HENNESSY MILNER THEOREM FOR INTERPRETABILITY LOGIC. Abstract

Size: px
Start display at page:

Download "HENNESSY MILNER THEOREM FOR INTERPRETABILITY LOGIC. Abstract"

Transcription

1 Bulletin of the Section of Logic Volume 34/4 (2005), pp Mladen Vuković HENNESSY MILNER THEOREM FOR INTERPRETABILITY LOGIC Abstract Interpretability logic is a modal description of the interpretability predicate. The modal system IL is an extension of the provability logic GL (Gödel Löb). We define bisimulations between generalized Veltman models, i.e. IL set-models. Then we consider some operations between models and prove that the operations are a special case of bisimulation. At the end we prove Hennessy Milner theorem for IL set -models. 1. Introduction The provability logic GL (Gödel-Löb) is a simple modal description of provability. The language of the provability logic contains propositional letters p 0, p 1,..., the logical connectives,,, and, and the unary modal operator. The symbol stands for. We use for falsity and for truth. The axioms of system GL are all tautologies, (A B) ( A B), ( A A) A. The inference rules of GL are modus ponens and necessitation A/ A. The system GL completely expresses provability predicate of Peano arithmetic. The interpretability logic IL is an extension of provability logic with a new modal binary operator. This operator stands for interpretability, considered as a relation between extensions of a fixed theory. The new axioms of the system IL are (A B) (A B), ((A B) (B C)) (A C), ((A C) (B C)) ((A B) C), (A B) ( A B) and A A.

2 196 Mladen Vuković The paper [4] provides the necessary definitions and detailed explanation and gives several examples of interpretations. We are only interested in IL as a system of modal logic. We introduce our notation and some basic facts, following [4]. Now we give the definition of generalized Veltman semantics. An ordered triple (W, R, {S w : w W }) is called an IL set -frame or generalized Veltman frame if we have: a) (W, R) is a GL-frame, i.e. W is a non-empty set, and R is a transitive and reverse well-founded relation on W ; b) Every w W satisfies S w W [w] P(W [w])\{ }, where W [w] denotes the set {u : wru}; c) The relation S w is quasi-reflexive: for every w W, i.e. wru implies us w {u}; d) The relation S w is quasi-transitive: for every w W, i.e. if us w V and ( v V )(vs w Z v ) then us w ( v V Z v ); e) If wrurv then us w {v}; f) If us w V and V Z W [w] then us w Z. An ordered quadruple (W, R, {S w : w W }, ) is called an IL set - model or generalized Veltman model, and denoted by W, if we have: (1) (W, R, {S w : w W }) is an IL set -frame; (2) is a forcing relation between elements of W and formulas of IL, which satisfies the following: (2a) w and w are valid for every w W ; (2b) commutes with the Boolean connectives; (2c) w A if and only if u(wru u A); (2d) w A B if and only if u((wru & u A) V (us w V & ( v V )(v B))). There are other semantics for interpretability logic. The best known one is Velman semantics. In [5] we have proved that in some cases the generalized Veltman models better distinguish principles of interpretability than Veltman models. The IL set -models are used in [2] for determining of characteristic class of some principles of interpretability, too. In the following text we denote by W an IL set -model (W, R, {S w : w W }, ) and by W we denote an IL set -model (W, R, {S w : w W }, ).

3 Hennessy Milner theorem for interpretability logic 197 Let we note that we use the same symbol for forcing relation in different models. 2. Bisimulations Bisimulation is a basic relation between two models; see [1], Chapter 2, Section 2. We have defined a notion of bisimulation between two generalized Veltman models in [6]. We modify this definition. Let W and W be two IL set -models. If u W, w W and Z W W then we denote by: [u] w,z := {u w R u and uzu }, [[u]] w,z is the set of all functions f : [u] w,z P(W [w ]) such that, for all u [u] w,z we have u S w f(u ). Definition 1. Let W and W be two IL set -models. We say that a relation Z W W is a bisimulation between models W and W if the following conditions are satisfied. (at) if wzw then the nodes w and w satisfy the same propositional letters. (zig) if wru and wzw, then, for all f [[u]] w,z, there is a set V such that us w V and ( v V ) ( u [u] w,z)( v f(u )) vzv. (zag) if w R u and wzw then, for all f [[u ]] w,z, there is a set V such that u S w V and ( v V ) ( u [u ] w,z 1)( v f(u)) vzv, where Z 1 is a converse of the relation Z. If Z W W is a bisimulation between models W and W then we write Z : W W. We will write W, w W, w if there is a bisimulation Z : W W such that wzw.

