Towards a Non-linear Extension of S. Author(s) ACCARDI, LUIGI; LU, YUN-GANG; OBATA. Citation 数理解析研究所講究録 (1996), 957: 1-15

Size: px
Start display at page:

Download "Towards a Non-linear Extension of S. Author(s) ACCARDI, LUIGI; LU, YUN-GANG; OBATA. Citation 数理解析研究所講究録 (1996), 957: 1-15"

Transcription

1 KURENAI : Kyoto University Researc Title Towards a Non-linear Extension of S Calculus(Quantum Stochastic Analysi Author(s) ACCARDI LUIGI; LU YUN-GANG; OBATA Citation 数理解析研究所講究録 (1996) 957: 1-15 Issue Date URL Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

2 $b_{t}^{\uparrow 2}$ and and Towards a Non-linear Extension of Stochastic Calculus LUIGI $\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}^{12)}$ $\mathrm{y}\mathrm{u}\mathrm{n}$-gang $\mathrm{l}\mathrm{u}^{23)}$ AND NOBUAKI $\mathrm{o}_{\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{a}^{1}}$) 1) Graduate School of Polymathematics Nagoya University Nagoya Japan 2) Centro Matematico Vito Volterra Universit\ a di Roma Roma Italia 3) Dipartimento di Matematica Universit\ a di Bari Bari Italia Introduction In a series of recent works [3] [4] [5] [6] a new approach to quantum stochastic calculus has been launched out through the study of stochastic limit of quantum theory This new approach is not based upon a quantum It\^o theory but upon a new type of distribution theory on simplexes and reveals intrinsic features of quantum white noise Meanwhile independently of that quantum stochastic processes have been discussed on the basis of white noise (Hida) distribution theory [11] [12] [19] [20] [21] This approach seems useful for studying differential equations for Fock space operators involving higher powers of quantum white noises at least for the existence and uniqueness of a solution in a distribution sense [22] Thus it is quite natural to ask what can be said by combining the above two ideas together In the present paper we discuss the simplest problem of a unitary equation driven by $b_{t}^{2}$ which is already beyond the reach of the It\^o or Hudson-Parthasarathy stochastic calculus Although our argument stays at somehow formal level it is most plausible that we are led along a new direction towards a non-linear stochastic calculus 1 Classsical and quantum stochastic calculi Classsical stochastic calculus was initiated by It\^o [14] It gives a meaning to equations of the form $df(x_{t})=zf(x_{t})dt+lf(x_{t})dw_{t}$ (11) where $W=W_{t}$ is the standard $\mathbb{r}^{d}$-valued Brownian motion starting at zero and are $L$ $Z$ $\mathbb{r}^{d}$ respectively a second order and a first order differential operators on $f\in S(\mathbb{R}^{d})$ Here the Schwartz test function space can be replaced with a larger function space but for the moment we stick to this choice Equation (11) is interpreted as a symbolic notation for the integral equation: $f(x_{t})=f(x_{0})+ \int_{0}^{t}zf(x)sds+\int_{0}^{t}lf(x_{s})dw_{s}$ (12) where the second integral is a stochastic integral Equation (12) can be shown to admit a unique solution for any initial condition of the form $X(0)=X_{0}$ where is a random $X_{0}$ variable wich is measurable with respect to a $\sigma$-algebra independent of that of $W$

3 is 2 Quantum stochastic calculus was initiated by Hudson and Parthasarathy [13] It gives a meaning to equations of the form $du_{t}=(ddb^{\uparrow_{-}}td \mathrm{t}dbt+(-\frac{\gamma}{2}d^{\uparrow D}+iH)dt)U_{t}$ $U_{0}=I$ (13) where the pair is the Fock Brownian motion with variance $(B_{tt}^{\uparrowB})$ $\gamma>0$ acting on the Boson Fock space and $\Gamma(L^{2}(\mathbb{R}))$ $D$ $H=H^{*}$ $\mathcal{h}_{s}$ are operators on a Hilbert space Thus $U_{t}$ will be an operator $\mathcal{h}_{s}\otimes\gamma(l^{2}(\mathbb{r}))$ acing on More $L^{2}(\mathbb{R})$ generally one can replace by $\mathcal{k}$ $L^{2}(\mathbb{R})\otimes \mathcal{k}$ where any Hilbert space see eg [17] [23] Equation (13) is interpreted as a symbolic notation for the integral equation $U_{t}=1+ \int_{0}^{t}(ddb^{1}-sd\dagger db_{s})us+\int_{0}^{t}(-\frac{\gamma}{2}d^{\mathrm{t}}d+\dot{i}h)dsu_{s}$ (14) where the first integral is a quantum stochastic integral Equation (13) can be shown to admit a unique solution which is a unitary operator $\mathcal{h}_{s}\otimes\gamma(l^{2}(\mathbb{r}))$ on the space whenever the operators $D$ and $H$ satisfy some conditions Quantum stochastic calculus includes the classical one Let $(\Omega P F)$ be the probability space of $W$ Then each random variable of the process $X_{t}$ $j_{t}$ defines an homomorphism : $S(\mathbb{R}^{d})arrow S(\mathbb{R}^{d})\otimes L^{\infty}(\Omega P \mathcal{f})$ by it$(f)=f(xt)$ (15) $j_{t}$ The family of homomorphisms characterizes the process and constitutes a natural algebraic characterization of it On the other hand the classical Brownian motion $W$ can be realized $W_{t}=B_{t}+B_{t}^{\mathrm{t}}$ as an operator process (ie ) on the $\Gamma(L^{2}(\mathbb{R}))$ $\mathcal{h}_{s}$ Fock space is a Hilbert space corresponding to a space of possible initial conditions for the It\^o equation (11) the process $f(x_{t})$ can be thought as a multiplication operator on $\mathcal{h}_{s}\otimes\gamma(l^{2}(\mathbb{r}))$ the space and $j_{t}$ the classical flow defined by (15) is given by $j_{t}(f)=f(x_{t})=u_{t}^{*}f(x_{0})u_{t}$ $U_{t}$ where is the solution of a QSDE of the form (13) for an appropriate choice of the coefficients operator $D$ $j_{t}$ see [9] [10] [23] Thus the flow plays a crucial role in the link between classical and quantum stochastic processes see eg [7] 2 Stochastic limit As is clear from the previous section for a generalization of stochastic calculus fundamental object to start with is the flow or the associated one-parameter family of unitary $j_{t}$ $U_{t}$ operators The stochastic limit of quantum theory developed recently in [6] suggests a $U_{t}$ new possibility of constructing unitary operators The starting point of this theory is not a stochastic equation but a usual Schr\"odinger equation in interaction representation: $\partial_{t}u_{t}=-\dot{i}\lambda H_{I}(t)U_{t}$ $U_{0}=I$ (21)

4 3 where $\lambda>0$ is a coupling constant For example $H_{I}(t)$ is given as $H_{I}(t)=e^{itH_{0}}(D\otimes A^{\dagger}(g)+D^{\mathrm{t}}\otimes A(g))e^{-itH_{0}}$ $H_{0}=H_{\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}}\mathrm{m}+H_{\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}}\mathrm{r}\mathrm{v}\circ:\mathrm{r}$ which is known as a Hamiltonian of laser type A simple case would be $H_{I}(t)=D\otimes A_{t}^{\uparrow}+D\dagger\otimes A_{t}$ $A_{t}=A(S_{t}g)$ The (formal) solution of (21) is given by the iterated series: $U_{t}$ $I+(-i \lambda)\int_{0}^{t}dt_{1}hi(t1)ut_{1}$ $I+ \sum_{n=1}^{\infty}(-i\lambda)^{n}\int^{t}\mathrm{o}dt_{1}\int_{0}^{t}1td2\ldots\int^{t_{n}}0)-1di_{n}h_{i}(t1)hi(t_{2})\cdots H_{I}(t_{n}$ Particularly interesting is the scaling limit of (21) according to the law which $tarrow t/\lambda^{2}$ is motivated both by mathematics (central limit theorem) and by physics (Friedrichs-van Hove rescaling) The rescaled solution is $U_{t/\lambda}^{(\lambda)}2$ $I+ \sum_{n=1}^{\infty}(-i\lambda)^{n}\int^{t}0\int_{0}^{t_{1}}/\lambda 2\ldots t_{n-1}dt_{1}dt2\int \mathrm{o}(dt_{n}hi(t_{1})hit_{2})\cdots HI(t)n$ $I- \dot{i}\lambda\int_{0}^{t/\lambda^{2}}dt_{1}hi(t_{1})-\lambda^{2}\int_{0}^{t/\lambda^{2}}dt1\int_{0}^{t_{1}}dt_{2}hi(t_{1})h_{i}(t_{2})+\cdots$ (22) and the rescaled equation is of the form: $\partial_{t}u_{t}^{()}/\lambda^{2}\lambda=-i(d\otimes A_{t}^{(\lambda)\uparrow}+D^{\uparrow}\otimes A_{t}^{(\lambda)})U_{/\lambda^{2}}t(\lambda)$ $U_{0}^{(\lambda)}=I$ (23) $\lambdaarrow 0$ It was proved in [3] that the iterated series solution (22) converges as to the solution $H \kappa D^{\uparrow}D$ $\kappa\in \mathbb{r}$ of the quantum stochastic differential equation (13) with in the sense of quantum convergence in law More recently it has been proved in [5] that the iterated series solution (22) converges term by term to the same limit in the same sense as above to the iterated series solution of the distribution equation $\partial_{t}u_{t}=-i(d\otimes b_{t}^{\uparrow}+d^{\uparrow}\otimes b_{t})u_{t}$ $U_{0}=I$ (24) where $b_{t}^{1}$ variance $b_{t}$ are the annihilation and creation operators of the Boson Fock white noise with $\gamma=\int_{-\infty}^{\infty}\langle g S_{t}g\rangle dt>0$ It is known that $b_{t}^{\uparrow}$ $b_{t}$ are characterized (up to unitary equivalence) by the algebraic relations [ $b_{t}$ $b_{s}^{1]}$ $\gamma\delta(s-t)$ $t$ $s\in \mathbb{r}$ (25) $b_{t}\phi$ $0$ $t\in \mathbb{r}$ where $\Phi$ is the Fock vacuum

