A Mixed-Entropic Uncertainty Relation

Size: px
Start display at page:

Download "A Mixed-Entropic Uncertainty Relation"

Transcription

1 A Mied-Entropic Uncertainty Relation Kamal Bhattacharyya* and Karabi Halder Department of Chemistry, University of Calcutta, Kolkata , India Abstract We highlight the advantages of using simultaneously the hannon and isher information measures in providing a useful form of the uncertainty relation for the positionmomentum case. It does not require any ourier transformation. The sensitivity is also noteworthy. PAC Numbers: Ge, Cf Keywords: hannon entropy, isher information, Uncertainty principle *Corresponding author (pchemkb@yahoo.com) 0

2 . Introduction Heisenberg s uncertainty relation (UR) involving standard deviations of position and reduced momentum k ( k = p/ ) is epressed as [] σ σ. () k The relation has later been etended to two arbitrary non-commuting observables []. A recent survey [3] has paid considerable attention to several points of this UR. However, it was also realized that σ is not always [4] a neat and physical measure of uncertainty associated with the mean value of. uch situations also include probability distributions (PD) like a Lorentzian for which σ = and distributions with multiple peaks. To combat the latter, an equivalent width concept [5] was put forward long back, but it did not gain much popularity. Instead, another form of the UR by involving hannon entropy has received sufficient curiosity. This UR is succinctly represented as [6 9] ( ) + ( k ) + ln( π ), () where () refers to the hannon entropy in position space and is defined by ( ) = ln( P( )), (3) with P() as the normalized PD. A similar definition for (k) follows with the corresponding PD Pk ( ) in k-space. If P ( ) =Ψ ( ), then Pk ( ) =Φ ( k) such that functions Ψ() and Φ(k) are ourier transforms (T) of each other: Ψ ( ) = (/ π ) Φ( k)ep[ ik] dk; Φ ( k) = (/ π ) Ψ( )ep[ ik] d. The entropic UR (EUR), relation (), has also been etended to general non-commuting observables [0]. The hannon entropy has received considerable popularity in a wide variety of contets (see, e.g., [ 6] and references quoted therein) starting from statistical mechanics [, ] to polymer chemistry [3], thermodynamics [4], quantum mechanics [5] and quantum chemistry [6]. o, EUR in the form () has received wide acceptance [4, 7]. As the net step, therefore, it has become natural to look for similar relations with other information measures. Thus, Rényi entropy has received some attention [8 0]; the relevance of Tsallis entropy in the contet of EUR has been eplored [ 3]; (4)

3 finally, role of the isher information measure has also been noted [4, 5]. till, one observes that it is EUR () that is the most popular one. The main difficulty with (), however, is the T part, unlike (). More often than not, the transform is obtained only after cumbersome eercises. o, we like to modify () in such a way that any T is avoided. We achieve this by recalling I (), the isher information in position space, a function of which replaces the (k) term in (). This makes a concomitant change at the right side of () as well. But, we shall see that, while a Gaussian yields the equality here too, our form is sometimes more sensitive than ().. The relation The isher information measure is defined by ( ) I ( ) = dln( P( )/ d. (5) or a real quantum-mechanical wave function, it is easy to check [5] that I ( ) 4 k = σ. (6) Coupled with (), (6) yields the well-known Cramer-Rao inequality [4]. In this contet, it is essential to point out that Hall [4] discussed at some length on the genesis of following two inequalities: πeσ ep[ ( )]; (7a) ep[ ( )] πe/ I ( ). (7b) Of these, the first one [(7a)] has received considerable concern because it shows directly that () offers a tighter inequality than (). Indeed, this feature alone provides a strong motivation in switching over to () from (). Need less to mention, the eact equality in either case follows for a Gaussian distribution. We shall, on the other hand, concentrate on the second inequality 7(b) on which only scanty attention was paid. A slight rearrangement leads us to ( ) + ln( I ( )) ln( πe). (8) If we compare (8) with (), it becomes apparent that the second term at the left of (8) accounts, in effect, for (k). This identification has a nice physical appeal [5]. As the isher information in position space increases, the same in k-space decreases and hence the entropy increases. Effectively, thus, (8) becomes the new EUR. Here, the T part is avoided naturally. One can put (8) more succinctly as