4 198 Mladen Vuković Let W and W be two IL set -models. Let w W and w W be two nodes. We say that nodes w and w are modally equivalent and write w w if w ϕ if and only if w ϕ, for all formulas ϕ. Let we have W, w W, w. It is easy to see by induction of the complexity of formula that then we have w w. It is easy to check that the following proposition is true. Proposition 2. Let W, W and W be IL set -models. a) The relation Z = {(w, w) : w W } is a bisimulation. So, W, w W, w. b) If Z is a bisimulation between models W and W then Z 1 = {(w, w) : wzw } is a bisimulation between models W and W. c) If Z : W W and Z : W W then Z Z : W W. d) If {Z i : i I} is a set of bismulations between W and W then the union Z i is a bisimulation. There is a maximum of all bisimulations between W and W. Definition 3. (cf. [1], Chapter 2, Section 1) a) Let {W i : i I} be a set of IL set -models and W i = (W i, R i, {S w (i) : w W i }, ). Suppose that the sets W i are mutually disjoint. It is easy to define W i and check that this is an IL set -model. It is called disjoint union and we write W i. b) Let W be an IL set -model and w W. Let W be the set W [w ] and R = R W. It is easy to check that W = (W, R, {S w : w W }, ) is an IL set -model. The model W is called generated submodel of the model W. c) Let W and W be IL set -models, and let f : W W be a function that satisfies the following conditions. (i) The nodes w and f(w) satisfy the same propositional letters. (ii) If wrv then f(w)r f(v). (iii) If us w V then f(u)s f(w) f(v ). (iv) If f(w)r v then there is a node v W such that wrv and v = f(v).

5 Hennessy Milner theorem for interpretability logic 199 (v) If f(u)s f(w) V then there is a set V W [w] such that us w V and V = f(v ). We say that the function f is bounded morphism from W to W. If a bounded morphism f is surjective then we write f : W W. Straightforward proof of the following proposition is left to the reader. Proposition 4. a) Let W i be disjoint union of IL set -models. Then we have W i, w W, w, for each i I and w W i. b) Let W be a generated submodel of W. Then we have W, w W, w, for each w W. c) Let f : W W be a surjective bounded morphism between IL set - models W and W. Then we have W, w W, f(w), for each w W. 3. Hennessy Milner theorem In the following theorem we prove that two modally equivalent nodes will be bisimular if models possess some special property. We say that an IL set model W is image finite if the set W [w] is finite for all w W. In [3], the Hennessy Milner theorem is proved for Veltman semantics. Now we prove the theorem for generalized Veltman semantics. Theorem 5. Let W and W be two image finite IL set -models. Than there is a bisimulation between models W and W. Moreover, if w w then W, w W, w. Proof. We prove that the relation of modal equivalence is a bisimulation between models W and W. The condition (at) from the definition of bisimulation is trivially fulfilled. We check that the relation possesses the property (zig). Let w, u W and w W be nodes such that wru and w w. Let we suppose the condition (zig) is not satisfied for the nodes w, u, w, and a function f [[u]] w,z. Let n be a natural number such that W [w ] = {u 1,..., u n}. Let s be a natural number such that s n and [u] w,z = {u 1,..., u s}. Then we have u i S w f(u i ), for all i {1,..., s}. Now we define a formula ϕ. If we have s = n then we define ϕ =. If we have s < n then u u i, for all i {s + 1,..., n}. There is a formula ϕ i

6 200 Mladen Vuković such that u ϕ i and u i ϕ i, for all i {s + 1,..., n}. Then we have u ϕ s+1... ϕ n and u i ϕ s+1... ϕ n, for all i {s + 1,..., n}. Now we define ϕ = ϕ s+1... ϕ n. So, if s < n we have u ϕ u i ϕ, for all i {1,..., s} ϕ, for all i {s + 1,..., n}. u i By the assumption of the theorem the set P(W [w]) is finite. There are only finitely many sets V W [w] such that us w V. Let V 1,..., V m be all sets V such that us w V. Then we have ( i {1,..., m})( v i V i )( j {1,..., s})( v f(u j)) v i v. For each i {1,..., m} let we choice v i V i such that ( j {1,..., s})( v f(u j)) v i v. For each j {1,..., s} the set f(u j ) is finite. Let us choose a natural number p(j) such that f(u j ) = {u j1,..., u jp(j) }. Then we have ( i {1,... m})( j {1,..., s})( k {1,..., p(j)}) v i u jk. Let ψ ijk be a formula such that v i ψ ijk and u jk ψ ijk. Let we define ψ = m s p(j) i=1 j=1 k=1 ψ ijk. It is easy to see that f(u j ) ψ for all j {1,..., s}, and V i ψ for all i {1,..., m}. If x W is a node such that w R x and x ϕ then there is some j {1,..., s} such that x = u j. But we know u j S w f(u j ) and f(u j ) ψ. So, we have w ϕ ψ. If V W [w] such that us w V then there is some i {1,..., m} such that V = V i. But V i ψ for all i {1,..., m}. So, w ϕ ψ. This is impossible because we have supposed w w.