5 4 3 The white noise approach to stochastic calculus Equation (24) has a well-defined meaning in terms of matrix elements in the number vectors Let us recall from [5] how to give an intrinsic meaning to equation (24) This shall be useful for comparison with the nonlinear extension of this equation to be discussed below The number vectors are defined by the realtion $b_{t}^{\mathrm{t}}\cdots b_{t_{k}}^{\dagger}\phi 1= t_{1}$ $\cdots$ (31) $t_{k}\rangle$ $\phi_{1}$ which has to be interpreted in the distribution sense ie for any test functions $S(\mathbb{R})$ one defines $\cdots$ $\phi_{k}\in$ $t_{k}\rangle$ $b \dagger(\phi_{1})\cdots b\uparrow(\phi_{k})\phi=\int dt_{1}\cdots\int dt_{k}\phi_{1}(t_{1})\cdots\phi k(t_{k}) t1$ $\cdots$ (32) In what follows we put $D=I$ for simplicity Then (24) becomes and its weak formulation is $\partial_{t}u_{t}=-\dot{i}(b_{t}^{\dagger}+b_{t})u_{t}$ $U_{0}=I$ (33) $\partial_{t}\langle s_{1} \cdots S_{h} U_{t} t_{1} \cdots tk\rangle=-i\langle S1 \cdots sh (b_{t}+b_{t}\uparrow)ut t1 \cdot i\cdot tk\rangle$ $=-i \sum_{j=1}\gamma\delta(t-hs_{j})\langle s1 \cdots sj\wedge \cdot Sh U_{t} t_{1} \cdots t_{k}\rangle$ $-i\langle t S_{1} \cdots S_{h} Ut t_{1} \cdots t_{k}\rangle$ (34) The right hand side of equation (34) is still a distribution To reduce everything to ordinary functions one interprets (33) as the integral equation $U_{t}=I-i \int_{0}^{t}(b_{s}\dagger+b_{s})u_{s}ds$ (35) Then $\langle s_{1h}\ldots S U_{t} t1 \cdotstk\rangle=$ $=\langle s1 \cdots Sh t1 \cdots tk\rangle$ $-i \sum_{1j=}^{h}\gamma\int_{0}t \delta(s-sj)\langle_{s_{1}\cdotss_{j}^{\wedge}} \cdots ShUS t1 \cdots tk\rangle d_{s}$ $- \dot{i}\int_{0}^{t}\langle_{ss_{1}} \cdots sh US t1 \cdots tk\rangle d_{s}$ $=\langle s1 \cdots Sh t1 \cdots tk\rangle$ $-i \gamma\sum_{j=1}^{h}\chi 10t](S_{j})\langle_{S}1 \cdots S^{\wedge}j \cdots sh U_{S} jt_{1} \cdots t_{k}\rangle$ $- \dot{i}\int_{\mathbb{r}}\chi[0t](s)\langle_{s} S1 \cdots Sh U_{s} t_{1} \cdots tk\rangle d_{s}$ (36)

6 $\bullet$ $\bullet$ r$ $b_{t}^{\dagger}$ 5 In view of we replace $U_{t}=\langle\partial_{S}U_{S} x_{[0}t](s)\rangle$ $\chi_{[0t]}$ in (36) with $\phi\in S(\mathbb{R})$ to obtain $\langle s_{1} \cdots S_{h} \langle\partial_{ss}u \phi\rangle t_{1k}\ldots t\rangle=$ $=\langle s_{1h}\ldots S t1 \cdots tk\rangle$ $-i \gamma\sum_{=j1}^{h}\phi(s_{j})\langle s1 \cdots s_{j}\cdot S_{h}\wedge U_{s} jt_{1} \cdots t_{k}\rangle$ $- \dot{i}\int_{\mathbb{r}}\phi(_{s})\langle S S_{1} \cdots Sh Us t_{1} \cdots tk\rangle d_{s}$ So the equation (33) has an meaning weakly on number vectors A similar discussion can be done for the exponential vectors In order to identify the distribution equation (33) with a quantum stochastic equation it is convenient to write equation (33) in normal form Since $\partial_{t}u_{t}=-\dot{i}(b_{tt}\uparrow U+U_{t}b_{t}+[b_{t} U_{t}])$ in order to bring equation (24) into a normal form we have to calulate the commutator $[b_{t} U_{t}]$ This is done through the following result [1] [6] $U_{t}$ Theorem 31 If is a solution of (13) with $H=\kappa D\dagger D$ then $[b_{t} U_{t}]=\gamma-DU_{t}$ $\gamma-=\frac{\gamma}{2}-i\kappa$ where the identity is understood weakly on the exponential or number vectors The proof of Theorem 31 is based upon two fundamental principles of the quantum white noise theory on the standard simplex established in [5] $b_{t}$ The causal commutator rule When the operators in the iterated series for $U_{t}$ are brought into a normal ordered form we must not use the usual commutation relation (25) but the causal commutation relation defined by [ $b_{\sigma}$ $b^{\uparrow]}\mathcal{t}=\gamma_{-}\delta+(\sigma-\tau)$ $\sigma\geq\tau$ (37) $\delta_{+}$ $\gamma_{-}$ where is a complex number and is the causal delta function on a simplex Notice that the causal commutator is defined only for a (the time index of annihilator) $\prime greater than (the time index of creator) So the causal commutator rule should not be interpreted as a new commutation relation but only as a rule to bring in normal order the creation and annihilation operator which appear in the iterated series The principle of consecutive times Any commutator of the form $\int_{0}^{t}$ [ Us] $bt$ $ds$ vanishes identically This is in fact a corollary of the principle of consecutive times but is all we shall need in the present paper

7 $b_{t}^{\uparrow}$ 6 From Theorem 31 it follows that the normal form of (33) is given by Similarly the normal form of (24) is given as $\partial_{t}u_{t}=-i(b_{tt}^{\uparrow U}+U_{t}b_{t}+\gamma_{-}U_{t})$ (38) $\partial_{t}u_{t}=-\dot{i}(db_{t}^{\uparrow U_{t}}+D^{\mathrm{t}}Utbt+\gamma_{-D^{\mathrm{t}_{DU}}}t)$ (39) where short hand notation such as $D=D\otimes I$ $b_{t}=i\otimes b_{t}$ is used This result solves the above conjecture affirmatively In fact by taking matrix elements in the exponential vectors of both sides of the two equations (33) and (38) one easily obtains the same ordinary differential equation The above argument suggests a new approach to stochastic calculus based directly on white noise and not through the intermediate Brownian motion The basic idea of this approach can be formulated as follows: 1 Write an equation in normal form: $\partial_{t}u_{t}=ab^{\dagger}tut+bu_{t}b_{t}+cu_{t}$ $U_{0}=I$ (310) where $A$ $B$ $C$ are system operators 2 Prove the existence and uniqueness of the solution in terms of operator symbols $q_{t}(fg)=\langle\psi_{f} U_{t}\psi_{g}\rangle$ where $\psi_{f}$ $\psi_{g}$ are exponential vectors 3 Prove a regularity condition showing that the solution of equation (310) is a bona fide operator and not only a distribution 4 Formulate the unitarity condition for $U_{t}$ namely $U_{t}^{*}U_{t}=U_{t}U_{t}^{*}=I$ and prove it In the paper [5] this program was realized for the usual (classical and quantum) stochastic calculi The advantage of this formulation with respect to the traditional ones lies in the fact that it naturally suggests the problem of extending equation (33) to the case of an equation which is still normally ordered but now depending on higher powers of the white noise $b_{t}$ Such equations had already been studied in the theory of white noise and existence and uniqueness theorems in the space of Hida distributions are already available [22] It is therefore a natural program to combine the result of [22] with the above mentioned ones and to investigate regularity and unitarity 4 Non-linear white noise stochastic calculus In order to realize the program described at the end of the previous section we have to overcome two competing requirements On the one hand we would like to start with an equation in a normally ordered form On the other hand we come to a non-trivial task of recognizing the unitarity condition in an equation in normal form The advantage of the singular Hamiltonian formulation of equation (24) is that the formal unitarity condition is

8 \mathit{1})$ 7 automatically satisfied Namely one can hope that if one starts from a formally unitary equation and then puts it in normal order one obtains an equation whose solution is effectively unitary We are more interested in realizing this program in the non-linear case Again we can apply the two basic principles formulated in the previous section because they are universally valid in the Fock space and do not depend in any way on the linearity of the equation In fact they do not depend at all on any particular equation but are intrinsic properties of the Boson Fock white noise calculus Thus our starting point shall be the equation $\partial_{t}u_{t}=-i(b_{t}\uparrow 2+b_{t}^{2})U_{t}$ $U_{0}=1$ (41) or in the integral form: $U_{t}=1-i \int_{0}^{t}(b_{s}^{\mathrm{t}}2+b_{s}^{2})u_{s}ds$ (42) Our first goal is to give a meaning to it Contrary to the linear case equation (42) has no meaning even weakly on the number vectors In fact if we calculate formally the matrix elements of the both sides of (42) with respect to two number vectors we obtain the expression: $\langle s_{1h}\ldots S U_{t} t1 \cdots tk\rangle=$ $=\langle s1 \cdots Sh t1 \cdotstk\rangle$ $st\delta(s-s\alpha)\delta(s-s\beta)\langle s_{1} \cdots\overline{s}\cdots\overline{s}\alpha \betah U_{S} t_{1} \cdots t_{k}\rangle d_{s}$ $- \dot{i}\sum_{\alpha\neq\beta}\gamma^{2}\int 0\ldots$ $- \dot{i}\int_{0}^{t}\langle s s S_{1h}\ldots S Us t1 \cdots tk\rangle d_{s}$ which involves the ill-defined product of two $\delta$-functions In order to give a meaning to equation (41) we adopt a different approach which can be considered as an elaborated version of the scheme of thought one applies when in usual distribution theory one wants to give a meaning to the derivative of a non-differentiable function We use the commutation relations to write equation (41) in normal form In doing so we shall meet some ill-defined quantities such as the $\delta$-function evaluated at zero! $\delta(0)$ However as we shall see below these ill-defined quantities appear only as formal additive constants in the Hamiltonian equation and therefore can be eliminated by a subtraction procedure which is well known in physics under the name of renormalization Once written in this form and once the ill-defined quantities have been subtracted the equation has a weak meaning on the number vectors We take this normal form as the definition of the a priori meaningless equation (41) $(\mathit{4}\cdot Lemma 41 Any (formal) solution of equation relations: satisfies the following commutation $[b_{t} U_{t}]=-2i\gamma_{-b}tt\uparrow U$ (43) $[b_{t} U_{t}^{*}]=2_{\dot{i}}\gamma-U_{tt}*b\mathrm{t}$ (44) $[U_{t}^{*} b_{t}^{\mathrm{t}}]=2i\overline{\gamma_{-u}}t*b_{t}$ (45) $[U_{t} b_{t}^{\uparrow}]=-2i\overline{\gamma-}b_{tt}u$ (46)

