Probabilistic Graphical Models

Size: px
Start display at page:

Download "Probabilistic Graphical Models"

Transcription

1 Shool o Comuer Sene Probbls Grhl Models Mmum lkelhood lernng o undreed GM Er Xng Leure 8 Februry 0 04 Redng: MJ Ch 9 nd Er CMU

2 Undreed Grhl Models Why? Somemes n UNDIRECTED ssoon grh mkes more sense nd/or s more normve gene eressons my be nluened by unobserved or h re osrnsronlly reguled A B C A B The unvlbly o he se o B resuls n onsrn over A nd C C A B C Er CMU

3 ML Sruurl Lernng v Neghborhood Seleon or omleely observed D MRF n n M M n Er CMU

4 Gussn Grhl Models Mulvre Gussn densy: WOLG: le We n vew hs s onnuous Mrkov Rndom Feld wh oenls dened on every node nd edge: e / / T n j j j n q q Q Q / / - e 0 4 Er CMU

5 Prwse MRF e.g. Isng Model Assumng he nodes re dsree nd edges re weghed hen or smle d we hve Er CMU

6 The ovrne nd he reson mres Covrne mr Grhl model nerreon? Preson mr Grhl model nerreon? Er CMU

7 Srse reson vs. srse ovrne n GGM X 5 0 X X 5 X nbrs or nbrs5 X Er CMU

8 Anoher emle How o esme hs MRF? Wh >> n MLE does no es n generl! Wh bou only lernng srse grhl model? Ths s ossble when s=on Very oen s he sruure o he GM h s more neresng Er CMU

9 Rell lsso Er CMU

10 Grh Regresson Neghborhood seleon Lsso: Er CMU

11 Grh Regresson Er CMU

12 Grh Regresson I n be shown h: gven d smles nd under severl ehnl ondons e.g. "rreresenble" he reovered sruured s "srssen" even when >> n Er CMU

13 Lernng Isng Model.e. rwse MRF Assumng he nodes re dsree nd edges re weghed hen or smle d we hve I n be shown ollowng he sme log h we n use L_ regulrzed logs regresson o obn srse esme o he neghborhood o eh vrble n he dsree se. Er CMU

14 Consseny Theorem: or he grhl regresson lgorhm under ern verble ondons omed here or smly: Noe he rom hs heorem one should see h he regulrzer s no ully used o nrodue n rl srsy bs bu devse o ensure onsseny under ne d nd hgh dmenson ondon. Er CMU

15 X X X X 4 ML Prmeer Es. or omleely observed MRFs o gven sruure The d: { z z z... z N N } Er CMU

16 Re: MLE or BNs Assumng he rmeers or eh CPD re globlly ndeenden nd ll nodes re ully observed hen he log-lkelhood unon deomoses no sum o lol erms one er node: l ; D log D log n log n n n ML jk n j ' k jk n j' k Er CMU

17 MLE or undreed grhl models For dreed grhl models he log-lkelhood deomoses no sum o erms one er mly node lus rens. For undreed grhl models he log-lkelhood does no deomose beuse he normlzon onsn s unon o ll he rmeers P n C In generl we wll need o do nerene.e. mrgnlzon o lern rmeers or undreed models even n he ully observed se. n C Er CMU

18 Log Lkelhood or UGMs wh bulr lque oenls Suen sss: or UGM VE he number o mes h onguron.e. X V = s observed n dse D={ N } n be reresened s ollows: In erms o he ouns he log lkelhood s gven by: There s nsy log n he lkelhood V m m m n n \ lque oun nd oun ol de de N m m D D n n n n n n log log log log log log l 8 Er CMU

19 Log Lkelhood or UGMs wh bulr lque oenls Suen sss: or UGM VE he number o mes h onguron.e. X V = s observed n dse D={ N } n be reresened s ollows: m de n ol oun m In erms o he ouns he log lkelhood s gven by: nd n V \ de m lque oun log D m log N log There s nsy log n he lkelhood Er CMU