7 Hennessy Milner theorem for interpretability logic 201 In the similar way we can check that the relation possesses the property (zag). Remark. We want to mention that all results will be true if we take the definition of the IL set -models as in the paper [2], i.e. instead the conditions d) and f) of our definition one can take the following condition if us w V then for all v V we have that if v Y and vs w Y then us w Y. Acknowledgments. Author would like to express his gratitude to Professor A. Visser for valuable comments. References [1] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, [2] E. Goris, J. Joosten, Modal Matters of Interpretability Logic, Logic Group Preprint Series 226, Department of Philosophy, University of Utrecht, 2004, [3] R. de Jonge, IL modellen en bisimulaties, preprint X , ILLC, Amsterdam, 2004, [4] A. Visser, An overview of interpretability logic, [in:] Kracht, Marcus (ed.) et al., Advances in modal logic. Vol. 1. Selected papers from the 1st international workshop (AiML 96), Berlin, Germany, October 1996, Stanford, CA: CSLI Publications, CSLI Lect. Notes. 87, pp (1998) [5] M. Vuković, The principles of interpretability, Notre Dame Journal of Formal Logic, 40 (1999), pp [6] M. Vuković, Characteristic classes and bisimulations of generalized Veltman models, Grazer Mathematische Berichte, 341 (2000), pp University of Zagreb Croatia

Interpretability Logic

Interpretability Logic Interpretability Logic Logic and Applications, IUC, Dubrovnik vukovic@math.hr web.math.pmf.unizg.hr/ vukovic/ Department of Mathematics, Faculty of Science, University of Zagreb September, 2013 Interpretability

More information

The interpretability logic ILF

The interpretability logic ILF Mathematical Communications 2(1997), 205-210 205 The interpretability logic ILF Mladen Vuković Abstract.In this paper we determine a characteristic class of IL set - frames for the principle F. Then we

More information

arxiv: v4 [math.lo] 6 Apr 2018

arxiv: v4 [math.lo] 6 Apr 2018 Complexity of the interpretability logic IL arxiv:1710.05599v4 [math.lo] 6 Apr 2018 Luka Mikec luka.mikec@math.hr Fedor Pakhomov pakhfn@mi.ras.ru Monday 2 nd April, 2018 Abstract Mladen Vuković vukovic@math.hr

More information

Notes on Modal Logic

Notes on Modal Logic Notes on Modal Logic Notes for Philosophy 151 Eric Pacuit January 25, 2009 These short notes are intended to supplement the lectures and text ntroduce some of the basic concepts of Modal Logic. The primary

More information

Notes on Modal Logic

Notes on Modal Logic Notes on Modal Logic Notes for PHIL370 Eric Pacuit October 22, 2012 These short notes are intended to introduce some of the basic concepts of Modal Logic. The primary goal is to provide students in Philosophy

More information

A generalization of modal definability

A generalization of modal definability A generalization of modal definability Tin Perkov Polytechnic of Zagreb Abstract. Known results on global definability in basic modal logic are generalized in the following sense. A class of Kripke models

More information

Existential definability of modal frame classes

Existential definability of modal frame classes Existential definability of modal frame classes Tin Perkov Polytechnic of Zagreb, Croatia tin.perkov@tvz.hr Abstract. A class of Kripke frames is called modally definable if there is a set of modal formulas

More information

Neighborhood Semantics for Modal Logic Lecture 4

Neighborhood Semantics for Modal Logic Lecture 4 Neighborhood Semantics for Modal Logic Lecture 4 Eric Pacuit ILLC, Universiteit van Amsterdam staff.science.uva.nl/ epacuit August 16, 2007 Eric Pacuit: Neighborhood Semantics, Lecture 4 1 Plan for the

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

A Note on Graded Modal Logic

A Note on Graded Modal Logic A Note on Graded Modal Logic Maarten de Rijke Studia Logica, vol. 64 (2000), pp. 271 283 Abstract We introduce a notion of bisimulation for graded modal logic. Using these bisimulations the model theory

More information

Definability in Boolean bunched logic

Definability in Boolean bunched logic Definability in Boolean bunched logic James Brotherston Programming Principles, Logic and Verification Group Dept. of Computer Science University College London, UK J.Brotherston@ucl.ac.uk Logic Summer

More information

Logics above S4 and the Lebesgue measure algebra

Logics above S4 and the Lebesgue measure algebra Logics above S4 and the Lebesgue measure algebra Tamar Lando Abstract We study the measure semantics for propositional modal logics, in which formulas are interpreted in the Lebesgue measure algebra M,

More information

Monotonic Modal Logics

Monotonic Modal Logics Monotonic Modal Logics Helle Hvid Hansen Master s thesis written under the supervision of Dr. Y. Venema October 15, 2003 University of Amsterdam Faculty of Science Institute for Logic, Language and Computation

More information

Kripke Models Built from Models of Arithmetic

Kripke Models Built from Models of Arithmetic Kripke Models Built from Models of Arithmetic Paula Henk Institute for Logic, Language and Computation (ILLC), University of Amsterdam P.Henk@uva.nl Abstract. We introduce three relations between models

More information

Chapter 2 Core Theory

Chapter 2 Core Theory Chapter 2 Core Theory The previous chapter established that neighborhood structures with the basic propositional modal language is an interesting and well-motivated logical framework. In this chapter,

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

A simplified proof of arithmetical completeness theorem for provability logic GLP

A simplified proof of arithmetical completeness theorem for provability logic GLP A simplified proof of arithmetical completeness theorem for provability logic GLP L. Beklemishev Steklov Mathematical Institute Gubkina str. 8, 119991 Moscow, Russia e-mail: bekl@mi.ras.ru March 11, 2011

More information

Neighborhood Semantics for Modal Logic Lecture 5

Neighborhood Semantics for Modal Logic Lecture 5 Neighborhood Semantics for Modal Logic Lecture 5 Eric Pacuit ILLC, Universiteit van Amsterdam staff.science.uva.nl/ epacuit August 17, 2007 Eric Pacuit: Neighborhood Semantics, Lecture 5 1 Plan for the

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Modal Logics Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg May 2 & 6, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information

The Mother of All Paradoxes

The Mother of All Paradoxes The Mother of All Paradoxes Volker Halbach Truth and Intensionality Amsterdam 3rd December 2016 A theory of expressions The symbols of L are: 1. infinitely many variable symbols v 0, v 1, v 2, v 3,...