9 8 PROOF Writing equation (41) in the integral form: $U_{t}=I-i \int_{0}^{t}(b^{\uparrow 2}S+b_{s}^{2})U_{s}ds$ we obtain $[b_{t} U_{t}]$ $[b_{t} I]- \dot{i}\int_{0}^{t}[b_{t} (b_{s}^{\uparrow 2}+b_{s}^{2})Us]ds$ $-i \int_{0}^{t}[b_{t} (b_{s}^{ 2}+b_{s}^{2})]Usds-\dot{i}\int_{0}^{t}(b_{S}^{\dagger}2+b_{S}^{2})[b_{t} U_{S}]dS$ (47) Using $[b_{t} (b_{s}^{ 2}+b_{s}^{2})]=[b_{t} b_{s}^{\dagger 2}]=[b_{t} b_{s}^{\uparrow}]b_{s}^{\uparrow}+b_{s}^{\mathrm{t}}[bt b^{\dagger}]s=2\gamma_{-\delta_{+}}(t-s)bs\dagger$ and the time consecutive principle $\int_{0}^{t}[b_{t} U_{S}]ds=0$ we see that the right hand side of (47) becomes $=-i \int_{0}^{t}2\gamma-\delta+(t-s)b_{s} U_{s}d_{S}=-2i\gamma_{-}b_{t}^{\dagger}U_{t}$ This proves (43) The remaining relations are proved similarly qed Lemma 42 We have formal identities: $[b_{t}^{2} U_{t}]=-i4\gamma_{-b_{t}}tbt-\dagger_{U}2i\gamma_{-^{\delta_{+}(}}^{2}\mathrm{o})U_{t}-4\gamma_{-t}^{2}b^{\dagger}U_{t}2$ (48) $[U_{t}^{*} b_{t}\dagger 2]=i4\overline{\gamma}_{-}b_{t}^{1*}Utbt+2_{\dot{i}}\overline{\gamma}_{-+}^{2}\delta(\mathrm{o})U^{*}t-4\overline{\gamma}_{-t}U*b_{t}^{2}2$ (49) $[b_{t}^{2} U_{t}^{*}]=4(\dot{i}\gamma_{-}-\gamma-)2b^{\uparrow Ub_{t}-8(}tt* \gamma- ^{2}+\dot{i}\gamma_{-})U_{t}*b_{t}^{2}+2i\gamma_{-}^{2}U_{t}*\delta_{+}(0)$ (410) where $\delta_{+}(0)=[b_{t} b_{t}^{\uparrow}]$ is a formal quantity PROOF Note first that $[b_{t}^{2} U_{t}]=b_{t}[b_{t} U_{t}]+[b_{t} U_{t}]b_{t}$ Since $[b_{t} U_{t}]=-2_{\dot{i}}\gamma_{-b}tU\dagger t$ by Lemma 41 (43) we obtain $[b_{t}^{2} U_{t}]$ $b_{t}(-2i\gamma-b^{\uparrow_{u)}}tt+(-2_{\dot{i}}\gamma_{-}b_{t}\uparrow U_{t})bt$ $-2_{\dot{i}}\gamma_{-^{b_{t}}}b_{t}^{\mathrm{t}}U_{t}-2\dot{i}\gamma_{-b_{tt}^{\uparrow_{U_{t}}}}b$ $-2i\gamma-([bt b_{t}^{\uparrow}]+b_{t}^{\mathrm{t}}b_{t})u_{t}-2_{\dot{i}}\gamma-b^{\dagger}tu_{t}b_{t}$ Introducing a formal quantity $\delta_{+}(0)=[bt$ $bt\mathrm{t}_{]}$

10 9 we continue the calculation: $-2_{\dot{i}}\gamma-(\gamma_{-}\delta(0)+b_{t}\uparrow b_{t})ut-2i\gamma_{-}b_{t}^{\uparrow}u_{tt}b$ $-2_{\dot{i}}\gamma_{-^{\delta(}}^{2}\mathrm{o})U_{t}-2i\gamma-b_{t}\dagger_{b}Utt-2\dot{i}\gamma-b_{t}^{\dagger}U_{tt}b$ $-2i\gamma_{-^{\delta(0}}^{2})Ut-2_{\dot{i}}\gamma-b^{\dagger}t([b_{t} U_{t}]+U_{t}b_{t})-2i\gamma_{-}b^{\mathrm{t}_{U}}ttbt$ $-2i\gamma_{-}^{2}\delta(0)U_{t}-2i\gamma-b_{t}\dagger(-2i\gamma_{-^{b^{\mathrm{t}}}}tU_{t}+U_{t}b_{t})-2i\gamma_{-b^{1}U_{t}b}tt$ $-2_{\dot{i}}\gamma^{2}-\delta(\mathrm{o})Ut-4\gamma_{-tt}^{2}b\mathrm{t}2-2_{\dot{i}}\gamma_{-b_{t}U_{t}}U\dagger bt-2i\gamma_{-}bt\dagger U_{tt}b$ $-2_{\dot{i}}\gamma_{-^{\delta(}}^{2}\mathrm{o})U_{t}-4\gamma_{-}^{2\dagger \mathrm{t}}b_{t}2ut-4\dot{i}\gamma-btutb_{t}$ This proves (48) whose adjoint is (49) We then prove (410) Note that $[b_{t} U_{t}^{*}]$ $2_{\dot{i}}\gamma_{-U^{*}}tb_{t}^{1}$ $2i\gamma-([U_{t t}^{*}b^{\dagger}]+b_{t}^{\dagger}u_{t}^{*})$ $2i\gamma-(2i\overline{\gamma}-U^{*}b_{t}t+b_{t}^{\uparrow_{U_{t}^{*}})}$ $-4 \gamma- ^{2}U^{*}btt+2_{\dot{i}}\gamma_{-}b_{t}^{1U_{t}^{*}}$ (411) Then $[b_{t}^{2} U_{t}^{*}]$ $b_{t}[b_{t} U_{t}*]+[b_{t} U_{t}^{*}]b_{t}$ $b_{t}(-4 \gamma- ^{2}U_{tt}*b+2i\gamma-b_{t}^{\dagger*}U_{t})+(-4 \gamma- ^{2}U_{tt}*b+2i\gamma_{-}btU *t)bt$ $-4 \gamma- 2b_{t}U*b_{t}t+2i\gamma_{-b_{t}b}tt-\dagger_{U^{*}}4 \gamma- 2U*b_{t}t2+2i\gamma-b_{t}^{\dagger}U_{t}*b_{t}$ (412) The first two terms are to be computed In view of (411) we have $-4 \gamma- 2b_{t}U*b_{t}t$ $-4 \gamma- 2([b_{t} U*]t+U_{t}^{*}b_{t})b_{t}$ $-4 \gamma_{-} ^{2}(-4 \gamma- ^{2}U^{*}b_{t}t+2_{\dot{i}}\gamma-b^{\uparrow U^{*}}tt+U_{t}^{*}b_{t})b_{t}$ $-4 \gamma- 2(1-4 \gamma- 2)U_{tt}^{*}b^{2}-8\dot{i} \gamma- ^{2}\gamma-btU^{*}\uparrow btt$ and $2i\gamma_{-}btb_{tt}\uparrow_{U^{*}}$ $2_{\dot{i}}\gamma-([bt b_{t}^{\uparrow}]+b_{t}^{\uparrow}b_{t})u_{t}^{*}$ $2i\gamma-(\gamma_{-}\delta_{+}(\mathrm{o})+b_{t}^{\mathrm{t}}b_{t})U^{*}t$ $2i\gamma_{-^{\delta}+}^{2}(0)U_{t}*+2_{\dot{i}}\gamma_{-}b_{t}\uparrow_{b_{t}U_{t}}*$ $2i\gamma_{-}^{2}\delta+(\mathrm{o})U_{t}*+2_{\dot{i}}\gamma_{-b_{t}}(\dagger[b_{tt}U^{*}]+U_{t}^{*}b_{t})$ Using (411) to obtain $2_{\dot{i}}\gamma-b_{t}b^{1}tU^{*}t$ $2i\gamma_{-}^{2}\delta+(\mathrm{o})U_{t}*+2_{\dot{i}}\gamma-b_{t}^{\dagger}(-4 \gamma_{-} ^{2*}Utb_{t}+2i\gamma-b_{tt}^{1}U*+U_{t}^{*}b_{t})$ $2i\gamma_{-^{\delta}+}^{2}(0)U_{t}*+2i\gamma-(1-4 \gamma- 2)b_{l}^{\dagger_{U_{t}^{*}b}}t-4\gamma_{-^{b_{t}U_{t}}}^{2\dagger}2*$ Then (412) becomes $[b_{t}^{2} U_{t}^{*}]$ $-4 \gamma- 2(1-4 \gamma_{-} 2)U*b_{t}^{2}-8i t\gamma- ^{2}\gamma-b_{t} U_{t}*b_{t}$ $+2i\gamma_{-}^{2}\delta(0)U_{t}*+2i\gamma-(1-4 \gamma- 2)b_{tt\gamma^{2}}^{\uparrow U_{t}^{*}}b-4-b^{\dagger 2*}tU_{t}$ $-4 \gamma_{-} ^{2}U_{tt}^{*}b^{2}+2i\gamma_{-}b_{t}^{\uparrow}U^{*}btt$ $-8 \gamma- 2(1-2 \gamma_{-} ^{2})U_{t}^{*}b_{t}^{2}+4i\gamma-(1-4 \gamma- 2)b_{t}\dagger U*btt+2_{\dot{i}}\gamma_{-}^{2}\delta(0)U_{t}*$