20 Dervve o log Lkelhood Log-lkelhood: Frs erm: Seond erm: N m log log l m l log d d d d d d d d d Se he vlue o vrbles o 0 Er CMU

21 Condons on Clque Mrgnls Dervve o log-lkelhood l m N Hene or he mmum lkelhood rmeers we know h: * MLE m N In oher words he mmum lkelhood seng o he rmeers or eh lque he model mrgnls mus be equl o he observed mrgnls emrl ouns. Ths doesn ell us how o ge he ML rmeers jus gves us ondon h mus be ssed when we hve hem. de Er CMU

22 MLE or undreed grhl models Is he grh deomosble rnguled? Are ll he lque oenls dened on mml lques no sub-lques? e.g. 4 no X X X X X X 4 X X 4 Are he lque oenls ull bles or Gussns or rmeerzed more omly e.g. e? k k Er CMU

23 Proeres on MLE o lque oenls For deomosble models where oenls re dened on mml lques he MLE o lque oenls eque o he emrl mrgnls or ondonls o he orresondng lque. Thus he MLE n be solved by nseon!! I he grh s non-deomosble nd or he oenls re dened on non-mml lques e.g. 4 we ould no eque MLE o lques oenls o emrl mrgnls or ondonls. Poenl eressed s bulr orm: IPF Feure-bsed oenls: GIS Er CMU

24 MLE or deomosble undreed models Deomosble models: G s deomosble G s rnguled G hs junon ree Poenl bsed reresenon: Consder hn X X X. The lques re X X nd X X ; he seror s X The emrl mrgnls mus equl he model mrgnls. Le us guess h We n very h suh guess sses he ondons: nd smlrly MLE MLE MLE MLE s s s 4 Er CMU

25 MLE or deomosble undreed models on. Le us guess h To omue he lque oenls jus eque hem o he emrl mrgnls or ondonls.e. he seror mus be dvded no one o s neghbors. Then =. One more emle: X X 4 X X 4 4 MLE MLE MLE MLE MLE MLE 5 Er CMU

26 Non-deomosble nd/or wh non-mml lque oenls I he grh s non-deomosble nd or he oenls re dened on non-mml lques e.g. 4 we ould no eque emrl mrgnls or ondonls o MLE o lques oenls. X X 4 X X X X 4 X X } { j j j 4 / / s.. MLE j j j j j j j Homework! 6 Er CMU

27 MLE or undreed grhl models Is he grh deomosble rnguled? Are ll he lque oenls dened on mml lques no sub-lques? e.g. 4 no X X X X X X 4 X X 4 Are he lque oenls ull bles or Gussns or rmeerzed more omly e.g. e? k k Deomosble? M lque? Tbulr? Mehod Dre - - IPF Grden GIS Er CMU

28 Ierve Prooronl Fng IPF From he dervve o he lkelhood: we n derve noher relonsh: n whh ers mlly n he model mrgnl. Ths s hereore ed-on equon or. Solvng n losed-orm s hrd beuse ers on boh sdes o hs ml nonlner equon. The de o IPF s o hold ed on he rgh hnd sde boh n he numeror nd denomnor nd solve or on he le hnd sde. We yle hrough ll lques hen ere: N m l Need o do nerene here 8 Er CMU

29 Proeres o IPF Udes IPF eres se o ed-on equons: However we n rove s lso oordne sen lgorhm oordnes = rmeers o lque oenls. Hene eh se wll nrese he log-lkelhood nd wll onverge o globl mmum. I-rojeon: ndng dsrbuon wh he orre mrgnls h hs he mml enroy Er CMU

30 KL Dvergene Vew IPF n be seen s oordne sen n he lkelhood usng he wy o eressng lkelhoods usng KL dvergenes. We n show h mmzng he log lkelhood s equvlen o mnmzng he KL dvergene ross enroy rom he observed dsrbuon o he model dsrbuon: Usng roery o KL dvergene bsed on he ondonl hn rule: = b : log mn m KL l b b b b b b b b b b b b b b q q q q q q q q q q q q q q log log log KL KL KL 0 Er CMU

