersecting Linear Constraints Samuel Burer Boshi Yang February 21, 2013 Abstract This paper studies an extended trust region subproblem (etrs in which the trust region

More information

A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems

A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems Gábor Pataki gabor@unc.edu Dept. of Statistics and OR University of North Carolina at Chapel Hill Abstract The Facial Reduction

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016 Linear Programming Larry Blume Cornell University, IHS Vienna and SFI Summer 2016 These notes derive basic results in finite-dimensional linear programming using tools of convex analysis. Most sources

More information

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Instructor: Wotao Yin July 2013 Note scriber: Zheng Sun Those who complete this lecture will know what is a dual certificate for l 1 minimization

More information

Computational Intelligence Lecture 13:Fuzzy Logic

Computational Intelligence Lecture 13:Fuzzy Logic Computational Intelligence Lecture 13:Fuzzy Logic Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi Computational Intelligence Lecture

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms Agenda Interior Point Methods 1 Barrier functions 2 Analytic center 3 Central path 4 Barrier method 5 Primal-dual path following algorithms 6 Nesterov Todd scaling 7 Complexity analysis Interior point

More information

Conic Linear Optimization and its Dual. yyye

Conic Linear Optimization and its Dual.   yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #04 1 Conic Linear Optimization and its Dual Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information