11 \mathit{1})$ 10 as desired qed Proposition 43 The normal form of equation $(\mathit{4}\cdot is $\partial_{t}u_{t}=i(4\gamma_{-}^{2}-1)b_{t}^{\dagger\uparrow_{u_{t}}(}2-b_{tt}b_{t}-iuut4\gamma_{-}b2-t2\gamma^{2}-\delta_{+}0)u_{t}$ whose adjoint form is $\partial_{t}u_{t}^{*}=-i(4\overline{\gamma}_{-}2-1)u*b^{2}-tt\overline{\gamma}_{-}b_{t}^{\mathrm{t}*}u_{tt}bt+ib^{\dagger 2}tU^{*}-2\overline{\gamma}2-\delta+(40)U_{t}*$ PROOF This follows from Lemma 42 and the identity $\partial_{t}u_{t}=-i(b_{t}\uparrow 2+b_{t}^{2})U_{t}=-\dot{i}b_{tt}^{12}2U_{t}-iUb-ti[b_{t}2 Ut]$ We have thus put equation (41) in normal form Then as an application of a general theorem on normally ordered equations driven by white noise [22] we can guarantee the existence and uniqueness of its solution at least in the space of white noise (Hida) distributions To be more precise let be the Gelfand triple of white noise $(E)\subset\Gamma(L^{2}(\mathbb{R}))\subset(E)^{*}$ functions for more details see [15] [18] Lemma 44 Let $A$ $B$ $C$ be bounded operators on $\mathcal{h}_{s}$ $\partial_{t}u_{t}=ab_{t}^{\uparrow 2}U_{t}+Bb_{tt}^{\dagger_{Ub_{t}}}+CU_{t}b_{t}^{2}$ $U_{0}=I$ admits a unique solution in the space $\mathcal{l}(\mathcal{h}_{s}\otimes(e) \mathcal{h}_{s}\otimes(e)^{*})$ Then the differential equation qed The proof follows by modifying the result [22 \S 5] where the initial space $\mathcal{h}_{s}$ into account is not taken 5 The normal form of the flow equation In order to study the isometricity condition for the solution of the equation (41) we start with the flow equation $j_{t}(x)=u^{*}xutt=x_{t}$ (51) where $x$ commutes with $b_{t}$ and Lemma 51 It holds that $b_{t}^{\uparrow}$ We need some preliminary lemmas $U_{t}*b_{t}\uparrow U_{t}b_{t}$ $\frac{1}{1-4 \gamma_{-1^{2}}}b_{ttt}^{\uparrow U_{t}Ub+\frac{2i\overline{\gamma}_{-}}{1-4 \gamma_{-1^{2}}}uu}*tt*tb^{2}$ (52) $b_{tt}^{\dagger_{u_{t}^{*}b}}u_{t}$ $\frac{1}{1-4 \gamma_{-1^{2}}}b_{t}^{\dagger_{u_{t}^{*}u_{t}} 2*}b_{t}-\frac{2_{\dot{i}}\gamma_{-}}{1-4 \gamma_{-1^{2}}}b_{tt}uu_{t}$ (53)

12 11 PROOF By a direct calculation one obtains $U_{t}^{*}b_{tt}\uparrow Ub_{t}$ $b_{ttt}^{\mathrm{t}_{u}*}ub_{t}+[u_{t}^{*} b_{t}^{\dagger}]u_{t}b_{t}$ $b_{t}^{\mathrm{t}}u_{tt}^{*}ubt+2i\overline{\gamma}_{-}u_{t}*b_{t}utb_{t}$ $b_{t}^{\mathrm{t}_{u_{t}}*}u_{t}b_{t}+2i\overline{\gamma}_{-}u_{t}^{*}([b_{t} U_{t}]+U_{t}b_{t})b_{t}$ $b_{t}^{\mathrm{t}}u_{t}^{*}u_{tt}b+2_{\dot{i}}\overline{\gamma}_{-}u_{t}*(-2i\gamma-b^{\uparrow U_{t}}t+U_{t}b_{t})b_{t}$ $b_{t}\dagger U_{t}*Utb_{t}+4 \gamma- ^{2}U_{t}^{*}btU\dagger btt+2i\overline{\gamma}_{-}u^{*}ub^{2}ttt$ Therefore $(1-4 \gamma- 2)U_{t}^{*}b_{t}^{\mathrm{t}_{U_{t}}}b_{t}=b_{t}^{\mathrm{t}_{U_{t}}*}U_{t}b_{t}+2_{\dot{i}}\overline{\gamma}_{-}U*U_{t}b^{2}tt$ which proves (52) qed Lemma 52 Denoting $\alpha=\frac{1}{1-4 \gamma_{-1^{2}}}$ one has $U_{t}^{*}b_{t}^{2}U_{t}$ $\frac{-2i\gamma_{-}^{2}-8i \gamma_{-} ^{4}}{1-16 \gamma- ^{4}}\delta_{+}(0)U^{*}tU_{t}+\alpha U_{t}^{*}2Utb^{2}t$ $-4i\gamma_{-^{\alpha buu_{t}b}}ttt-2\dagger*4\gamma_{-^{\alpha^{2}}}^{2}b_{t}\uparrow 2U*tU_{t}$ (54) PROOF For the proof we first compute $U_{t}^{*}b_{t}^{2}U_{t}=U_{t}^{*}[b_{t}^{2} U_{t}]+U_{t}^{*}U_{t}b_{t}^{2}$ We know from (48) that Hence $[b_{t}^{2} U_{t}]=-i4\gamma_{-b}t\mathrm{t}_{Utbt-}2\dot{i}\gamma 2\delta-+(0)U_{t}-4\gamma-btU_{t}2\dagger 2$ $U_{t}^{*}b_{t}^{2}U_{t}$ $U_{t}^{*}(-\dot{i}4\gamma_{-b}t-2\dot{i}\gamma b_{t}-^{\delta}+(\dagger_{u_{t}}20)ut-4\gamma^{2}-b_{t}\mathrm{t}2u_{t})+u_{t}^{*}u_{t}b_{t}^{2}$ $-4i\gamma_{-}U_{t}*b^{\dagger*}tUtb_{t}-2i\gamma^{2}-^{\delta()U^{*}}+0U_{t}Ut-4\gamma^{2}-tb_{t}^{\mathrm{t}2}Ut+U_{t}^{*}U_{t}b_{t}^{2}$ $U^{*}Ub^{2}-ttt2\dot{i}\gamma^{2}-^{\delta}+(0)U^{*}Ut-4i\gamma-U*b^{\mathrm{t}_{U}2}b-4\gamma-^{U}ttUttttt*b^{\uparrow 2}t$ (55) It follows from (52) that $-4i \gamma_{-u_{t}}b^{1u}tb*tt=\frac{-4_{\dot{i}}\gamma_{-}}{1-4 \gamma_{-1^{2}}}b\uparrow Utt*Utbt+\frac{8 \gamma_{-} ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}*u_{t}b_{t}^{2}$ On the other hand $-4\gamma_{-^{U_{t}b^{\dagger 2}}}^{2*}tUt$ $=-4\gamma_{-}^{2}([U_{t}^{*} bt]\dagger 2\dagger 2U+btt*)Ut$ $=-4\gamma_{-((}^{2}i4\overline{\gamma}_{-t}b^{\mathrm{t}2}U_{t}*bt+2_{\dot{i}}\overline{\gamma}_{-+}\delta 0)U^{*}-t4\overline{\gamma}^{2*}-U_{tt}b^{2}+b_{t}^{\dagger}U*)2U_{t}t$ $=-4\gamma_{-}^{2}(_{\dot{i}}4\overline{\gamma}_{-^{bUb_{t}}}tt+2\mathrm{t}*\dot{i}\overline{\gamma}-^{\delta}+(20)U^{*}-t4\overline{\gamma}_{-}Utt+bUtt)2*b^{2\dagger 2*}U_{t}$ $=-16i \gamma_{-} 2\dagger_{U_{t}}*b_{t}U_{t}\gamma-^{b}t-8i \gamma- ^{4}\delta_{+}(\mathrm{o})U_{t}^{*}Ut+16 \gamma- ^{4*}Ub_{t}^{2}Ut-t4\gamma_{-^{b^{\dagger 2}U^{*}}}^{2}tttU$

13 12 Then (55) becomes $U_{t}^{*}b_{t}^{2}U_{t}$ $U^{*}U_{t}ttb^{2}-2i\gamma_{-}2\delta+(0)U^{*}ttU$ $+ \frac{-4i\gamma_{-}}{1-4 \gamma_{-1^{2}}}b_{ttt}^{\uparrow U_{t}}*Ub+\frac{8 \gamma_{-} ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}^{*}u_{t}b_{t}^{2}$ $-16i \gamma_{-} 2b_{t}\dagger U-tb_{t}*U_{t}-8i\gamma \gamma_{-} ^{4}\delta_{+}(\mathrm{o})U*U_{t}t+16 \gamma- 4U*b^{2}Ut-tt4\gamma_{-tt}b^{\dagger}22U*U_{t}$ Hence $(1-16 \gamma_{-} ^{4})U*b^{2}Uttt$ $U_{t}^{*}U_{t}b_{t}^{2}-2\dot{i}\gamma-\delta 2(+\mathrm{o})U^{*}ttU$ $+ \frac{-4_{\dot{i}}\gamma_{-}}{1-4 \gamma_{-} ^{2}}b_{ttt}^{\uparrow U_{t}}*Ub+\frac{8 \gamma_{-} ^{2}}{1-4 \gamma_{-1^{2}}}u_{tt}^{*}u_{t}b^{2}$ $-16_{\dot{i}} \gamma_{-} 2btttt-i\gamma_{-} \uparrow U*bU8\gamma_{-} ^{4}\delta+(\mathrm{o})U^{*}U_{t}-4\gamma_{-}b_{tt}2\mathrm{t}2U*U_{t}t$ $\frac{1+4 \gamma_{-} ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}^{*}u_{t}b_{t}^{2}+(-2_{\dot{i}}\gamma_{-}^{2}-8i \gamma_{-} ^{4})\delta+(0)U^{*}ttU$ $+ \frac{-4_{\dot{i}}\gamma_{-}}{1-4 \gamma_{-1^{2}}}b_{t}^{\dagger}u_{tt}^{*}utb-16_{\dot{i} ^{2}}\gamma_{-}\gamma-btUtt\dagger*b_{t}U-4\gamma_{-^{b}t}^{2}\dagger 2*U_{t}U_{t}$ In view of (53) one obtains $-16_{\dot{i}} \gamma- 2\gamma_{-}b_{tt}^{\uparrow}U^{*}b_{tt}U=\frac{-16i \gamma_{-} ^{2}\gamma_{-}}{1-4 \gamma_{-} ^{2}}b_{tt}^{\dagger_{U^{*}}\mathrm{t}2*}U_{t}bt-\frac{32 \gamma- ^{2}\gamma_{-}2}{1-4 \gamma_{-} ^{2}}btU_{t}Ut$ Hence $(1-16 \gamma_{-} ^{4})U*b^{2}Uttt=$ $= \frac{1+4 \gamma_{-} ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}^{*}u_{t}b_{t}2+(-2\dot{i}\gamma_{-}^{2}-8i \gamma_{-} 4)\delta+(\mathrm{o})U_{t}*U_{t}+\frac{-4i\gamma_{-}}{1-4 \gamma_{-} ^{2}}b_{tt}^{\mathrm{t}}U^{*}Ut$ bt $+ \frac{-16i \gamma_{-} ^{2}\gamma_{-}}{1-4 \gamma_{-1^{2}}}b_{tt}^{\dagger\dagger 2}U_{t}^{*}Ub_{t}-\frac{32 \gamma- ^{2}\gamma_{-}2}{1-4 \gamma_{-} ^{2}}b2Utt-4\gamma_{-}*U_{t}b^{\uparrow*}t2U_{t}U_{t}$ $= \frac{1+4 \gamma- ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}^{*}u_{t}b_{t}2+(-2_{\dot{i}}\gamma_{-}^{2}-8\dot{i} \gamma- ^{4})\delta_{+}(\mathrm{o})U_{t}*U_{t}$ $+ \frac{-4i\gamma_{-}-16i \gamma_{-} 2\gamma-}{1-4 \gamma_{-1^{2}}}b_{tt}^{\dagger_{u_{t}}*\uparrow}ub_{t}+\frac{-32 \gamma_{-} 22-4\gamma^{2}\gamma_{-}-(1-4 \gamma_{-1^{2})}}{1-4 \gamma_{-1^{2}}}btu_{t}*u_{t}2$ $= \frac{1+4 \gamma- ^{2}}{1-4 \gamma_{-1^{2}}}u_{t}^{*}u_{t}b_{t}2+(-2i\gamma_{-}^{2}-8\dot{i} \gamma_{-} ^{4})\delta+(\mathrm{o})U_{t}*U_{t}$ $+ \frac{-4_{\dot{i}}\gamma-(1+4 \gamma- ^{2})}{1-4 \gamma_{-1^{2}}}b_{t}^{\mathrm{t}}u^{*\uparrow}tutbt+\frac{-4\gamma_{-}^{2}(1+4 \gamma- ^{2})}{1-4 \gamma_{-1^{2}}}bu_{t}tu_{t}2*$ which completes the proof qed Lemma 53 The equation satisfied by $x_{t}=u_{t}^{*}xu_{t}$ is $\partial_{t}x_{t}=4{\rm Re}(\gamma_{-}^{2})\delta+(0)X_{t}-ib^{\dagger 2}X_{t}+\dot{i}x_{t}b_{t}^{2}$ (56)