4 where ( ) + ( k) ln( π e) (9) ( k) ( k) = ln( I ( )). (0) Note that we have used here ( k) to denote a derived isher entropy. One might, for eample, define a true isher entropy in k-space as ( k) = ln( I ( k)), () but that will again invite the T, and hence is of little use here. 3. ome advantages Let us choose a few test cases to see how quickly one can compute the desired quantities: Case (i): or P L n L ( ) = (/ )sin ( π / ) with in (0, L), we find ( ) + ( k) ln() + ln( π ) + ln( n).53 + ln( n). () This PD refers to the quantum-mechanical particle in a -d bo model. Here, we notice that the entropy sum increases linearly with the logarithm of the quantum number. At large n, this is virtually equal to the number of zeroes of the PD. Indeed, we may appreciate that, while () is eact, such a dependence of the left side on the logarithm of the number of zeroes is a general semiclassical result for bound stationary states of any - dimensional potential. Actually, on employing the Wilson-ommerfeld quantization rule, one finds [5] that where and it satisfies (see also ec. IV of ref. [5]) ( ) + ( k) = ln( π ) + ln( n), (3) ( ) ( ) = ln P( ) (4) ( ) ( ). (5) We thus note two more aspects of the problem. irst, the appearance of ( k) in the present contet is a natural one. econdly, (3) and (5) yield ( ) + ( k) ln( π ) (6) 3

5 for the lowest (n = ) quantum state. While semiclassical results are usually valid in the n limit, (6) is not too far from the eact inequality (8). In view of the current interest in I for chrödinger energy eigenfunctions [6], such a result is worth mentioning. Case (ii): With P ( ) ( α / π)( α ) = + and in (-, ), it turns out that ( ) + ( k) ln() + ln( π ).8. (7) 3 We talked about this Lorentzian PD earlier where the UR () fails to perform. Here, however, we notice how quickly one obtains a neat result. Case (iii): We net choose here that P 3/ ( ) = 4 πα ( / π) ep[ α ] with in (0, ). One finds ( ) + ( k) ln(6 π) + γ.55, (8) where γ is the Euler constant. This PD corresponds to the classical Mawell speed distribution and, therefore, (8) shows the applicability of EUR to such a classical case too. Indeed, to incorporate such classical PD, we have deliberately avoided any reference to at the outset and used the variable k instead of p. Case (iv): We finally choose one to the result P 3 ( ) ( α / π)( α ) = + with in (-, ). This PD leads ( ) + ( k) ln() + ln( π ).57. (9) 7 This particular eample has a special appeal. Going over to Pk ( ), we obtain for this case ( ) + ( k) = 3ln() + ln( π ) ln( π ). (0) This result may be contrasted with (9). One notes that this non-gaussian PD reveals a deviation of about 0.7% in the EUR (8) from the result for a Gaussian while (0) shows that the value departs from the equality only by 3.7% when one opts for EUR (). uch an outcome brings to light that, in situations, form (8) may be more sensitive than () as well. Actually, this deviation should have a direct link with the overlap of a chosen function with a Gaussian. urther work along this direction may be useful. 4. Conclusion In summary, the use of mied entropies in constructing EUR has not been tried so far. We have found here a form of EUR [see (8)] by invoking simultaneously the hannon and isher information measures. It is simple and applicable to both classical 4

6 and quantum PD. It does not require any T. ometimes, it is more sensitive than the parent form (). Its semiclassical relevance in the contet of chrödinger eigenvalue problems is also notable. urther eploration with this form vis-à-vis other forms of EUR may be worthwhile. The derived isher entropy in k-space may also find other interesting applications. References. W. Heisenberg, Z. Phys. 43, 7 (97).. H. P. Robertson, Phys. Rev. 34, 63 (99). 3. P. Busch, T. Heinonen and P. Lahti, Phys. Rep. 45, 55 (007). 4. I. Bialynicki-Birula and L. Rudnicki, in tatistical Compleity, ed. K. D. en, pringer, Dordrecht (0), Ch.. 5. M. Bauer and P. A. Mello, Proc. Natl. Acad. ci. UA 73, 83 (976). 6. I. I. Hirschman, Am. J. Math. 79, 5 (957). 7. I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 9 (975). 8. D. Deutsch, Phys. Rev. Lett. 50, 63 (983). 9. M. H. Partovi, Phys. Rev. Lett. 50, 883 (983). 0. V. Majern ık and L. Richterek, Eur. J. Phys. 8, 79 (997).. R. D. Levine and M. Tribus, eds. The Maimum Entropy ormalism, MIT Press, Cambridge, MA (979).. B. Buck and V. A. Macaulay, eds. Maimum Entropy in Action, OUP, Oford (99). 3. G. La Penna, J. Chem. Phys. 9, 86 (003). 4. A. Antoniazzi, D. anelli, J. Barre, P-H. Chavanis, T. Dauois and. Ruffo, Phys. Rev. E 75, 0 (007). 5. C. Das and K. Bhattacharyya, Phys. Rev. A 79, 007 (009). 6.. Noorizadeh and E. hakerzadeh, Phys. Chem. Chem. Phys., 474 (00). 7.. Wehner and A. Winter, New J. Phys., (00). 8. I. Bialynicki-Birula and L. Rudnicki, Phys. Rev. A 74, 050 (006). 9.. Zozor, M. Portesi and C. Vignat, Physica A 387, 4800 (008). 0. A. E. Rastegin, J. Phys. A: Math. Theor. 43, 5530 (00).. A. K. Rajagopal, Phys. Lett. A 05, 3 (995). 5