More information

Annals of Pure and Applied Logic

Annals of Pure and Applied Logic Annals of Pure and Applied Logic 163 (2012) 1928 1939 Contents lists available at SciVerse ScienceDirect Annals of Pure and Applied Logic www.elsevier.com/locate/apal Some characterization and preservation

More information

the logic of provability

the logic of provability A bird s eye view on the logic of provability Rineke Verbrugge, Institute of Artificial Intelligence, University of Groningen Annual Meet on Logic and its Applications, Calcutta Logic Circle, Kolkata,

More information

Positive provability logic

Positive provability logic Positive provability logic Lev Beklemishev Steklov Mathematical Institute Russian Academy of Sciences, Moscow November 12, 2013 Strictly positive modal formulas The language of modal logic extends that

More information

Axiomatizing hybrid logic using modal logic

Axiomatizing hybrid logic using modal logic Axiomatizing hybrid logic using modal logic Ian Hodkinson Department of Computing Imperial College London London SW7 2AZ United Kingdom imh@doc.ic.ac.uk Louis Paternault 4 rue de l hôpital 74800 La Roche

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Ultraproducts of Admissible Models for Quantified Modal Logic

Ultraproducts of Admissible Models for Quantified Modal Logic Ultraproducts of Admissible Models for Quantified Modal Logic Robert Goldblatt Abstract Admissible models for quantified modal logic have a restriction on which sets of worlds are admissible as propositions.

More information

On the Craig interpolation and the fixed point

On the Craig interpolation and the fixed point On the Craig interpolation and the fixed point property for GLP Lev D. Beklemishev December 11, 2007 Abstract We prove the Craig interpolation and the fixed point property for GLP by finitary methods.

More information

The Modal Logic of Pure Provability

The Modal Logic of Pure Provability The Modal Logic of Pure Provability Samuel R. Buss Department of Mathematics University of California, San Diego July 11, 2002 Abstract We introduce a propositional modal logic PP of pure provability in

More information

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic The Importance of Being Formal Martin Henz February 5, 2014 Propositional Logic 1 Motivation In traditional logic, terms represent sets, and therefore, propositions are limited to stating facts on sets

More information

A NEW VERSION OF AN OLD MODAL INCOMPLETENESS THEOREM

A NEW VERSION OF AN OLD MODAL INCOMPLETENESS THEOREM Bulletin of the Section of Logic Volume 39:3/4 (2010), pp. 199 204 Jacob Vosmaer A NEW VERSION OF AN OLD MODAL INCOMPLETENESS THEOREM Abstract Thomason [5] showed that a certain modal logic L S4 is incomplete

More information

De Jongh s characterization of intuitionistic propositional calculus

De Jongh s characterization of intuitionistic propositional calculus De Jongh s characterization of intuitionistic propositional calculus Nick Bezhanishvili Abstract In his PhD thesis [10] Dick de Jongh proved a syntactic characterization of intuitionistic propositional

More information

An Introduction to Modal Logic V

An Introduction to Modal Logic V An Introduction to Modal Logic V Axiomatic Extensions and Classes of Frames Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 7 th 2013

More information

Filtrations and Basic Proof Theory Notes for Lecture 5

Filtrations and Basic Proof Theory Notes for Lecture 5 Filtrations and Basic Proof Theory Notes for Lecture 5 Eric Pacuit March 13, 2012 1 Filtration Let M = W, R, V be a Kripke model. Suppose that Σ is a set of formulas closed under subformulas. We write

More information

ALL NORMAL EXTENSIONS OF S5-SQUARED ARE FINITELY AXIOMATIZABLE

ALL NORMAL EXTENSIONS OF S5-SQUARED ARE FINITELY AXIOMATIZABLE ALL NORMAL EXTENSIONS OF S5-SQUARED ARE FINITELY AXIOMATIZABLE Nick Bezhanishvili and Ian Hodkinson Abstract We prove that every normal extension of the bi-modal system S5 2 is finitely axiomatizable and

More information

Basic Algebraic Logic

Basic Algebraic Logic ELTE 2013. September Today Past 1 Universal Algebra 1 Algebra 2 Transforming Algebras... Past 1 Homomorphism 2 Subalgebras 3 Direct products 3 Varieties 1 Algebraic Model Theory 1 Term Algebras 2 Meanings

More information

Bisimulation for Neighbourhood Structures

Bisimulation for Neighbourhood Structures Bisimulation for Neighbourhood Structures Helle Hvid Hansen 1,2 Clemens Kupke 2 Eric Pacuit 3 1 Vrije Universiteit Amsterdam (VUA) 2 Centrum voor Wiskunde en Informatica (CWI) 3 Universiteit van Amsterdam