31 IPF mnmzes KL dvergene Pung hngs ogeher we hve KL KL KL I n be shown h hngng he lque oenl hs no ee on he ondonl dsrbuon so he seond erm n uneed. To mnmze he rs erm we se he mrgnl o he observed mrgnl jus s n IPF. Noe h hs s only good when he model s deomosble! We n nerre IPF udes s renng he old ondonl robbles - whle relng he old mrgnl robbly wh he observed mrgnl. Er CMU

32 MLE or undreed grhl models Is he grh deomosble rnguled? Are ll he lque oenls dened on mml lques no sub-lques? e.g. 4 no X X X X X X 4 X X 4 Are he lque oenls ull bles or Gussns or rmeerzed more omly e.g. e? k k Deomosble? M lque? Tbulr? Mehod Dre - - IPF Grden GIS Er CMU

33 Feure-bsed Clque Poenls So r we hve dsussed he mos generl orm o n undreed grhl model n whh lques re rmeerzed by generl bulr oenl unons. Bu or lrge lques hese generl oenls re eonenlly osly or nerene nd hve eonenl numbers o rmeers h we mus lern rom lmed d. One soluon: hnge he grhl model o mke lques smller. Bu hs hnges he deendenes nd my ore us o mke more ndeendene ssumons hn we would lke. Anoher soluon: kee he sme grhl model bu use less generl rmeerzon o he lque oenls. Ths s he de behnd eure-bsed models. Er CMU

34 Feures Consder lque o rndom vrbles n UGM e.g. hree onseuve hrers n srng o Englsh e. How would we buld model o? I we use sngle lque unon over he ull jon lque oenl would be huge: 6 rmeers. However we oen know h some rulr jon sengs o he vrbles n lque re que lkely or que unlkely. e.g. ng e on?ed qu? jk zzz... A eure s unon whh s vuous over ll jon sengs ee ew rulr ones on whh s hgh or low. For emle we mgh hve ng whh s he srng s ng nd 0 oherwse nd smlr eures or?ed e. We n lso dene eures when he nus re onnuous. Then he de o ell on whh s ve dsers bu we mgh sll hve om rmeerzon o he eure. Er CMU

35 Feures s Mrooenls By eonenng hem eh eure unon n be mde no mrooenl. We n mully hese mrooenls ogeher o ge lque oenl. Emle: lque oenl ould be eressed s: ngng?ed?ed e e e K k k k Ths s sll oenl over 6 ossble sengs bu only uses K rmeers here re K eures. By hvng one ndor unon er ombnon o we reover he sndrd bulr oenl. Er CMU

36 Combnng Feures Eh eure hs wegh k whh reresens he numerl srengh o he eure nd wheher nreses or dereses he robbly o he lque. The mrgnl over he lque s generlzed eonenl mly dsrbuon ully GLIM: ng e qu? ng qu? In generl he eures my be overlng unonsrned ndors or ny unon o ny subse o he lque vrbles: de ek k I How n we ombne eure no robbly model??ed zzz?ed zzz Er CMU

37 Feure Bsed Model We n mully hese lque oenls s usul: However n generl we n orge bou ssong eures wh lques nd jus use smled orm: Ths s jus our rend he eonenl mly model wh he eures s suen sss! Lernng: rell h n IPF we hve No obvous how o use hs rule o ude he weghs nd eures ndvdully!!! I k k e e 7 Er CMU

38 MLE o Feure Bsed UGMs Sled lkelhood unon Insed o omzng hs objeve drely we k s lower bound The logrhm hs lner uer bound Ths bound holds or ll n rulr or Thus we hve n n N N D D log log / ; ; l l log log log D log ; l 8 Er CMU

39 Generlzed Ierve Slng GIS Lower bound o sled loglkelhood Dene Rel gn Assume Convey o eonenl: We hve: D log ; l de log e log e e log e ; D l e e log e ; de D l 0 9 Er CMU

40 GIS Lower bound o sled loglkelhood Tke dervve: Se o zero where s he unnormlzed verson o Ude log e ; de D l e e e Rell IPF: 40 Er CMU