7 . G. Wilk and Z. Włodarczyk, Phys. Rev. A 79, 0608 (009) 3. I. Bialynicki-Birula and L. Rudnicki, Phys. Rev. A 8, 060 (00). 4. M. J. W. Hall, Phys. Rev. A 6, 007 (000). 5. P. Gibilisco and T. Isola, J. Math. Anal. Appl. 375, 70 (0). 6.. P. lego, A. Plastino, and A. R. Plastino, J. Math. Phys. 5, 0803 (0). 6

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planc-Institut für Mathemati in den Naturwissenschaften Leipzig Uncertainty Relations Based on Sew Information with Quantum Memory by Zhi-Hao Ma, Zhi-Hua Chen, and Shao-Ming Fei Preprint no.: 4 207

More information

On two classes of perturbations: Role of signs of second-order Rayleigh- Schrödinger energy corrections

On two classes of perturbations: Role of signs of second-order Rayleigh- Schrödinger energy corrections On two classes of perturbations: Role of signs of second-order Rayleigh- Schrödinger energy corrections Kamal Bhattacharyya* Department of Chemistry, University of Calcutta, Kolkata 700009, India Abstract

More information

A link of information entropy and kinetic energy for quantum many-body systems.

A link of information entropy and kinetic energy for quantum many-body systems. arxiv:nucl-th/0101040v1 19 Jan 2001 A link of information entropy and kinetic energy for quantum many-body systems. S.E. Massen and C.P. Panos Department of Theoretical Physics Aristotle University of

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states J. At. Mol. Sci. doi: 0.4208/jams.02090.0360a Vol., No. 3, pp. 262-267 August 200 Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states Jia-Qiang Zhao

More information

Quantum Density Matrix and Entropic Uncertainty*

Quantum Density Matrix and Entropic Uncertainty* SLAC-PUB-3805 July 1985 N Quantum Density Matrix and Entropic Uncertainty* A Talk given at the Fifth Workshop on Maximum Entropy and Bayesian Methods in Applied Statistics, Laramie, Wyoming, August, 1985

More information

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields Commun. Theor. Phys. (Beijing, China) 4 (004) pp. 103 109 c International Academic Publishers Vol. 4, No. 1, July 15, 004 Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent

More information

arxiv: v1 [quant-ph] 10 Aug 2016

arxiv: v1 [quant-ph] 10 Aug 2016 Multi-observable Uncertainty Relations in Product Form of Variances arxiv:608.03089v [quant-ph] 0 Aug 206 Hui-Hui Qin & Shao-Ming Fei 2,3 & Xianqing Li-Jost 3 Department of Mathematics, School of Science,

More information

1D Wave Equation General Solution / Gaussian Function

1D Wave Equation General Solution / Gaussian Function D Wave Euation General Solution / Gaussian Function Phys 375 Overview and Motivation: Last time we derived the partial differential euation known as the (one dimensional wave euation Today we look at the

More information

Uncertainty relations expressed by Shannon-like entropies

Uncertainty relations expressed by Shannon-like entropies CEJP 3 (2003) 393{420 Uncertainty relations expressed by Shannon-like entropies V. Majern k 12, Eva Majern kov a 13, S. Shpyrko 3 1 Department of Theoretical Physics, Palack y University, T r. 17. listopadu

More information

Ponownie o zasadach nieoznaczoności:

Ponownie o zasadach nieoznaczoności: .. Ponownie o zasadach nieoznaczoności: Specjalne seminarium okolicznościowe CFT, 19 czerwca 2013 KŻ (CFT/UJ) Entropic uncertainty relations June 19, 2013 1 / 20 Majorization Entropic Uncertainty Relations

More information

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Phys. Rev. Lett. 107,

More information

Numerical evaluation of Bessel function integrals for functions with exponential dependence

Numerical evaluation of Bessel function integrals for functions with exponential dependence EDUCATION Revista Meicana de Física E 59 (23) 5 2 JULY DECEMBER 23 Numerical evaluation of Bessel function integrals for functions with eponential dependence J. L. Luna a, H. H. Corzo a,b, and R. P. Sagar

More information

Steering and Entropic Uncertainty Relations

Steering and Entropic Uncertainty Relations Steering and Entropic Uncertainty Relations Ana C. S. Costa, Roope Uola, Otfried Gühne Department of Physics, University of Siegen - Germany September 5, 2017 na C. S. Costa, Roope Uola, Otfried Gühne