More information

A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I

A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I Bulletin of the Section of Logic Volume 32/4 (2003), pp. 165 177 George Tourlakis 1 Francisco Kibedi A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I Abstract We formalize a fragment of the metatheory

More information

TR : Binding Modalities

TR : Binding Modalities City University of New York (CUNY) CUNY Academic Works Computer Science Technical Reports Graduate Center 2012 TR-2012011: Binding Modalities Sergei N. Artemov Tatiana Yavorskaya (Sidon) Follow this and

More information

cse371/mat371 LOGIC Professor Anita Wasilewska Fall 2018

cse371/mat371 LOGIC Professor Anita Wasilewska Fall 2018 cse371/mat371 LOGIC Professor Anita Wasilewska Fall 2018 Chapter 7 Introduction to Intuitionistic and Modal Logics CHAPTER 7 SLIDES Slides Set 1 Chapter 7 Introduction to Intuitionistic and Modal Logics

More information

Systems of modal logic

Systems of modal logic 499 Modal and Temporal Logic Systems of modal logic Marek Sergot Department of Computing Imperial College, London utumn 2008 Further reading: B.F. Chellas, Modal logic: an introduction. Cambridge University

More information

Logics of Strong Noncontingency arxiv: v1 [cs.lo] 15 May 2015

Logics of Strong Noncontingency arxiv: v1 [cs.lo] 15 May 2015 Logics of Strong Noncontingency arxiv:1505.03950v1 [cs.lo] 15 May 2015 Jie Fan Abstract Inspired by Hintikka s treatment of question embedding verbs in [8] and the variations of noncontingency operator,

More information

185.A09 Advanced Mathematical Logic

185.A09 Advanced Mathematical Logic 185.A09 Advanced Mathematical Logic www.volny.cz/behounek/logic/teaching/mathlog13 Libor Běhounek, behounek@cs.cas.cz Lecture #1, October 15, 2013 Organizational matters Study materials will be posted

More information

A SEQUENT SYSTEM OF THE LOGIC R FOR ROSSER SENTENCES 2. Abstract

A SEQUENT SYSTEM OF THE LOGIC R FOR ROSSER SENTENCES 2. Abstract Bulletin of the Section of Logic Volume 33/1 (2004), pp. 11 21 Katsumi Sasaki 1 Shigeo Ohama A SEQUENT SYSTEM OF THE LOGIC R FOR ROSSER SENTENCES 2 Abstract To discuss Rosser sentences, Guaspari and Solovay

More information

Propositional Logics and their Algebraic Equivalents

Propositional Logics and their Algebraic Equivalents Propositional Logics and their Algebraic Equivalents Kyle Brooks April 18, 2012 Contents 1 Introduction 1 2 Formal Logic Systems 1 2.1 Consequence Relations......................... 2 3 Propositional Logic

More information

Global vs. Local in Basic Modal Logic

Global vs. Local in Basic Modal Logic Global vs. Local in Basic Modal Logic Maarten de Rijke 1 and Holger Sturm 2 1 ILLC, University of Amsterdam, Pl. Muidergracht 24, 1018 TV Amsterdam, The Netherlands. E-mail: mdr@wins.uva.nl 2 Institut

More information

WHAT IS THE CORRECT LOGIC OF NECESSITY, ACTUALITY AND APRIORITY?

WHAT IS THE CORRECT LOGIC OF NECESSITY, ACTUALITY AND APRIORITY? THE REVIEW OF SYMBOLIC LOGIC Volume 7, Number 3, September 2014 WHAT IS THE CORRECT LOGIC OF NECESSITY, ACTUALITY AND APRIORITY? PETER FRITZ University of Oxford Abstract. This paper is concerned with

More information

Basic Model Theory for Memory Logics

Basic Model Theory for Memory Logics Basic Model Theory for Memory Logics Carlos Areces 1, Facundo Carreiro 2, Santiago Figueira 2,3 and Sergio Mera 2 1 INRIA Nancy Grand Est, Nancy, France areces@loria.fr 2 Dto. Computación, FCEN, Universidad

More information

Standard Bayes logic is not finitely axiomatizable

Standard Bayes logic is not finitely axiomatizable Standard Bayes logic is not finitely axiomatizable Zalán Gyenis January 6, 2018 Abstract In the paper [2] a hierarchy of modal logics have been defined to capture the logical features of Bayesian belief

More information

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY Gödel s Proof Victoria Gitman and Thomas Johnstone New York City College of Technology, CUNY vgitman@nylogic.org http://websupport1.citytech.cuny.edu/faculty/vgitman tjohnstone@citytech.cuny.edu March

More information

Neighborhood Semantics for Modal Logic Lecture 3

Neighborhood Semantics for Modal Logic Lecture 3 Neighborhood Semantics for Modal Logic Lecture 3 Eric Pacuit ILLC, Universiteit van Amsterdam staff.science.uva.nl/ epacuit August 15, 2007 Eric Pacuit: Neighborhood Semantics, Lecture 3 1 Plan for the

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

CHAPTER 11. Introduction to Intuitionistic Logic

CHAPTER 11. Introduction to Intuitionistic Logic CHAPTER 11 Introduction to Intuitionistic Logic Intuitionistic logic has developed as a result of certain philosophical views on the foundation of mathematics, known as intuitionism. Intuitionism was originated