41 Summry IPF s generl lgorhm or ndng MLE o UGMs. ed-on equon or over sngle lques oordne sen I-rojeon n he lque mrgnl se Requres he oenl o be ully rmeerzed The lque desrbed by he oenls do no hve o be m-lque For ully deomosble model redues o sngle se eron GIS Ierve slng on generl UGM wh eure-bsed oenls IPF s sel se o GIS whh he lque oenl s bul on eures dened s n ndor unon o lque ongurons. IPF: GIS: log 4 Er CMU

42 Where does he eonenl orm ome rom? Revew: Mmum Lkelhood or eonenl mly.e. A ML esme he eeons o he suen sss under he model mus mh emrl eure verge. N m m m D log log log ; l N m N m D log ; l N m 4 Er CMU

43 Mmum Enroy We n roh he modelng roblem rom n enrely deren on o vew. Begn wh some ed eure eeons: Assumng eeons re onssen here my es mny dsrbuons whh ssy hem. Whh one should we sele? The mos unern or leble one.e. he one wh mmum enroy. Ths yelds new omzon roblem: m s.. H log Ths s vronl denon o dsrbuon! Er CMU

44 Soluon o he MEn Problem To solve he MEn roblem we use Lgrnge mullers: So eure onsrns + MEn eonenl mly. Problem s srly onve w.r.. so soluon s unque. L log e e L e sne e e log * * 44 Er CMU

45 A more generl MEn roblem h h h s.. log H log KL mn de h e 45 Er CMU

46 Consrns rom D Where do he onsrns ome rom? Jus s beore mesure he emrl ouns on he rnng d: m Ths lso ensures onsseny uomlly. Known s he mehod o momens... lw o lrge numbers We hve seen se o onve duly: In one se we ssume eonenl mly nd show h ML mles model eeons mus mh emrl eeons. In he oher se we ssume model eeons mus mh emrl eure ouns nd show h MEn mles eonenl mly dsrbuon. No duly g yeld he sme vlue o he objeve N Er CMU

47 Geomer nerreon All eonenl mly dsrbuon: E : h e All dsrbuons ssyng momen onsrns M : Pyhgoren heorem KL q KLq KL M M MEn : mn s.. KL KL q q h M q h KLq KL h M M MLk : mn s.. KL Er CMU KL q E KL KL M M 47

48 Summry Eonenl mly dsrbuon n be vewed s he soluon o n vronl eresson --- he mmum enroy! The m-enroy rnle o rmeerzon oers dul erseve o he MLE. Er CMU

Advanced Machine Learning

Advanced Machine Learning Avne Mhne Lernng Lernng Grh Moes Mu kehoo ernng o unree GM Er Xng Leure 5 Augus 009 Reng: Er Xng Er Xng @ CMU 006009 Re: or Bs Assung he reers or eh CPD re goy neenen n noes re uy oserve hen he kehoo unon

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 141

TOPICAL PROBLEMS OF FLUID MECHANICS 141 TOPIL PROBLEMS OF FLUID MEHNIS 4 DOI: h://dx.do.org/.43/tpfm.6.9 BIPLNE ERODYNMIS REISITED E. Morsh ollege of Engneerng nd Desgn, Shur Insue of Tehnology, 37, Fuksku, Mnum-ku, Sm-sh, 337 857, Sm, Jn sr

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico)

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico) BLOWUPS IN GAUGE AND CONSTRAINT MODES Bernd Remnn, AEI n ollboron M. Aluberre, ICN (Mexo) Jen, Jnury 30, 006 1 Tops Pologes ( soks nd bloups ) n sysems of PDEs Te soure rer for vodng bloups Evoluon Sysem:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Pros Grh Moes 0708 Lerg Coeey Oserve Uree Grh Moes Er Xg Leure O 9 005 Reg: MJCh. 990 Re: or Bs I we ssue he reers or eh CPD re goy eee oes re uy oserve he he kehoo uo eooses o su o o ers oe er oe: D D