More information

arxiv: v2 [quant-ph] 17 Nov 2016

arxiv: v2 [quant-ph] 17 Nov 2016 Improved Uncertainty Relation in the Presence of Quantum Memory Yunlong Xiao, 1, Naihuan Jing, 3,4 Shao-Ming Fei, 5, and Xianqing Li-Jost 1 School of Mathematics, South China University of Technology,

More information

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I QUANTUM UNCERTAINT Y F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U M @ D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I V E R S I T Y ( E R I C A ) 2

More information

Quantum Dynamics. March 10, 2017

Quantum Dynamics. March 10, 2017 Quantum Dynamics March 0, 07 As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense that, while we have Hermitian operators, X, for position and therefore

More information

PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG S

PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG S PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG S Quantum Information and Computation Group Harish-Chandra Research Institute, Allahabad, India S. N. Bose Center, Jan 29-Feb 2, 2018 Plan Introduction.

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

PHYS Concept Tests Fall 2009

PHYS Concept Tests Fall 2009 PHYS 30 Concept Tests Fall 009 In classical mechanics, given the state (i.e. position and velocity) of a particle at a certain time instant, the state of the particle at a later time A) cannot be determined

More information

A Propagating Wave Packet The Group Velocity

A Propagating Wave Packet The Group Velocity Lecture 7 A Propagating Wave Packet The Group Velocity Phys 375 Overview and Motivation: Last time we looked at a solution to the Schrödinger equation (SE) with an initial condition (,) that corresponds

More information

The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae

The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae Apeiron, Vol. 1, No., April 005 01 The WKBJ Wavefunctions in the Classically Forbbiden Region: the Connection Formulae K. J.Oyewumi*, C. O. Akoshile, T. T. Ibrahim Department of Physics, University of

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 (c) Use the iterative formula

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

ENTROPIC UNCERTAINTY RELATIONS

ENTROPIC UNCERTAINTY RELATIONS ENTROPIC UNCERTAINTY RELATIONS Iwo Bialynicki-Birula Center for Theoretical Physics Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland This is a modified version of my contribution to the

More information

The Quantum Theory of Atoms and Molecules

The Quantum Theory of Atoms and Molecules The Quantum Theory of Atoms and Molecules The postulates of quantum mechanics Dr Grant Ritchie The postulates.. 1. Associated with any particle moving in a conservative field of force is a wave function,

More information

General formula for finding Mexican hat wavelets by virtue of Dirac s representation theory and coherent state

General formula for finding Mexican hat wavelets by virtue of Dirac s representation theory and coherent state arxiv:quant-ph/0508066v 8 Aug 005 General formula for finding Meican hat wavelets by virtue of Dirac s representation theory and coherent state, Hong-Yi Fan and Hai-Liang Lu Department of Physics, Shanghai

More information

arxiv:cond-mat/ v1 9 Feb 1999

arxiv:cond-mat/ v1 9 Feb 1999 Dressed States of a two component Bose-Einstein Condensate. P. B. Blakie and R. J. Ballagh Department of Physics, University of Otago, P. O. Bo 56, Dunedin, New Zealand. C. W. Gardiner Department of Physics,

More information

The Hamiltonian Mean Field Model: Effect of Network Structure on Synchronization Dynamics. Yogesh Virkar University of Colorado, Boulder.

The Hamiltonian Mean Field Model: Effect of Network Structure on Synchronization Dynamics. Yogesh Virkar University of Colorado, Boulder. The Hamiltonian Mean Field Model: Effect of Network Structure on Synchronization Dynamics Yogesh Virkar University of Colorado, Boulder. 1 Collaborators Prof. Juan G. Restrepo Prof. James D. Meiss Department

More information

arxiv: v3 [quant-ph] 24 May 2017

arxiv: v3 [quant-ph] 24 May 2017 A Stronger Multi-observable Uncertainty Relation Qiu-Cheng Song, Jun-Li Li,, Guang-Xiong Peng, and Cong-Feng Qiao,,* Department of Physics, University of Chinese Academy of Sciences, YuQuan Road 9A, Beijing

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

ENTROPIC FORMULATION OF UNCERTAINTY FOR ABSTRACT

ENTROPIC FORMULATION OF UNCERTAINTY FOR ABSTRACT SLAGPUB-3100 April 1983 (T/E) ENTROPIC FORMULATION OF UNCERTAINTY FOR QUANTUM MEASUREMENTS* M. HOSSEIN PARTOVI Stanford Linear Accelerator Center Stanford University, Stanford, Cahjornia S&%l5 - ABSTRACT