More information

KLEENE LOGIC AND INFERENCE

KLEENE LOGIC AND INFERENCE Bulletin of the Section of Logic Volume 4:1/2 (2014), pp. 4 2 Grzegorz Malinowski KLEENE LOGIC AND INFERENCE Abstract In the paper a distinguished three-valued construction by Kleene [2] is analyzed. The

More information

Fuzzy Does Not Lie! Can BAŞKENT. 20 January 2006 Akçay, Göttingen, Amsterdam Student No:

Fuzzy Does Not Lie! Can BAŞKENT. 20 January 2006 Akçay, Göttingen, Amsterdam   Student No: Fuzzy Does Not Lie! Can BAŞKENT 20 January 2006 Akçay, Göttingen, Amsterdam canbaskent@yahoo.com, www.geocities.com/canbaskent Student No: 0534390 Three-valued logic, end of the critical rationality. Imre

More information

Modal Logic of Forcing Classes

Modal Logic of Forcing Classes Outline CUNY Graduate Center Department of Mathematics March 11, 2016 Outline Outline 1 Outline 1 Modal Logic Background Modal Axioms K (ϕ ψ) ( ϕ ψ) T ϕ ϕ 4 ϕ ϕ.2 ϕ ϕ.3 ( ϕ ψ) [(ϕ ψ) (ψ ϕ)] 5 ϕ ϕ Modal

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

Majority Logic. Introduction

Majority Logic. Introduction Majority Logic Eric Pacuit and Samer Salame Department of Computer Science Graduate Center, City University of New York 365 5th Avenue, New York 10016 epacuit@cs.gc.cuny.edu, ssalame@gc.cuny.edu Abstract

More information

Axiomatizing hybrid logic using modal logic

Axiomatizing hybrid logic using modal logic Axiomatizing hybrid logic using modal logic Ian Hodkinson Department of Computing Imperial College London London SW7 2AZ United Kingdom imh@doc.ic.ac.uk Louis Paternault 4 rue de l hôpital 74800 La Roche

More information

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 5 Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, January 29, 2010 Model Theory of Modal Logic Lecture

More information

Gödel s Completeness Theorem

Gödel s Completeness Theorem A.Miller M571 Spring 2002 Gödel s Completeness Theorem We only consider countable languages L for first order logic with equality which have only predicate symbols and constant symbols. We regard the symbols

More information

Goldblatt-Thomason-style Theorems for Graded Modal Language

Goldblatt-Thomason-style Theorems for Graded Modal Language Goldblatt-Thomason-style Theorems for Graded Modal Language Katsuhiko Sano JSPS Research Fellow Department of Humanistic Informatics, Kyoto University, Japan ILLC, Universiteit van Amsterdam Minghui Ma

More information

Introduction to Neighborhood Semantics for. Modal Logic. ILLC, University of Amsterdam. January 7, 2007

Introduction to Neighborhood Semantics for. Modal Logic. ILLC, University of Amsterdam. January 7, 2007 Introduction to Neighborhood Semantics for Modal Logic Eric Pacuit January 7, 2007 ILLC, University of Amsterdam staff.science.uva.nl/ epacuit epacuit@science.uva.nl Introduction 1. Motivation 2. Neighborhood

More information

Modal logics and their semantics

Modal logics and their semantics Modal logics and their semantics Joshua Sack Department of Mathematics and Statistics, California State University Long Beach California State University Dominguez Hills Feb 22, 2012 Relational structures

More information

Gödel s Incompleteness Theorems by Sally Cockburn (2016)

Gödel s Incompleteness Theorems by Sally Cockburn (2016) Gödel s Incompleteness Theorems by Sally Cockburn (2016) 1 Gödel Numbering We begin with Peano s axioms for the arithmetic of the natural numbers (ie number theory): (1) Zero is a natural number (2) Every

More information

Dual-Intuitionistic Logic and Some Other Logics

Dual-Intuitionistic Logic and Some Other Logics Dual-Intuitionistic Logic and Some Other Logics Hiroshi Aoyama 1 Introduction This paper is a sequel to Aoyama(2003) and Aoyama(2004). In this paper, we will study various proof-theoretic and model-theoretic

More information

Modal Logic XX. Yanjing Wang

Modal Logic XX. Yanjing Wang Modal Logic XX Yanjing Wang Department of Philosophy, Peking University May 6th, 2016 Advanced Modal Logic (2016 Spring) 1 Completeness A traditional view of Logic A logic Λ is a collection of formulas

More information

arxiv:math/ v1 [math.lo] 5 Mar 2007

arxiv:math/ v1 [math.lo] 5 Mar 2007 Topological Semantics and Decidability Dmitry Sustretov arxiv:math/0703106v1 [math.lo] 5 Mar 2007 March 6, 2008 Abstract It is well-known that the basic modal logic of all topological spaces is S4. However,

More information

Modal Logic: Exercises

Modal Logic: Exercises Modal Logic: Exercises KRDB FUB stream course www.inf.unibz.it/ gennari/index.php?page=nl Lecturer: R. Gennari gennari@inf.unibz.it June 6, 2010 Ex. 36 Prove the following claim. Claim 1. Uniform substitution