14 13 PROOF Differentiating by the Leibnitz rule equation (51) we find $\partial_{t}x_{t}=ib_{t}\dagger 2xt-\dot{i}xtbt2$ $+\dot{i}(4\gamma_{-}^{2}-1)u*xb^{\uparrow}tu_{t}t2+(hc)-4\gamma_{-ub}t^{x}tu_{tt}*\dagger b+(hc)$ $-4{\rm Re}(\gamma-2)\delta_{+}(\mathrm{o})xt$ (57) The result then follows using Lemmas 51 and 52 In fact we compute $\dot{i}(4\gamma_{-}^{2}-1)u_{t^{x}}*b^{\uparrow}tut2+(hc)-4\gamma_{-}u^{*}t^{x}tb^{\dagger}u_{t}b_{t}+(hc)=$ $=\dot{i}(4\gamma_{-}^{2}-1)u*2-txb_{t}^{1}ut\dot{i}(4\overline{\gamma}--21)u^{*}b^{2}ut-4\gamma_{-^{u}}t^{x}tu_{t}bt-4\overline{\gamma}b\uparrow b_{tt^{x}}^{1}-u_{t}^{*}*btt^{x^{*}}u_{t}*$ With no loss of generality we can omit $x$ above we find from the equation Inserting the results obtained $i(4\gamma_{-}^{2}-1)u^{*}b^{\mathrm{t}2}u_{t}=tt$ $=i(4 \gamma_{-}^{2}-1)(\alpha b_{tt}\uparrow 2U2*U_{t}+\frac{2i\overline{\gamma}_{-}^{2}+8\dot{i} \gamma_{-} 4}{1-16 \gamma- ^{4}}\delta_{+}(0)U_{t}^{*}U_{t}$ $+4i\overline{\gamma}_{-^{\alpha}}b_{tt}\dagger U_{t}*Ubt-24\overline{\gamma}_{-}^{22}\alpha U^{*}Uttb^{2)}t$ $= \dot{i}(4\gamma_{-}^{2}-1)\alpha^{2}b^{\dagger 2}U^{*}ttUt+\frac{-2(4\gamma_{-}^{2}-1)(\overline{\gamma}-+4 2\gamma_{-1^{4})}}{1-16 \gamma- ^{4}}\delta+(\mathrm{o})U_{t}*U_{t}$ $-4(4\gamma^{2}--1)\overline{\gamma}-\alpha^{2\dagger_{U_{t}^{*}U}22*}bttbt-4i(4\gamma_{-}-12)\overline{\gamma}_{-}\alpha UUtb^{2}tt$ Similarly $-\dot{i}(4\overline{\gamma}_{-}-21)u^{*}b^{2_{x}*}uttt=$ $=- \dot{i}(4\overline{\gamma}^{2}--1)\alpha U2*Utb_{t}^{2}t+\frac{-2(4\overline{\gamma}_{-}^{2}-1)(\gamma-+42 \gamma_{-} ^{4})}{1-16 \gamma- ^{4}}\delta_{+(\mathrm{o}})U^{*}ttU$ $-4(4\overline{\gamma}_{-}^{2}-1)\gamma_{-}\alpha btu2\uparrow_{u_{t}}*btt+4i(4\overline{\gamma}_{-}^{2}-1)\gamma^{22\uparrow}-\alpha btuu_{t}t2*$ On the other hand $-4\gamma_{-}U^{*}t^{X}b^{\dagger}tUtbt=-4\gamma-(\alpha b\dagger Uttb*U_{tt}+2i\overline{\gamma}_{-^{\alpha U_{t}U_{t}}}b_{t}^{2}*)$ and $-4\overline{\gamma}_{-}b^{\mathrm{t}}tU_{t}*bXtUt=-4\overline{\gamma}_{-}(\alpha b_{tt} U*Utbt-2_{\dot{i}}\gamma-\alpha b\dagger 2*)tUUtt$ Summing up the above four expressions one finds $\frac{(2-32 \gamma_{-} ^{4})(\gamma 2+\overline{\gamma}^{2}-)}{1-16 \gamma- ^{4}}\delta_{+}(\mathrm{o})U^{*}U$ $+\dot{i}\{-(1-16 \gamma- 4)\alpha^{2}+8\alpha \gamma_{-} ^{2}\}b^{\uparrow 2}tU*U_{t}t$ $+\dot{i}\{(1-16 \gamma- ^{4})\alpha^{2}-8\alpha \gamma- ^{2}\}U^{*}U_{t}ttb^{2}$ $+\{4\alpha^{2}(\gamma+\overline{\gamma})-16\alpha^{2} \gamma- ^{2}(\gamma-+\overline{\gamma}_{-})-4\alpha(\gamma_{-}+\overline{\gamma}_{-})\}b^{\dagger}U_{t}tU*tbt$ $4{\rm Re}(\gamma_{-}^{2})\delta_{+}(\mathrm{o})U^{*}Ut-t\dot{i}b\uparrow 2U_{t}*Ut+\dot{i}U_{t}^{*}U_{t}b^{2}t$ This completes the proof qed

15 14 6 Renormalization and formal unitarity of the solution Starting with $\partial_{t}u_{t}=-i(b_{t}^{\dagger 2}+b_{t}^{2})U_{t}$ $U_{0}=I$ (61) we have found the normal form: $\partial_{t}u_{t}=i(4\gamma_{-}^{2}-1)b^{\dagger 2}tU_{t}-4\gamma_{-}bttb_{t}-iUtb\dagger_{U}2-t2\gamma-\delta_{+}(20)Ut$ (62) see Proposition 43 Note that (62) involves the ill-defined quantity where $\gamma_{-}^{2}\delta_{+}(0)ut$ $\gamma_{-}$ is a complex number However the addition of a quantity of the form where $\rho_{0}=\rho\delta_{+}(0)$ $\rho$ is a real constant to the Hamiltonian in (61) does not change the basic quantity of interest $U_{t}$ which is not the operator itself but the flow $U_{t}^{*}xU_{t}$ After this addition we obtain $\partial_{t}u_{t}=-i(b_{t}^{ 2}+b_{t}^{2}+\rho\delta_{+}(0))U_{t}$ $U_{0}=I$ (63) and its normal form: $\partial_{t}u_{t}=i(4\gamma_{-}^{2}-1)b^{\uparrow}tut-4\gamma_{-}b^{\uparrow 4}tU_{t}b_{t}2-\dot{i}U_{t}b2-t({\rm Re}(\gamma^{2}-)+i\{{\rm Im}(\gamma^{2}-)-\rho/4\})\delta_{+}(\mathrm{o})Ut$ Therefore if ${\rm Re}(\gamma_{-}^{2})=0$ then by putting $\rho=4{\rm Im}(\gamma_{-}^{2})$ we see that the ill-defined quantity vanishes identically On the other hand by a direct computation we obtain Lemma 61 The right hand side of equation (51) is identically zero for any choice of $\gamma_{-}$ The above result shows that the normal form equation (62) satisfies the formal $un\dot{i}-$ tarity condition Therefore the right hand side of (57) is identically zero as we expected Notice that the same condition which renormalizes the equation for also $({\rm Re}(\gamma_{-}^{2})=0)$ $U$ $j_{t}$ renormalizes the equation for the flow $U_{t}$ $j_{t}$ Our next task is to investigate the regularity and unitarity condition for or obeying the renormalized equation The research is now in progress References [1] L Accardi: Applications of Quantum Probability to Quantum Theory Lectures delivered at Nagoya University 1996 (based on [6]) [2] L Accardi A Frigerio and J T Lewis: Quantum stochastic processes Publ RIMS 18 (1982) [3] L Accardi A Frigerio and Y-G Lu: The weak coupling limit as a quantum functional central limit Commun Math Phys 131 (1990) [4] L Accardi J Gough and Y-G Lu: On the stochastic limit for quantum theory Rep Math Phys 36 (1995) [5] L Accardi Y-G Lu and I Volovich: A white noise approach to stochastic calculus submitted [6] L Accardi Y-G Lu and I Volovich: Quantum Theory and Its Stochastic Limit Monograph in preparation