More information

AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE

AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE AN ANALYTICAL DESCRIPTION OF SPIN EFFECTS IN HADRON-HADRON SCATTERING VIA PMD-SQS OPTIMUM PRINCIPLE D. B. ION,), M. L. D. ION 3) and ADRIANA I. SANDRU ) ) IFIN-HH, Bucharest, P.O. Box MG-6, Mãgurele, Romania

More information

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions PHYSICAL REVIE E 66, 4634 22 Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for -exponential distributions Sumiyoshi Abe Institute of Physics, University

More information

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS Justin Dauwels Dept. of Information Technology and Electrical Engineering ETH, CH-8092 Zürich, Switzerland dauwels@isi.ee.ethz.ch

More information

Calculations on the One-dimensional H-Atom in Coordinate and Momentum Space

Calculations on the One-dimensional H-Atom in Coordinate and Momentum Space Calculations on the One-imensional H-Atom in Coorinate an Momentum Space Frank Riou Chemistry Department CSB SJU The following eercises pertain to several of the l = states of the one-imensional hyrogen

More information

Quantum Measurement Uncertainty

Quantum Measurement Uncertainty Quantum Measurement Uncertainty Reading Heisenberg s mind or invoking his spirit? Paul Busch Department of Mathematics Quantum Physics and Logic QPL 2015, Oxford, 13-17 July 2015 Paul Busch (York) Quantum

More information

Journal of American Science 2015;11(8) Solving of Ordinary differential equations with genetic programming

Journal of American Science 2015;11(8)   Solving of Ordinary differential equations with genetic programming Journal of American Science 015;11(8) http://www.jofamericanscience.org Solving of Ordinary differential equations with genetic programming M.E. Wahed 1, Z.A. Abdelslam, O.M. Eldaken 1 Department of Computer

More information

Multidimensional partitions of unity and Gaussian terrains

Multidimensional partitions of unity and Gaussian terrains and Gaussian terrains Richard A. Bale, Jeff P. Grossman, Gary F. Margrave, and Michael P. Lamoureu ABSTRACT Partitions of unity play an important rôle as amplitude-preserving windows for nonstationary

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

arxiv: v1 [quant-ph] 8 Feb 2016

arxiv: v1 [quant-ph] 8 Feb 2016 An analytical condition for the violation of Mer s inequality by any three qubit state Satyabrata Adhikari 1, and A. S. Majumdar 2, 1 Birla Institute of Technology Mesra, Ranchi-835215, India 2 S. N. Bose

More information

Lecture 5 (Sep. 20, 2017)

Lecture 5 (Sep. 20, 2017) Lecture 5 8.321 Quantum Theory I, Fall 2017 22 Lecture 5 (Sep. 20, 2017) 5.1 The Position Operator In the last class, we talked about operators with a continuous spectrum. A prime eample is the position

More information

Bose Description of Pauli Spin Operators and Related Coherent States

Bose Description of Pauli Spin Operators and Related Coherent States Commun. Theor. Phys. (Beijing, China) 43 (5) pp. 7 c International Academic Publishers Vol. 43, No., January 5, 5 Bose Description of Pauli Spin Operators and Related Coherent States JIANG Nian-Quan,,

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 6, January 30, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 6, January 30, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 6, January 30, 2006 Solved Homework We are given that A" = a" and A * " = a" where

More information

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 43, Part, 645 65 A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space S. NASIRI and H. SAFARI Institute for Advanced

More information

Bounds on thermal efficiency from inference

Bounds on thermal efficiency from inference Bounds on thermal efficiency from inference Ramandeep S. Johal, Renuka Rai and Günter Mahler Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S.

More information

arxiv: v2 [quant-ph] 7 Apr 2014

arxiv: v2 [quant-ph] 7 Apr 2014 Quantum Chernoff bound as a measure of efficiency of quantum cloning for mixed states arxiv:1404.0915v [quant-ph] 7 Apr 014 Iulia Ghiu Centre for Advanced Quantum Physics, Department of Physics, University

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006 Chem 350/450 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 006 Christopher J. Cramer ecture 7, February 1, 006 Solved Homework We are given that A is a Hermitian operator such that

More information

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario J. Astrophys. Astr. (1985) 6, 239 246 Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario Τ. Padmanabhan Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 Received

More information

Estimating entanglement in a class of N-qudit states

Estimating entanglement in a class of N-qudit states Estimating entanglement in a class of N-qudit states Sumiyoshi Abe 1,2,3 1 Physics Division, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 2 Department of Physical

More information

Math 123, Week 9: Separable, First-Order Linear, and Substitution Methods. Section 1: Separable DEs