More information

Direct Current Circuits

Direct Current Circuits Eler urren (hrges n Moon) Eler urren () The ne moun of hrge h psses hrough onduor per un me ny pon. urren s defned s: Dre urren rus = dq d Eler urren s mesured n oulom s per seond or mperes. ( = /s) n

More information

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as:

Stability Analysis for VAR systems. )', a VAR model of order p (VAR(p)) can be written as: Sbl Anlss for VAR ssems For se of n me seres vrbles (,,, n ', VAR model of order p (VAR(p n be wren s: ( A + A + + Ap p + u where he A s re (nxn oeffen mres nd u ( u, u,, un ' s n unobservble d zero men

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

Methods of Improving Constitutive Equations

Methods of Improving Constitutive Equations Mehods o mprovng Consuve Equaons Maxell Model e an mprove h ne me dervaves or ne sran measures. ³ ª º «e, d» ¼ e an also hange he bas equaon lnear modaons non-lnear modaons her Consuve Approahes Smple

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn Hdden Mrkov Model S S servon : 2... Ses n me : 2... All ses : s s2... s 2 3 2 3 2 Hdden Mrkov Model Con d Dscree Mrkov Model 2 z k s s s s s s Degree Mrkov Model Hdden Mrkov Model Con d : rnson roly from

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Estimation of Markov Regime-Switching Regression Models with Endogenous Switching

Estimation of Markov Regime-Switching Regression Models with Endogenous Switching Esmon of Mrkov Regme-whng Regresson Models wh Endogenous whng Chng-Jn Km * Kore Unvers nd Unvers of Wshngon Jerem Pger Unvers of Oregon Rhrd r Unvers of Wshngon Frs Drf: Mrh 003 Ths Drf: eember 007 Absr

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Jordan Journal of Physics

Jordan Journal of Physics Volume, Number, 00. pp. 47-54 RTICLE Jordn Journl of Physcs Frconl Cnoncl Qunzon of he Free Elecromgnec Lgrngn ensy E. K. Jrd, R. S. w b nd J. M. Khlfeh eprmen of Physcs, Unversy of Jordn, 94 mmn, Jordn.

More information

Essential Prime Implicants

Essential Prime Implicants CS/EE 4/4: Comuer Aded Desgn of Dgl Crcus Chrs J. yers Lecure 8: rme Selecon nd UC Redng: Cher 4.-9 Essenl rme Imlcns Cube s n essenl rme mlcn of f conns mnerm no conned by ny oher rme mlcn of. f f All

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION MACROECONOMIC THEORY T. J. KEHOE ECON 85 FALL 7 ANSWERS TO MIDTERM EXAMINATION. (a) Wh an Arrow-Debreu markes sruure fuures markes for goods are open n perod. Consumers rade fuures onras among hemselves.

More information

Generation of Crowned Parabolic Novikov gears

Generation of Crowned Parabolic Novikov gears Engneerng Leers, 5:, EL_5 4 Generon o Crowned Prol Novkov gers Somer M. Ny, Memer, IAENG, Mohmmd Q. Adullh, nd Mohmmed N.Mohmmed Asr - The Wldher-Novkov ger s one o he rulr r gers, whh hs he lrge on re

More information

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand he Seond Inernonl Symposum on Sohs Models n Relbly Engneerng Lfe Sene nd Operons Mngemen Obnng he Opml Order unes hrough Asympo Dsrbuons of he Sokou Duron nd Demnd Ann V Kev Nonl Reserh omsk Se Unversy

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Lecture Notes 4: Consumption 1

Lecture Notes 4: Consumption 1 Leure Noes 4: Consumpon Zhwe Xu (xuzhwe@sju.edu.n) hs noe dsusses households onsumpon hoe. In he nex leure, we wll dsuss rm s nvesmen deson. I s safe o say ha any propagaon mehansm of maroeonom model s

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

PHYS 705: Classical Mechanics. Canonical Transformation

PHYS 705: Classical Mechanics. Canonical Transformation PHYS 705: Classcal Mechancs Canoncal Transformaon Canoncal Varables and Hamlonan Formalsm As we have seen, n he Hamlonan Formulaon of Mechancs,, are ndeenden varables n hase sace on eual foong The Hamlon

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES wwwrresscom/volmes/vol7isse/ijrras_7 df UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOIAL OPERATOR ON DOAINS IN COPLEX PROJECTIVE SPACES D Feng & L Ynl * Scool of emcs nd Pyscs Scence

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions.