16 White 52A 15 [7] L Accardi and A Mohari: On the structure of classical and quantum flows J Funct Anal 135 (1996) [8] M Evans: Existence of quantum diffusions Prob Th Rel Fields 81 (1989) [9] F Fagnola: On quantum stochastic differential equation with unbounded $coeffi_{c\dot{i}}ents$ Prob Th Rel Fields 86 (1990) [10] F Fagnola and K B Sinha: Quantum flows with unbounded structure maps and finite degree of freedom J London Math Soc 48 (1993) [11] Z-Y Huang: Quantum white noises noise approach to quantum stochastic calculus Nagoya Math J 129 (1993) [12] Z-Y Huang and S-L Luo: Wick calculus of generalized operators and its applications to quantum stochastic calculus preprint Huazhong Univ Sci Tech 1994 [13] R L Hudson and K R Parthasarathy: Quantum Ito s formula and stochastic evolutions Commun Math Phys 93 (1984) [14] K It\^o: Multiple Wiener integral J Math Soc Japan 3 (1951) [15] H-H Kuo: ( White Noise Distribution Theory CRC Press 1996 [16] P A Meyer: Quantum Probability for Probabilists Lect Notes in Math Vol 1538 Springer-Verlag 1993 [17] A Mohari and K B Sinha: Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes $\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{h}\mathrm{y}\overline{\mathrm{a}}$ (1990) [18] N Obata: White Noise Calculus and Fock Space Lect Notes in Math Vol 1577 Springer-Verlag 1994 [19] N Obata: Generalized quantum stochastic processes on Fock space Publ RIMS 31 (1995) [20] N Obata: Integral kernel operators on Fock space-generalizations and applications to quantum dynamics to appear in Acta Appl Math [21] N Obata: White noise approach to quantum martingales to appear in Proc Japan- Russia Symposium on Probability and Statistics 1996 [22] N Obata: Wick product of white noise operators and its application to quantum stochastic differential equations in this volume [23] K R Parthasarathy: ( An Introduction to Quantum Stochastic Calculus Birkh\"auser 1992

Citation 数理解析研究所講究録 (1999), 1099:

Citation 数理解析研究所講究録 (1999), 1099: Quantum White Noise with Singular N Title(Development of Infinite-Dimensiona Analysis) Author(s) Accardi, Luigi; Volovich, Igor V. Citation 数理解析研究所講究録 (1999), 1099: 61-69 Issue Date 1999-06 URL http://hdl.handle.net/2433/63043

More information

Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc Roma, Italy

Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc Roma, Italy Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc 0033 Roma, Italy accardi@volterra.mat.uniroma2.it Andreas Boukas Department

More information

Quantum White Noise with Singular Non-Linear Interaction. L. Accardi 1, I.V. Volovich 2

Quantum White Noise with Singular Non-Linear Interaction. L. Accardi 1, I.V. Volovich 2 Quantum White Noise with Singular Non-Linear Interaction L. Accardi 1, I.V. Volovich 2 Centro Vito Volterra, Università degli Studi di Roma Tor Vergata 00133, Italia arxiv:quant-ph/9704029v1 16 Apr 1997

More information

On the Relation of the Square of White Noise and the Finite Difference Algebra

On the Relation of the Square of White Noise and the Finite Difference Algebra On the Relation of the Square of White Noise and the Finite Difference Algebra Luigi Accardi Centro Vito Volterra Università degli Studi di Roma Tor Vergata Via di Tor Vergata, s.n.c. 00133 Roma, Italia

More information

QUANTUM STOCHASTIC CALCULUS ON INTERACTING FOCK SPACES: SEMIMARTINGALE ESTIMATES AND STOCHASTIC INTEGRAL. 1. Introduction

QUANTUM STOCHASTIC CALCULUS ON INTERACTING FOCK SPACES: SEMIMARTINGALE ESTIMATES AND STOCHASTIC INTEGRAL. 1. Introduction Communications on Stochastic Analysis Vol., No. 7 3-34 QUANTUM STOCHASTIC CALCULUS ON INTERACTING FOCK SPACES: SEMIMARTINGALE ESTIMATES AND STOCHASTIC INTEGRAL VITONOFRIO CRISMALE Abstract. A quantum stochastic

More information

Properties of delta functions of a class of observables on white noise functionals

Properties of delta functions of a class of observables on white noise functionals J. Math. Anal. Appl. 39 7) 93 9 www.elsevier.com/locate/jmaa Properties of delta functions of a class of observables on white noise functionals aishi Wang School of Mathematics and Information Science,

More information

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida J. Korean Math. Soc. 38 (21), No. 2, pp. 275 281 WHITE NOISE APPROACH TO FEYNMAN INTEGRALS Takeyuki Hida Abstract. The trajectory of a classical dynamics is detrmined by the least action principle. As

More information

A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges

A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges David Applebaum Probability and Statistics Department, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield,

More information

Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, Roma, Italy

Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, Roma, Italy Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, 00133 Roma, Italy volterra@volterra.mat.uniroma2.it Andreas Boukas Department of Mathematics,

More information

Citation 数理解析研究所講究録 (2001), 1191:

Citation 数理解析研究所講究録 (2001), 1191: Traffic Model and a Solvable Differ Title (Interfaces, Pulses and Waves in No Systems : RIMS Project 2000 "Reacti theory and applications") Author(s) Nakanishi, Kenichi Citation 数理解析研究所講究録 (2001), 1191:

More information

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234: ON THE CAUCHY PROBLEM IN THE MAXWEL Title CHERN-SIMONS-HIGGS SYSTEM (Tosio Ka and Principle for Evolution Equatio Physics) Author(s) Chae Dongho; Chae Myeongju Citation 数理解析研究所講究録 (2001) 1234: 206-212

More information

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030: Title On mean-field approximation of part annihilation and spikes (Probabilit Author(s) Ichiba Tomoyuki Citation 数理解析研究所講究録 (2017) 2030: 28-31 Issue Date 2017-05 URL http://hdlhandlenet/2433/231867 Right

More information

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75 THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Author(s) OKADA JUN-ICHI Citation 数理解析研究所講究録 (1997) 983: 70-75 Issue Date 1997-03 URL http://hdlhandlenet/2433/60941

More information

Citation 数理解析研究所講究録 (2013), 1841:

Citation 数理解析研究所講究録 (2013), 1841: Title Certain characterizations of inner Analysis and Convex Analysis) Author(s) Tanaka, Ryotaro Citation 数理解析研究所講究録 (2013), 1841: 99-104 Issue Date 2013-07 URL http://hdl.handle.net/2433/194976 Right

More information

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669: Limits at infinity of superharmonic Titlesemilinear elliptic equations of Ma Theory and its related Fields) Author(s) Hirata, Kentaro Citation 数理解析研究所講究録 (2009), 1669: 52-57 Issue Date 2009-11 URL http://hdlhandlenet/2433/141133

More information

CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES

CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES Communications on Stochastic Analysis Vol. 7, No. 1 (013) 1-15 Serials Publications www.serialspublications.com CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES ABDESSATAR BARHOUMI

More information

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620: Title Empirical Invariance in Stock Marke (The 8th Workshop on Stochastic Num Author(s) Hwang, Chii-Ruey Citation 数理解析研究所講究録 (2009), 1620: 18-22 Issue Date 2009-01 URL http://hdl.handle.net/2433/140227

More information

Citation Osaka Journal of Mathematics. 41(4)

Citation Osaka Journal of Mathematics. 41(4) TitleA non quasi-invariance of the Brown Authors Sadasue, Gaku Citation Osaka Journal of Mathematics. 414 Issue 4-1 Date Text Version publisher URL http://hdl.handle.net/1194/1174 DOI Rights Osaka University

More information

B V Rajarama Bhat. All publications up to (a) Thesis. (b) Published Papers

B V Rajarama Bhat. All publications up to (a) Thesis. (b) Published Papers B V Rajarama Bhat All publications up to 2015 (a) Thesis [1]. Markov Dilations of Nonconservative Quantum Dynamical Semigroups and a Quantum Boundary Theory, submitted to Indian Statistical Institute on

More information

Citation 数理解析研究所講究録 (2010), 1716:

Citation 数理解析研究所講究録 (2010), 1716: Title AN EXTENSION OF BURAU REPRESENTATIO BRAID GROUPS (Intelligence of Low-d Author(s) MATSUDA, HIROSHI Citation 数理解析研究所講究録 (2010), 1716: 1-5 Issue Date 2010-10 URL http://hdlhandlenet/2433/170319 Right

More information

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461: The existence of zeros of monotone Titleoptimization problems(mathematics o and Practical Solutions) Author(s) 松下, 慎也 ; 高橋, 渉 Citation 数理解析研究所講究録 (2005), 1461: 40-46 Issue Date 2005-12 URL http://hdlhandlenet/2433/47968

More information

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882: Title A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol Author(s) TANABE MASAHARU Citation 数理解析研究所講究録 (1994) 882: 110-113 Issue Date 1994-08 URL http://hdl.handle.net/2433/84236 Right

More information

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579: Title Coefficient conditions for certain Geometric Univalent Function Theory Author(s) Hayami, Toshio; Owa, Shigeyoshi Citation 数理解析研究所講究録 (2008), 1579: 17-24 Issue Date 2008-02 URL http://hdlhlenet/2433/81395

More information

Citation 数理解析研究所講究録 (2004), 1396:

Citation 数理解析研究所講究録 (2004), 1396: Generalization of operator type Sha Titlereverse one (Advanced Topics of Inf Functional Analysis) Author(s) Furuta, Takayuki Citation 数理解析研究所講究録 (2004), 1396: 94-99 Issue Date 2004-10 URL http://hdl.handle.net/2433/25971

More information

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986: TitleImplementing Sturm's Algorithm and Author(s) Lu Qifan; Noda Matu-Tarow Citation 数理解析研究所講究録 (997) 986: 47-52 Issue Date 997-04 URL http://hdl.handle.net/2433/6000 Right Type Departmental Bulletin Paper

More information

Citation 数理解析研究所講究録 (1994), 886:

Citation 数理解析研究所講究録 (1994), 886: TitleTheta functions and modular forms(a Author(s) SASAKI, Ryuji Citation 数理解析研究所講究録 (1994), 886: 76-80 Issue Date 1994-09 URL http://hdl.handle.net/2433/84313 Right Type Departmental Bulletin Paper Textversion

More information

Citation 数理解析研究所講究録 (1996), 941:

Citation 数理解析研究所講究録 (1996), 941: TitleNon-monotone Bifurcation on Quadrat Author(s) FUJIMURA, Masayo Citation 数理解析研究所講究録 (1996), 941: 30-35 Issue Date 1996-03 URL http://hdlhandlenet/2433/60139 Right Type Departmental Bulletin Paper Textversion

More information

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG VECTOR SPACES(Nonlinear Analys an Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA Citation 数理解析研究所講究録 (2006), 1484: 1-4 Issue

More information

Citation 数理解析研究所講究録 (2010), 1679:

Citation 数理解析研究所講究録 (2010), 1679: A SHORT PROOF OF THE EXISTENCE OF T TitleCOHOMOLOGICAL INVARIANT (Cohomology Finite Groups and Related Topics) Author(s) YAGITA, NOBUAKI Citation 数理解析研究所講究録 (2010), 1679: 56-60 Issue Date 2010-04 URL http://hdl.handle.net/2433/141318