Math 123, Week 9: Separable, First-Order Linear, and Substitution Methods. Section 1: Separable DEs Math 123, Week 9: Separable, First-Order Linear, and Substitution Methods Section 1: Separable DEs We are finally to the point in the course where we can consider how to find solutions to differential

More information

Probability, Expectation Values, and Uncertainties

Probability, Expectation Values, and Uncertainties Chapter 5 Probability, Epectation Values, and Uncertainties As indicated earlier, one of the remarkable features of the physical world is that randomness is incarnate, irreducible. This is mirrored in

More information

Relativistic treatment of Verlinde s emergent force in Tsallis statistics

Relativistic treatment of Verlinde s emergent force in Tsallis statistics arxiv:9.85v cond-mat.stat-mech] 9 Mar 9 Relativistic treatment of Verlinde s emergent force in Tsallis statistics L. Calderon,4, M. T. Martin,4, A. Plastino,4,5,6, M. C. Rocca,,4,5,V. Vampa Departamento

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 9, February 8, 2006 The Harmonic Oscillator Consider a diatomic molecule. Such a molecule

More information

arxiv:math-ph/ v1 10 Jan 2005

arxiv:math-ph/ v1 10 Jan 2005 Asymptotic and eact series representations for the incomplete Gamma function arxiv:math-ph/5119v1 1 Jan 5 Paolo Amore Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 34, Colima, Colima,

More information

State Estimation Introduction 2.0 Exact Pseudo-measurments

State Estimation Introduction 2.0 Exact Pseudo-measurments State Estimation. Introduction In these notes, we eplore two very practical and related issues in regards to state estimation: - use of pseudo-measurements - network observability. Eact Pseudo-measurments

More information

Quantum-information theoretic properties of nuclei and trapped Bose gases

Quantum-information theoretic properties of nuclei and trapped Bose gases arxiv:quant-ph/0506041v1 6 Jun 2005 Quantum-information theoretic properties of nuclei and trapped Bose gases Ch. C. Moustakidis, K. Ch. Chatzisavvas, C. P. Panos Physics Department, Aristotle University

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Experimental Demonstration of Uncertainty Relations for the Triple Components of Angular Momentum by Wenchao Ma, Bin Chen, Ying Liu,

More information

Quantum Measurement Uncertainty

Quantum Measurement Uncertainty Quantum Measurement Uncertainty New Relations for Qubits Paul Busch Department of Mathematics Siegen, 9 July 2015 Paul Busch (York) Quantum Measurement Uncertainty 1 / 40 Peter Mittelstaedt 1929-2014 Paul

More information

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim MATH 36 L'H ˆ o pital s Rule Si of the indeterminate forms of its may be algebraically determined using L H ˆ o pital's Rule. This rule is only stated for the / and ± /± indeterminate forms, but four other

More information

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB)

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB) Lecture 1 Reactions as Rare Events 3/0/009 Notes by MIT Student (and MZB) 1. Introduction In this lecture, we ll tackle the general problem of reaction rates involving particles jumping over barriers in

More information

Bracketing an Optima in Univariate Optimization

Bracketing an Optima in Univariate Optimization Bracketing an Optima in Univariate Optimization Pritibhushan Sinha Quantitative Methods & Operations Management Area Indian Institute of Management Kozhikode Kozhikode 673570 Kerala India Email: pritibhushan.sinha@iimk.ac.in

More information

Harmonic Oscillator Eigenvalues and Eigenfunctions

Harmonic Oscillator Eigenvalues and Eigenfunctions Chemistry 46 Fall 217 Dr. Jean M. Standard October 4, 217 Harmonic Oscillator Eigenvalues and Eigenfunctions The Quantum Mechanical Harmonic Oscillator The quantum mechanical harmonic oscillator in one

More information

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm

Harmonic Numbers. Math. 55 Some Inequalities May 9, :54 pm This document was created with FrameMaker 44 Math. 55 Some Inequalities May 9, 1999 1:54 pm The Eercises after Ch. 3.2 in our tetbook, Discrete Mathematics and Its Applications 4th. ed. by K. Rosen (1999),

More information

The Schrödinger Equation in One Dimension

The Schrödinger Equation in One Dimension The Schrödinger Equation in One Dimension Introduction We have defined a comple wave function Ψ(, t) for a particle and interpreted it such that Ψ ( r, t d gives the probability that the particle is at

More information

Chapter 1 Polynomials. This chapter is about polynomials, which include linear and quadratic expressions. When you have completed it, you should

Chapter 1 Polynomials. This chapter is about polynomials, which include linear and quadratic expressions. When you have completed it, you should 978-1-16-600-1 Cambridge International AS and A Level Mathematics: Pure Mathematics and Revised Edition Coursebook Ecerpt Chapter 1 Polynomials 1 This chapter is about polynomials, which include linear