More information

Some consequences of compactness in Lukasiewicz Predicate Logic

Some consequences of compactness in Lukasiewicz Predicate Logic Some consequences of compactness in Lukasiewicz Predicate Logic Luca Spada Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada 7 th Panhellenic Logic

More information

Some Non-Classical Approaches to the Brandenburger-Keisler Paradox

Some Non-Classical Approaches to the Brandenburger-Keisler Paradox Some Non-Classical Approaches to the Brandenburger-Keisler Paradox Can BAŞKENT The Graduate Center of the City University of New York cbaskent@gc.cuny.edu www.canbaskent.net KGB Seminar The Graduate Center

More information

INSTANTIAL NEIGHBOURHOOD LOGIC

INSTANTIAL NEIGHBOURHOOD LOGIC INSTANTIAL NEIGHBOURHOOD LOGIC JOHAN VAN BENTHEM, NICK BEZHANISHVILI, SEBASTIAN ENQVIST, JUNHUA YU Abstract. This paper explores a new language of neighbourhood structures where existential information

More information

A SIMPLE AXIOMATIZATION OF LUKASIEWICZ S MODAL LOGIC

A SIMPLE AXIOMATIZATION OF LUKASIEWICZ S MODAL LOGIC Bulletin of the Section of Logic Volume 41:3/4 (2012), pp. 149 153 Zdzis law Dywan A SIMPLE AXIOMATIZATION OF LUKASIEWICZ S MODAL LOGIC Abstract We will propose a new axiomatization of four-valued Lukasiewicz

More information

Propositional and Predicate Logic - VII

Propositional and Predicate Logic - VII Propositional and Predicate Logic - VII Petr Gregor KTIML MFF UK WS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VII WS 2015/2016 1 / 11 Theory Validity in a theory A theory

More information

An easy completeness proof for the modal µ-calculus on finite trees

An easy completeness proof for the modal µ-calculus on finite trees An easy completeness proof for the modal µ-calculus on finite trees Balder ten Cate and Gaëlle Fontaine 1 University of California, Santa Cruz 2 ILLC, Universiteit van Amsterdam Abstract. We give a complete

More information

Bisimulation for conditional modalities

Bisimulation for conditional modalities Bisimulation for conditional modalities Alexandru Baltag and Giovanni Ciná Institute for Logic, Language and Computation, University of Amsterdam March 21, 2016 Abstract We give a general definition of

More information

On Modal Logics of Partial Recursive Functions

On Modal Logics of Partial Recursive Functions arxiv:cs/0407031v1 [cs.lo] 12 Jul 2004 On Modal Logics of Partial Recursive Functions Pavel Naumov Computer Science Pennsylvania State University Middletown, PA 17057 naumov@psu.edu June 14, 2018 Abstract

More information

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2.

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2. CHAPTER 2 Review 2.1 Definitions in Chapter 2 2.1 Set; Element; Member; Universal Set 2.2 Subset 2.3 Proper Subset 2.4 The Empty Set, 2.5 Set Equality 2.6 Cardinality; Infinite Set 2.7 Complement 2.8 Intersection

More information

Forcing in Lukasiewicz logic

Forcing in Lukasiewicz logic Forcing in Lukasiewicz logic a joint work with Antonio Di Nola and George Georgescu Luca Spada lspada@unisa.it Department of Mathematics University of Salerno 3 rd MATHLOGAPS Workshop Aussois, 24 th 30

More information

From Onions to Broccoli: Generalizing Lewis s counterfactual logic

From Onions to Broccoli: Generalizing Lewis s counterfactual logic From Onions to Broccoli: Generalizing Lewis s counterfactual logic Patrick Girard Stanford University May 18, 2005 Abstract We present a generalization of Segerberg s onion semantics for belief revision,

More information

An Independence Relation for Sets of Secrets

An Independence Relation for Sets of Secrets Sara Miner More Pavel Naumov An Independence Relation for Sets of Secrets Abstract. A relation between two secrets, known in the literature as nondeducibility, was originally introduced by Sutherland.

More information

Interpretability suprema in Peano Arithmetic

Interpretability suprema in Peano Arithmetic Arch. Math. Logic (2017) 56:555 584 DOI 10.1007/s00153-017-0557-4 Mathematical Logic Interpretability suprema in Peano Arithmetic Paula Henk 1 Albert Visser 2 Received: 28 January 2015 / Accepted: 12 May

More information

Kripke Models of Transfinite Provability Logic

Kripke Models of Transfinite Provability Logic Kripke Models of Transfinite Provability Logic David Fernández-Duque 1 Universidad de Sevilla Joost J. Joosten 2 Universitat de Barcelona Abstract For any ordinal Λ, we can define a polymodal logic GLP

More information

Bisimulation for Neighbourhood Structures

Bisimulation for Neighbourhood Structures Bisimulation for Neighbourhood Structures Helle Hvid Hansen 1,2 Clemens Kupke 2 Eric Pacuit 3 1 Vrije Universiteit Amsterdam (VUA) 2 Centrum voor Wiskunde en Informatica (CWI) 3 Universiteit van Amsterdam