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions. Problem Se 3 EC450A Fall 06 Problem There are wo ypes of ndvduals, =, wh dfferen ables w. Le be ype s onsumpon, l be hs hours worked and nome y = w l. Uly s nreasng n onsumpon and dereasng n hours worked.

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

1. Consider an economy of identical individuals with preferences given by the utility function

1. Consider an economy of identical individuals with preferences given by the utility function CO 755 Problem Se e Cbrer. Cosder ecoomy o decl dduls wh reereces e by he uly uco U l l Pre- rces o ll hree oods re ormled o oe. Idduls suly ood lbor < d cosume oods d. The oerme c mose d lorem es o oods

More information

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files) . Iroduco Probblsc oe-moh forecs gudce s mde b 50 esemble members mproved b Model Oupu scs (MO). scl equo s mde b usg hdcs d d observo d. We selec some prmeers for modfg forecs o use mulple regresso formul.

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivtives 0. Introuction So fr much of the term hs been sent fining erivtives or rtes of chnge. But in some circumstnces we lrey know the rte of chnge n we wish to etermine the originl function. For

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Chapter 2 Linear Mo on

Chapter 2 Linear Mo on Chper Lner M n .1 Aerge Velcy The erge elcy prcle s dened s The erge elcy depends nly n he nl nd he nl psns he prcle. Ths mens h prcle srs rm pn nd reurn bck he sme pn, s dsplcemen, nd s s erge elcy s

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer d Model Cvl and Surveyng Soware Dranage Analyss Module Deenon/Reenon Basns Owen Thornon BE (Mech), d Model Programmer owen.hornon@d.com 4 January 007 Revsed: 04 Aprl 007 9 February 008 (8Cp) Ths documen

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Background and Motivation: Importance of Pressure Measurements

Background and Motivation: Importance of Pressure Measurements Imornce of Pressre Mesremens: Pressre s rmry concern for mny engneerng lcons e.g. lf nd form drg. Cvon : Pressre s of fndmenl mornce n ndersndng nd modelng cvon. Trblence: Velocy-Pressre-Grden ensor whch

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Exponentials - Grade 10 [CAPS] *

Exponentials - Grade 10 [CAPS] * OpenStx-CNX module: m859 Exponentils - Grde 0 [CAPS] * Free High School Science Texts Project Bsed on Exponentils by Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

For the percentage of full time students at RCC the symbols would be:

For the percentage of full time students at RCC the symbols would be: Mth 17/171 Chpter 7- ypothesis Testing with One Smple This chpter is s simple s the previous one, except it is more interesting In this chpter we will test clims concerning the sme prmeters tht we worked

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

APPLICATIONS OF THE MELLIN TYPE INTEGRAL TRANSFORM IN THE RANGE (1/a, )

APPLICATIONS OF THE MELLIN TYPE INTEGRAL TRANSFORM IN THE RANGE (1/a, ) In. J. o heml Sene nd Applon Vol. No. Jnury-June 05 ISSN: 30-9888 APPLICATIONS OF THE ELLIN TYPE INTEGRAL TRANSFOR IN THE RANGE / S.. Khrnr R.. Pe J. N. Slunke Deprmen o hem hrhr Ademy o Enneern Alnd-405Pune

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Computational results on new staff scheduling benchmark instances

Computational results on new staff scheduling benchmark instances TECHNICAL REPORT Compuaonal resuls on new saff shedulng enhmark nsanes Tm Curos Rong Qu ASAP Researh Group Shool of Compuer Sene Unersy of Nongham NG8 1BB Nongham UK Frs pulshed onlne: 19-Sep-2014 las

More information