More information

On the average uncertainty for systems with nonlinear coupling

On the average uncertainty for systems with nonlinear coupling On the average uncertainty for systems with nonlinear coupling Kenric P. elson, Sabir Umarov, and Mark A. Kon Abstract The increased uncertainty and complexity of nonlinear systems have motivated investigators

More information

arxiv:math-ph/ v1 30 May 2005

arxiv:math-ph/ v1 30 May 2005 Nongeneralizability of Tsallis Entropy by means of Kolmogorov-Nagumo averages under pseudo-additivity arxiv:math-ph/0505078v1 30 May 2005 Ambedkar Dukkipati, 1 M. Narsimha Murty,,2 Shalabh Bhatnagar 3

More information

Entropy and Information of a harmonic oscillator in a timevarying electric field in 2D and 3D noncommutative spaces

Entropy and Information of a harmonic oscillator in a timevarying electric field in 2D and 3D noncommutative spaces Entropy and Information of a harmonic oscillator in a timevarying electric field in D and 3D noncommutative spaces J. P. G. Nascimento*, V. Aguiar and I. Guedes Departamento de Física, Universidade Federal

More information

Noncommuting Rotation and Angular Momentum Operators

Noncommuting Rotation and Angular Momentum Operators Noncommuting Rotation and Angular Momentum Operators Originall appeared at: http://behindtheguesses.blogspot.com/2009/08/noncommuting-rotation-and-angular.html Eli Lanse elanse@gmail.com August 31, 2009

More information

arxiv: v2 [quant-ph] 26 Sep 2018

arxiv: v2 [quant-ph] 26 Sep 2018 Tightening the entropic uncertainty relations for multiple measurements and applying it to quantum coherence H. Dolatkhah Department of Physics, University of Kurdistan, P.O.Box 6677-575, Sanandaj, Iran

More information

JUST THE MATHS UNIT NUMBER 7.2. DETERMINANTS 2 (Consistency and third order determinants) A.J.Hobson

JUST THE MATHS UNIT NUMBER 7.2. DETERMINANTS 2 (Consistency and third order determinants) A.J.Hobson JUST THE MATHS UNIT NUMBER 7.2 DETERMINANTS 2 (Consistency and third order determinants) by A.J.Hobson 7.2.1 Consistency for three simultaneous linear equations in two unknowns 7.2.2 The definition of

More information

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises Section 4.3 Properties of Logarithms 437 34. Graph each of the following functions in the same viewing rectangle and then place the functions in order from the one that increases most slowly to the one

More information

arxiv: v1 [math-ph] 28 Jan 2009

arxiv: v1 [math-ph] 28 Jan 2009 Some properties of deformed q-numbers Thierry C. Petit Lobão Instituto de Matemática, Universidade Federal da Bahia Campus Universitário de Ondina, 4070-0 Salvador BA, Brazil Pedro G. S. Cardoso and Suani

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

What Is Semiquantum Mechanics?

What Is Semiquantum Mechanics? Bulg. J. Phys. 33 (2006) 182 192 What Is Semiquantum Mechanics? A.J. Bracken Department of Mathematics, University of Queensland, Brisbane 4072, Queensland, Australia Received 11 October 2006 Abstract.

More information

Finite size scaling for the atomic Shannon-information entropy

Finite size scaling for the atomic Shannon-information entropy JOURNAL OF CHEMICAL PHYSICS VOLUME 2 NUMBER 2 22 SEPTEMBER 24 Finite size scaling for the atomic Shannon-information entropy Qicun Shi and Sabre Kais Department of Chemistry Purdue University West Lafayette

More information

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006 Quantum Fisher Information Shunlong Luo luosl@amt.ac.cn Beijing, Aug. 10-12, 2006 Outline 1. Classical Fisher Information 2. Quantum Fisher Information, Logarithm 3. Quantum Fisher Information, Square

More information

Integral-free Wigner functions

Integral-free Wigner functions Integral-free Wigner functions A. Teğmen Physics Department, Ankara University, 0600 Ankara, TURKEY tegmen@science.ankara.edu.tr Abstract arxiv:math-ph/070208v 6 Feb 2007 Wigner phase space quasi-probability

More information

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014)

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014) Regular Article PHYSICAL CHEMISTRY RESEARCH Published by the Iranian Chemical Society www.physchemres.org info@physchemres.org Phys. Chem. Res., Vol. 2, No. 2, 37-45, December 204. How the Nonextensivity

More information

Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments

Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments Jorge Sánche-Rui Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647,

More information

A Padé approximation to the scalar wavefield extrapolator for inhomogeneous media