More information

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25: Non-existence of certain Galois rep Titletame inertia weight : A resume (Alg Related Topics 2009) Author(s) OZEKI, Yoshiyasu Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25: 89-92 Issue Date 2011-04

More information

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis Introduction to Infinite Dimensional Stochastic Analysis Mathematics and Its Applications Managing Editor M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 502

More information

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078: Title REGULARITY OF POWERS OF SOME IDEALS resolution of defining ideals of pr Author(s) Kamoi, Yuji Citation 数理解析研究所講究録 (1999), 1078: 185-189 Issue Date 1999-02 URL http://hdlhandlenet/2433/62656 Right

More information

Citation 数理解析研究所講究録 (2012), 1805:

Citation 数理解析研究所講究録 (2012), 1805: Title Ground States for 2$D$ Spin Renormalization Group Methods Glasses in Ma Author(s) Arguin, Louis-Pierre; Damron, Micha Stein, Daniel L. Citation 数理解析研究所講究録 (2012), 1805: 25-36 Issue Date 2012-08 URL

More information

Citation 数理解析研究所講究録 (2016), 1995:

Citation 数理解析研究所講究録 (2016), 1995: Swirling flow of the axi-symmetric Titlenear a saddle point and no-slip bou New Developments for Elucidating In Author(s) 野津, 裕史 ; 米田, 剛 Citation 数理解析研究所講究録 (2016), 1995: 9-13 Issue Date 2016-04 URL http://hdl.handle.net/2433/224715

More information

Publications of Michael Schürmann

Publications of Michael Schürmann Publications of Michael Schürmann (A) Monographs (B) Articles in journals (C) Contributions to books and proceedings (D) Others (E) Preprints (F) Books edited (A) Monographs (A01) White noise on bialgebras.

More information

Quantum Linear Systems Theory

Quantum Linear Systems Theory RMIT 2011 1 Quantum Linear Systems Theory Ian R. Petersen School of Engineering and Information Technology, University of New South Wales @ the Australian Defence Force Academy RMIT 2011 2 Acknowledgments

More information

WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION

WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION Communications on Stochastic Analysis Vol. 1, No. 2 (27) 311-32 WHITE NOISE APPROACH TO THE ITÔ FORMULA FOR THE STOCHASTIC HEAT EQUATION ALBERTO LANCONELLI Abstract. We derive an Itô s-type formula for

More information

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, Aberystwyth Papers J.G. M.R. James, Commun.

More information

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091: Title Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Author(s) Kiuchi, Isao; Yanagisawa, Naoki Citation 数理解析研究所講究録 (1999), 1091: 251-255 Issue Date 1999-04 URL http://hdlhlenet/2433/62888 Right Type Departmental

More information

Convolution Operators in White Noise Calculus: Revisited

Convolution Operators in White Noise Calculus: Revisited Convolution Operators in White Noise Calculus: Revisited (joint work with H. Ouerdiane) Nobuaki Obata GSIS, Tohoku University Levico, June 1, 2011 Nobuaki Obata (GSIS, Tohoku University) Convolution Operators

More information

New Quantum Algorithm Solving the NP Complete Problem

New Quantum Algorithm Solving the NP Complete Problem ISSN 070-0466, p-adic Numbers, Ultrametric Analysis and Applications, 01, Vol. 4, No., pp. 161 165. c Pleiades Publishing, Ltd., 01. SHORT COMMUNICATIONS New Quantum Algorithm Solving the NP Complete Problem

More information

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753: Title A Reverse of Generalized Ando-Hiai theory and related topics) Author(s) Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo Citation 数理解析研究所講究録 (2011), 1753: 35-39 Issue Date 2011-08 URL http://hdlhandlenet/2433/171182

More information

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński Patryk Pagacz Uniwersytet Jagielloński Characterization of strong stability of power-bounded operators Praca semestralna nr 3 (semestr zimowy 2011/12) Opiekun pracy: Jaroslav Zemanek CHARACTERIZATION OF

More information

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5: Remarks on the Kernel Theorems in H TitleAnalysis and the Exact WKB Analysis Differential Equations) Author(s) LIESS, Otto; OKADA, Yasunori Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5: 199-208

More information

QUANTUM PROBABILITY: PAST, PRESENT AND FUTURE August 10-12, 2017

QUANTUM PROBABILITY: PAST, PRESENT AND FUTURE August 10-12, 2017 QUANTUM PROBABILITY: PAST, PRESENT AND FUTURE August 10-12, 2017 Speaker: Luigi Accardi STATISTICS AND MATHEMATICS UNIT INDIAN STATISTICAL INSTITUTE, BANGALORE Updated on August 5, 2017 Titles and abstracts:

More information

arxiv: v1 [math.oa] 20 Jun 2016

arxiv: v1 [math.oa] 20 Jun 2016 The cocycle identity holds under stopping Alexander C. R. Belton Department of Mathematics and Statistics Lancaster University, United Kingdom a.belton@lancaster.ac.uk Kalyan B. Sinha Jawaharlal Nehru

More information

Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations}

Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations} Australian Journal of Basic Applied Sciences, 7(7): 787-798, 2013 ISSN 1991-8178 Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations} 1 S.A. Bishop, 2

More information

Citation 数理解析研究所講究録 (2012), 1794:

Citation 数理解析研究所講究録 (2012), 1794: Title On categoricity of atomic AEC (Mode Applications) Author(s) MAESONO, Hisatomo Citation 数理解析研究所講究録 (2012), 1794: 55-61 Issue Date 2012-05 URL http://hdl.handle.net/2433/172869 Right Type Departmental

More information

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405: Title The Generalized Fermat-Steiner Prob (Variational Problems and Related T Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag Citation 数理解析研究所講究録 (2004), 1405: 131-137 Issue Date 2004-11 URL http://hdl.handle.net/2433/26098

More information

A simple proof for monotone CLT

A simple proof for monotone CLT A simple proof for monotone CLT Hayato Saigo Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan arxiv:0912.3728v1 [math.pr] 18 Dec 2009 Abstract In the case of monotone independence, the

More information

EXTENSION OF BILINEAR FORMS FROM SUBSPACES OF L 1 -SPACES

EXTENSION OF BILINEAR FORMS FROM SUBSPACES OF L 1 -SPACES Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 27, 2002, 91 96 EXENSION OF BILINEAR FORMS FROM SUBSPACES OF L 1 -SPACES Jesús M. F. Castillo, Ricardo García and Jesús A. Jaramillo Universidad

More information

Stopping Unitary Processes in Fock Space

Stopping Unitary Processes in Fock Space Publ. RIMS, Kyoto Univ. 24 (1988), 697-705 Stopping Unitary Processes in Fock Space By David APPLEBAUM* Abstract Let P T be a stop time in symmetric Fock space over L Z (R + ). We show that to certain

More information

Citation 数理解析研究所講究録 (2007), 1570:

Citation 数理解析研究所講究録 (2007), 1570: Construction of solutions $f'(x) = Title1(Banach spaces, function spaces, applications) Author(s) Yoneda, Tsuyoshi Citation 数理解析研究所講究録 (2007), 1570: 1-7 Issue Date 2007-10 URL http://hdlhandlenet/2433/81278

More information

Quantum stochastic calculus applied to path spaces over Lie groups

Quantum stochastic calculus applied to path spaces over Lie groups Quantum stochastic calculus applied to path spaces over Lie groups Nicolas Privault Département de Mathématiques Université de La Rochelle Avenue Michel Crépeau 1742 La Rochelle, France nprivaul@univ-lr.fr

More information

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667: Convergence of some truncated Riesz generalized Campanato spaces and it Titleuniqueness theorem for nondecaying Stokes equations (The geometrical s and Function spaces and its applica Author(s) Nakai,

More information

Effective mass of nonrelativistic quantum electrodynamics

Effective mass of nonrelativistic quantum electrodynamics is of and 1482 2006 22-46 22 Effective mass of nonrelativistic quantum electrodynamics Fumio $\mathrm{h}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{a}^{*}\mathrm{t}\mathrm{d}$k

More information

Citation 数理解析研究所講究録 (2005), 1452:

Citation 数理解析研究所講究録 (2005), 1452: GENERALIZED MEASUREMENTS CP-MEASUR TitleCP-CHOQUET THEOREM (Advanced Study Functional Analysis and Information Author(s) Fujimoto Ichiro Citation 数理解析研究所講究録 (2005) 1452: 152-159 Issue Date 2005-10 URL

More information

Gaussian and Poisson White Noises with Related Characterization Theorems

Gaussian and Poisson White Noises with Related Characterization Theorems Contemporary Mathematics Gaussian and Poisson White Noises with Related Characterization Theorems Nobuhiro Asai, Izumi Kubo, and Hui-Hsiung Kuo Dedicated to Professor Leonard Gross on the occasion of his

More information

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997: Remarks on the structure-preserving Title for the Falk model of shape memory the theory of evolution equations a analysis for nonlinear phenomena) Author(s) 吉川, 周二 Citation 数理解析研究所講究録 (2016), 1997: 156-164

More information

Time Quantization and q-deformations

Time Quantization and q-deformations Time Quantization and q-deformations Claudio Albanese and Stephan Lawi Department of Mathematics, 100 St. George Street, University of Toronto, M5S 3G3, Toronto, Canada E-mail: albanese@math.toronto.edu,

More information

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (2002), 1254: Oscillation nonoscillation theo Titleorder differential equations with d (Dynamics of Functional Equations a Author(s) Tanigawa, Tomoyuki Citation 数理解析研究所講究録 (2002), 1254: 193-201 Issue Date 2002-04 URL

More information

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968: Title Note on the space of polynomials wi multiplicity (New topics of transfo Author(s) 山口, 耕平 Citation 数理解析研究所講究録 (2015), 1968: 126-129 Issue Date 2015-11 URL http://hdl.handle.net/2433/224267 Right Type

More information

Gaps between classes of matrix monotone functions

Gaps between classes of matrix monotone functions arxiv:math/0204204v [math.oa] 6 Apr 2002 Gaps between classes of matrix monotone functions Frank Hansen, Guoxing Ji and Jun Tomiyama Introduction April 6, 2002 Almost seventy years have passed since K.