More information

Stable formulas in intuitionistic logic

Stable formulas in intuitionistic logic Stable formulas in intuitionistic logic Nick Bezhanishvili and Dick de Jongh August 14, 2014 Abstract NNIL-formulas are propositional formulas that do not allow nesting of implication to the left. These

More information

23.1 Gödel Numberings and Diagonalization

23.1 Gödel Numberings and Diagonalization Applied Logic Lecture 23: Unsolvable Problems in Logic CS 4860 Spring 2009 Tuesday, April 14, 2009 The fact that Peano Arithmetic is expressive enough to represent all computable functions means that some

More information

First-Order Modal Logic and the Barcan Formula

First-Order Modal Logic and the Barcan Formula First-Order Modal Logic and the Barcan Formula Eric Pacuit Stanford University ai.stanford.edu/ epacuit March 10, 2009 Eric Pacuit: The Barcan Formula, 1 Plan 1. Background Neighborhood Semantics for Propositional

More information

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson Natural Deduction Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. An example 1. Validity by truth table 2. Validity by proof 2. What s a proof 1. Proof checker 3. Rules of

More information

Smart labels. Marta Bilkova Evan Goris Joost J. Joosten November 24, 2004

Smart labels. Marta Bilkova Evan Goris Joost J. Joosten November 24, 2004 Smart labels Marta Bilkova Evan Goris Joost J. Joosten November 24, 2004 Abstract The notion of a critical successor [djv90] has been central to all modal completeness proofs in interpretability logics.

More information

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas.

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas. 1 Chapter 1 Propositional Logic Mathematical logic studies correct thinking, correct deductions of statements from other statements. Let us make it more precise. A fundamental property of a statement is

More information

02 Propositional Logic

02 Propositional Logic SE 2F03 Fall 2005 02 Propositional Logic Instructor: W. M. Farmer Revised: 25 September 2005 1 What is Propositional Logic? Propositional logic is the study of the truth or falsehood of propositions or

More information

The McKinsey Lemmon logic is barely canonical

The McKinsey Lemmon logic is barely canonical The McKinsey Lemmon logic is barely canonical Robert Goldblatt and Ian Hodkinson July 18, 2006 Abstract We study a canonical modal logic introduced by Lemmon, and axiomatised by an infinite sequence of

More information

overview overview proof system for basic modal logic proof systems advanced logic lecture 8 temporal logic using temporal frames

overview overview proof system for basic modal logic proof systems advanced logic lecture 8 temporal logic using temporal frames overview advanced logic 2018 02 28 lecture 8 proof systems temporal logic using temporal frames overview proof system for basic modal logic extension: φ if φ is a tautology from prop1 proof systems temporal

More information

Towards A Multi-Agent Subset Space Logic

Towards A Multi-Agent Subset Space Logic Towards A Multi-Agent Subset Space Logic A Constructive Approach with Applications Department of Computer Science The Graduate Center of the City University of New York cbaskent@gc.cuny.edu www.canbaskent.net

More information

On Modal Systems with Rosser Modalities

On Modal Systems with Rosser Modalities On Modal Systems with Rosser Modalities Vítězslav Švejdar Appeared in M. Bílková and O. Tomala eds., The Logica Yearbook 2005: Proc. of the Logica 05 Int. Conference, pp. 203 214, Philosophia Praha, 2006.

More information

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz 1 Formal systems, Proof calculi A proof calculus (of a theory) is given by: 1. a language 2. a set of axioms 3. a set of deduction rules ad 1. The definition of a language

More information

03 Review of First-Order Logic

03 Review of First-Order Logic CAS 734 Winter 2014 03 Review of First-Order Logic William M. Farmer Department of Computing and Software McMaster University 18 January 2014 What is First-Order Logic? First-order logic is the study of

More information

Algebraizing Hybrid Logic. Evangelos Tzanis University of Amsterdam Institute of Logic, Language and Computation

Algebraizing Hybrid Logic. Evangelos Tzanis University of Amsterdam Institute of Logic, Language and Computation Algebraizing Hybrid Logic Evangelos Tzanis University of Amsterdam Institute of Logic, Language and Computation etzanis@science.uva.nl May 1, 2005 2 Contents 1 Introduction 5 1.1 A guide to this thesis..........................

More information

S4LP and Local Realizability

S4LP and Local Realizability S4LP and Local Realizability Melvin Fitting Lehman College CUNY 250 Bedford Park Boulevard West Bronx, NY 10548, USA melvin.fitting@lehman.cuny.edu Abstract. The logic S4LP combines the modal logic S4

More information

Characterizing the NP-PSPACE Gap in the Satisfiability Problem for Modal Logic

Characterizing the NP-PSPACE Gap in the Satisfiability Problem for Modal Logic Characterizing the NP-PSPACE Gap in the Satisfiability Problem for Modal Logic Joseph Y. Halpern Computer Science Department Cornell University, U.S.A. e-mail: halpern@cs.cornell.edu Leandro Chaves Rêgo

More information

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics Introduction Arnd Poetzsch-Heffter Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern Sommersemester 2010 Arnd Poetzsch-Heffter ( Software Technology Group Fachbereich

More information