A Padé approximation to the scalar wavefield extrapolator for inhomogeneous media A Padé approimation A Padé approimation to the scalar wavefield etrapolator for inhomogeneous media Yanpeng Mi, Zhengsheng Yao, and Gary F. Margrave ABSTRACT A seismic wavefield at depth z can be obtained

More information

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Stefan Thurner Constantino Tsallis SFI WORKING PAPER: 5-6-6 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Subbands and quantum confinement

Subbands and quantum confinement Ballistic nanotransistors Modeled on analysis by Mark Lundstrom C, Purdue. Unless otherwise indicated, all images are his. nteresting hybrid of classical transistor behavior, quantum confinement effects,

More information

Particular Solutions

Particular Solutions Particular Solutions Our eamples so far in this section have involved some constant of integration, K. We now move on to see particular solutions, where we know some boundar conditions and we substitute

More information

NILPOTENT QUANTUM MECHANICS AND SUSY

NILPOTENT QUANTUM MECHANICS AND SUSY Ó³ Ÿ. 2011.. 8, º 3(166).. 462Ä466 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ NILPOTENT QUANTUM MECHANICS AND SUSY A. M. Frydryszak 1 Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland Formalism where

More information

Entropic Formulation of Heisenberg s Measurement-Disturbance Relation

Entropic Formulation of Heisenberg s Measurement-Disturbance Relation Entropic Formulation of Heisenberg s Measurement-Disturbance Relation arxiv:1311.7637 QPL 2014, Kyoto, 6. June 2014 Fabian Furrer Joint work with: Patrick Coles @ Different Uncertainty Trade-Offs Uncertainty

More information

arxiv:cond-mat/ v1 10 Aug 2002

arxiv:cond-mat/ v1 10 Aug 2002 Model-free derivations of the Tsallis factor: constant heat capacity derivation arxiv:cond-mat/0208205 v1 10 Aug 2002 Abstract Wada Tatsuaki Department of Electrical and Electronic Engineering, Ibaraki

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function Commun. Theor. Phys. (Beijing, China 40 (2003 pp. 551 557 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Calculation of the Gluon Distribution Function Using Alternative Method for

More information

arxiv:hep-th/ v3 16 May 1996

arxiv:hep-th/ v3 16 May 1996 BNL-63106 An Exact Solution for Quantum Tunneling in a Dissipative System arxiv:hep-th/9605081v3 16 May 1996 Li Hua Yu National Synchrotron Light Source, Brookhaven National Laboratory, N.Y.11973 Abstract

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Uncertainty relations from Fisher information

Uncertainty relations from Fisher information journal of modern optics, 2004, vol.??, no.??, 1 4 Uncertainty relations from Fisher information J. Rˇ EHA Cˇ EK and Z. HRADIL Department of Optics, Palacky University, 772 00 Olomouc, Czech Republic (Received

More information

Simple Harmonic Oscillator

Simple Harmonic Oscillator Classical harmonic oscillator Linear force acting on a particle (Hooke s law): F =!kx From Newton s law: F = ma = m d x dt =!kx " d x dt + # x = 0, # = k / m Position and momentum solutions oscillate in

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Calculus w/applications Prerequisite Packet Paint Branch High School Math Department

Calculus w/applications Prerequisite Packet Paint Branch High School Math Department Updated 6/014 The problems in this packet are designed to help you review topics from previous math courses that are important to your success in Calculus with Applications. It is important that you take

More information

A Condition for Entropy Exchange Between Atom and Field

A Condition for Entropy Exchange Between Atom and Field Commun. Theor. Phys. 57 (2012) 209 213 Vol. 57, No. 2, February 15, 2012 A Condition for Entropy Exchange Between Atom and Field YAN Xue-Qun ( ) and LÜ Yu-Guang (ù ½) Institute of Physics and Department

More information

Adsorption from a one-dimensional lattice gas and the Brunauer Emmett Teller equation

Adsorption from a one-dimensional lattice gas and the Brunauer Emmett Teller equation Proc. Natl. Acad. Sci. USA Vol. 93, pp. 1438 1433, December 1996 Chemistry Adsorption from a one-dimensional lattice gas and the Brunauer Emmett Teller equation (Ising modelreference systemgibbs ecess

More information

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract

Power EP. Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR , October 4, Abstract Power EP Thomas Minka Microsoft Research Ltd., Cambridge, UK MSR-TR-2004-149, October 4, 2004 Abstract This note describes power EP, an etension of Epectation Propagation (EP) that makes the computations

More information

Line adsorption in a mean-field density functional model

Line adsorption in a mean-field density functional model Chemistry Physical & Theoretical Chemistry fields Okayama University Year 2006 Line adsorption in a mean-field density functional model Kenichiro Koga Benjamin Widom Okayama University, koga@cc.okayama-u.ac.jp

More information