More information

Citation 数理解析研究所講究録 (2004), 1368:

Citation 数理解析研究所講究録 (2004), 1368: Title Numerical study of acoustic wave sc of cylinders (Nonlinear Wave Phenom Author(s) Yano, Takeru Citation 数理解析研究所講究録 (2004), 1368: 176-179 Issue Date 2004-04 URL http://hdlhandlenet/2433/25422 Right

More information

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16: The Spectrum of Schrodinger TitleAharonov-ohm magnetic fields operato (Spec Theory and Related Topics) Author(s) MINE, Takuya; NOMURA, Yuji Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku essa (2010), 16: 135-140

More information

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES Communications on Stochastic Analysis Vol. 9, No. 4 (215) 467-476 Serials Publications www.serialspublications.com DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES HUI-HSIUNG KUO AND KIMIAKI SAITÔ*

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Classical and quantum Markov semigroups

Classical and quantum Markov semigroups Classical and quantum Markov semigroups Alexander Belton Department of Mathematics and Statistics Lancaster University United Kingdom http://www.maths.lancs.ac.uk/~belton/ a.belton@lancaster.ac.uk Young

More information

Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (2009), 1665: Title ON THE UNIVERSALITY OF A SEQUENCE O MODULO 1 (Analytic Number Theory an Author(s) DUBICKAS, ARTURAS Citation 数理解析研究所講究録 (2009), 1665: 1-4 Issue Date 2009-10 URL http://hdl.handle.net/2433/141061

More information

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74 Title A linear programming instance with events(discrete Continuous Stru Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts Citation 数理解析研究所講究録 (1996), 945: 68-74 Issue Date 1996-04 URL http://hdl.hle.net/2433/60224

More information

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32: Imaginary quadratic fields whose ex Titleequal to two, II (Algebraic Number 010) Author(s) SHIMIZU, Kenichi Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (01), B3: 55-69 Issue Date 01-07 URL http://hdl.handle.net/33/19638

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Resolvent Algebras. An alternative approach to canonical quantum systems. Detlev Buchholz

Resolvent Algebras. An alternative approach to canonical quantum systems. Detlev Buchholz Resolvent Algebras An alternative approach to canonical quantum systems Detlev Buchholz Analytical Aspects of Mathematical Physics ETH Zürich May 29, 2013 1 / 19 2 / 19 Motivation Kinematics of quantum

More information

Approximately dual frames in Hilbert spaces and applications to Gabor frames

Approximately dual frames in Hilbert spaces and applications to Gabor frames Approximately dual frames in Hilbert spaces and applications to Gabor frames Ole Christensen and Richard S. Laugesen October 22, 200 Abstract Approximately dual frames are studied in the Hilbert space

More information

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704: A Mathematical Model of Population TitleBehavioral Change Induced by Prey's (Theory of Biomathematics and its A Author(s) SENO, Hiromi; KOHNO, Takahiro Citation 数理解析研究所講究録 (2010), 1704: 85-94 Issue Date

More information

ANALYTIC CONTINUATION OF CAUCHY AND. Citation 数理解析研究所講究録 (2000), 1155:

ANALYTIC CONTINUATION OF CAUCHY AND. Citation 数理解析研究所講究録 (2000), 1155: ANALYTIC CONTINUATION OF CAUCHY AND TitleEXPONENTIAL TRANSFORMS (Application Extensions) Author(s) Gustafsson Bjorn; Putinar Mihai Citation 数理解析研究所講究録 (2000) 1155: 38-48 Issue Date 2000-05 URL http://hdlhandlenet/2433/64151

More information

On Quadratic Stochastic Operators Having Three Fixed Points

On Quadratic Stochastic Operators Having Three Fixed Points Journal of Physics: Conference Series PAPER OPEN ACCESS On Quadratic Stochastic Operators Having Three Fixed Points To cite this article: Mansoor Saburov and Nur Atikah Yusof 2016 J. Phys.: Conf. Ser.

More information

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425:

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425: Mode generating effect of the solut TitleSchrodinger equations (Mathematical Gas Dynamics) Author(s) Kita Naoyasu Citation 数理解析研究所講究録 (2005) 1425: 113-121 Issue Date 2005-04 URL http://hdlhandlenet/2433/47254

More information

i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965),

i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965), References i. Bonic R. and Frampton J., Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71(1965), 393-395. 2. Cameron R. H. and Graves R., Additive functionals on a space of continuous

More information

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis Introduction to Infinite Dimensional Stochastic Analysis By Zhi yuan Huang Department of Mathematics, Huazhong University of Science and Technology, Wuhan P. R. China and Jia an Yan Institute of Applied

More information

Citation 数理解析研究所講究録 (2006), 1465:

Citation 数理解析研究所講究録 (2006), 1465: Title Special Self-Dual Codes over $\math Applications of Combatorial Desig Author(s) Betsumiya Koichi Citation 数理解析研究所講究録 (2006) 1465: 119-125 Issue Date 2006-01 URL http://hdl.handle.net/2433/48021 Right

More information

Citation 数理解析研究所講究録 (2000), 1123:

Citation 数理解析研究所講究録 (2000), 1123: Palais-Smale Condition for Some Sem TitleEquations (Analytical Studies for S Evolution Equation Appearing in Mat Author(s) Ikehata, Ryo Citation 数理解析研究所講究録 (2000), 1123: 76-82 Issue Date 2000-01 URL http://hdlhandlenet/2433/63552

More information

Cumulants of a convolution and applications to monotone probability theory

Cumulants of a convolution and applications to monotone probability theory Cumulants of a convolution and applications to monotone probability theory arxiv:95.3446v2 [math.pr] 24 May 29 Takahiro Hasebe JSPS Research Fellow (DC), Graduate School of Science, Kyoto University, Kyoto

More information

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741: Title On atomic AEC and quasi-minimality of the notion of independence and d Author(s) MAESONO, Hisatomo Citation 数理解析研究所講究録 (2011), 1741: 46-51 Issue Date 2011-05 URL http://hdl.handle.net/2433/170908

More information

GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS

GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS Di Girolami, C. and Russo, F. Osaka J. Math. 51 (214), 729 783 GENERALIZED COVARIATION FOR BANACH SPACE VALUED PROCESSES, ITÔ FORMULA AND APPLICATIONS CRISTINA DI GIROLAMI and FRANCESCO RUSSO (Received

More information

P AC COMMUTATORS AND THE R TRANSFORM

P AC COMMUTATORS AND THE R TRANSFORM Communications on Stochastic Analysis Vol. 3, No. 1 (2009) 15-31 Serials Publications www.serialspublications.com P AC COMMUTATORS AND THE R TRANSFORM AUREL I. STAN Abstract. We develop an algorithmic

More information

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

Independence of some multiple Poisson stochastic integrals with variable-sign kernels Independence of some multiple Poisson stochastic integrals with variable-sign kernels Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological

More information

Citation 数理解析研究所講究録 (2008), 1588:

Citation 数理解析研究所講究録 (2008), 1588: KURENAI : Kyoto University Researc Interactive dynamics of two Titlesystem (Nonlinear Evolution interfa Modeling) Equatio Author(s) Ei, Shin-Ichiro; Tsujikawa, Tohru Citation 数理解析研究所講究録 (2008), 1588: 118-123

More information

Citation 数理解析研究所講究録 (2015), 1963:

Citation 数理解析研究所講究録 (2015), 1963: Title Some New Properties of Lagrange Fun Analysis Convex Analysis) Author(s) Kim, Do Sang; Jiao, Liguo Citation 数理解析研究所講究録 (2015), 1963: 24-31 Issue Date 2015-10 URL http://hdl.hle.net/2433/224190 Right

More information

Stochastic Shear Thickening Fluids: Strong Convergence of the Galerkin Approximation and the Energy Equality 1

Stochastic Shear Thickening Fluids: Strong Convergence of the Galerkin Approximation and the Energy Equality 1 Stochastic Shear Thickening Fluids: Strong Convergence of the Galerkin Approximation and the Energy Equality Nobuo Yoshida Contents The stochastic power law fluids. Terminology from hydrodynamics....................................

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Author(s) SAITO, Yoshihiro; MITSUI, Taketomo. Citation 数理解析研究所講究録 (1991), 746:

Author(s) SAITO, Yoshihiro; MITSUI, Taketomo. Citation 数理解析研究所講究録 (1991), 746: TitleDiscrete approximations for stochas Author(s) SAITO Yoshihiro; MITSUI Taketomo Citation 数理解析研究所講究録 (1991) 746: 251-260 Issue Date 1991-03 URL http://hdlhandlenet/2433/102206 Right Type Departmental

More information

Properties of the Scattering Transform on the Real Line

Properties of the Scattering Transform on the Real Line Journal of Mathematical Analysis and Applications 58, 3 43 (001 doi:10.1006/jmaa.000.7375, available online at http://www.idealibrary.com on Properties of the Scattering Transform on the Real Line Michael

More information

EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES

EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES EIGENFUNCTIONS OF DIRAC OPERATORS AT THE THRESHOLD ENERGIES TOMIO UMEDA Abstract. We show that the eigenspaces of the Dirac operator H = α (D A(x)) + mβ at the threshold energies ±m are coincide with the

More information

Differential Equations and its Deve. Citation 数理解析研究所講究録 (2005), 1428:

Differential Equations and its Deve. Citation 数理解析研究所講究録 (2005), 1428: Inf-sup type differential games and Titleprogramming approach (Viscosity Sol Differential Equations and its Deve Author(s) Kaise Hidehiro Citation 数理解析研究所講究録 (2005) 1428: 9-18 Issue Date 2005-04 URL http://hdlhandlenet/2433/47323

More information

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (2008), 1605: Title Drawing the complex projective stru tori (Geometry related to the theor Author(s) Komori, Yohei Citation 数理解析研究所講究録 (2008), 1605: 81-89 Issue Date 2008-06 URL http://hdl.handle.net/2433/139947 Right

More information

Hairer /Gubinelli-Imkeller-Perkowski

Hairer /Gubinelli-Imkeller-Perkowski Hairer /Gubinelli-Imkeller-Perkowski Φ 4 3 I The 3D dynamic Φ 4 -model driven by space-time white noise Let us study the following real-valued stochastic PDE on (0, ) T 3, where ξ is the space-time white

More information

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M.

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M. 5 Vector fields Last updated: March 12, 2012. 5.1 Definition and general properties We first need to define what a vector field is. Definition 5.1. A vector field v on a manifold M is map M T M such that

More information

RECENT PROGRESS ON THE WHITE NOISE APPROACH TO THE LÉVY LAPLACIAN

RECENT PROGRESS ON THE WHITE NOISE APPROACH TO THE LÉVY LAPLACIAN ECENT POGESS ON THE WHITE NOISE APPOACH TO THE LÉVY LAPLACIAN HUI-HSIUNG KUO Department of Mathematics Louisiana State University Baton ouge, LA 70808, USA E-mail: kuo@math.lsu.edu Let φ be a function

More information