Vector Calculus. Dr. D. Sukumar. January 31, 2014

Size: px
Start display at page:

Download "Vector Calculus. Dr. D. Sukumar. January 31, 2014"

Transcription

1 Vector Calculus Dr. D. Sukumar January 31, 2014

2

3 Green s Theorem Tangent form or Ciculation-Curl form c Mdx +Ndy = R ( N x M ) da y

4 Green s Theorem Tangent form or Ciculation-Curl form c Mdx +Ndy = C F dr = R R ( N x M ) da y ( F) k da C is a simple, closed, smooth curve in counterclockwise direction R is the region enclosed by C da is area element dr is tangential length

5 Stokes Theorem The circulation of F = Mi+Nj+Pk around the boundary C of an oriented surface S in the direction counterclockwise with respect to the surface s unit normal vector n equals the integral of F n over S F dr = F ndσ C S C is a simple,closed, smooth curve considered counterclockwise direction

6 Stokes Theorem The circulation of F = Mi+Nj+Pk around the boundary C of an oriented surface S in the direction counterclockwise with respect to the surface s unit normal vector n equals the integral of F n over S F dr = F ndσ C S C is a simple,closed, smooth curve considered counterclockwise direction S is a surface (oriented) with boundary C

7 Stokes Theorem The circulation of F = Mi+Nj+Pk around the boundary C of an oriented surface S in the direction counterclockwise with respect to the surface s unit normal vector n equals the integral of F n over S F dr = F ndσ C S C is a simple,closed, smooth curve considered counterclockwise direction S is a surface (oriented) with boundary C dσ is surface area element

8 Stokes Theorem The circulation of F = Mi+Nj+Pk around the boundary C of an oriented surface S in the direction counterclockwise with respect to the surface s unit normal vector n equals the integral of F n over S F dr = F ndσ C S C is a simple,closed, smooth curve considered counterclockwise direction S is a surface (oriented) with boundary C dσ is surface area element dr is tangential length

9 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above.

10 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4

11 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4 i j k F = x y z x 2 2x z 2 ( F) k = 2

12 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4 i j k F = x y z x 2 2x z 2 ( F) k = 2 Circulation F dr c

13 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4 i j k F = x y z x 2 2x z 2 ( F) k = 2 Circulation F dr = c ˆ 2 ˆ 4 y y ˆ 2 2dxdy = 2 4 y 2 dy 0

14 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4 i j k F = x y z x 2 2x z 2 ( F) k = 2 Circulation F dr = c ˆ 2 ˆ 4 y y ˆ 2 2dxdy = 2 ( y =2 4 y sin 1y 2 0 ) y 2 dy

15 Use Stoke s Theorem to calculate the circulation of the Field F = x 2 i +2xj +z 2 k around the curve C: The ellipse 4x 2 +y 2 = 4 in the xy plane counter clockwise when viewed from above. The surface S is 4x 2 +y 2 = 4 ie f = 4x 2 +y 2 = 4 i j k F = x y z x 2 2x z 2 ( F) k = 2 Circulation F dr = c ( y =2 ˆ 2 ˆ 4 y y ˆ 2 2dxdy = 2 4 y sin 1y 2 ( π ) =4 2 0 = 2π 0 ) y 2 dy

16 Exercise Stoke s Theorem Use Stoke s theorem to calculate the flux of the curl of the field F across the surface S in the direction of the outward unit normal n. 1. F = 2zi +3xj +5yk S : z +x 2 +y 2 = 4 2. F = 2zi +3xj +5yk S : r(r, θ) = (r cos θ)i +(r sin θ)j +(4 r 2 )k 0 r 2, 0 θ 2π 3. F = x 2 yi +2y 3 zj +3zk S : r(r, θ) = (r cos θ)i +(r sin θ)j +rk 0 r 1, 0 θ 2π 12π π 4

17 Green s Theorem (Normal form or Flux-Divergence form) C Mdy Ndx = R ( M x + N ) da y

18 Green s Theorem (Normal form or Flux-Divergence form) C ( M Mdy Ndx = R x + N ) y F nds = F da C S da C is a simple, closed, smooth curve R is the region enclosed by C da is area element ds is length element

19 C F nds = S F da

20 C F nds = S F da F ndσ = S D F dv S is a simple, closed, oriented surface. D is solid regin bounded by S dσ surface area element dv is volume element

21 The Divergence Theorem The flux of a vector field F = Mi+Nj+Pk across a closed oriented surface S in the direction of the surface s outward unit normal field n equals the integral of F (divergence of F) over the region D enclosed by the surface: F ndσ = F dv. S D

22 F = yi +xyi zk D : The region inside the solid cylinder x 2 +y 2 4 between the plane z = 0 and the parabolaid z = x 2 +y 2 D F = 0+x 1 = x 1 F dv

23 F = yi +xyi zk D : The region inside the solid cylinder x 2 +y 2 4 between the plane z = 0 and the parabolaid z = x 2 +y 2 D F = 0+x 1 = x 1 F dv = = = = ˆ 2 ˆ 4 x 2 ˆ x2 +y 2 = x 2 ˆ 2 ˆ 4 x 2 0 ˆ 2 0 ˆ 2 0 ˆ 2 0 (x 1)dzdydx 4 x 2 (x 1)(x 2 +y 2 )dydx (x 1)[x 2 y + y3 3 ] 4 x 2 4 x 2 (x 1)(2x 2 4 x (4 x)2 4 x 2 )dx 0 ˆ 2 (x 1) 4 x 2 [6x 2 +2(16 8x +8x 2 )]dx = 1 (x 1) 4 x 3 2 [8x 2 8x +16]dx 0 = 16π

24 Exercise Divergence theorem Use divergence theorem to calculate outward flux 1. F = (y x)i+(z y)j+(y x)k D :The cube bounded by the planes x ±1, y ±1 and z ± F = x 2 i 2xyj+3xzk D :The region cut from the first octant by the sphere x 2 +y 2 +z 2 = 4 3π

25 F is conservative, F is irrotational= Ciruculation= 0 F is incompressible,.f is 0 = Flux= 0

26 Fundamental Theorem of Calculus ˆ [a,b] df dx = f(b) f(a) dx

27 Fundamental Theorem of Calculus Let F = f(x)i ˆ [a,b] ˆ [a,b] df dx = f(b) f(a) dx df dx = f(b) f(a) dx = f(b)i i +f(a)i i

28 Fundamental Theorem of Calculus Let F = f(x)i ˆ [a,b] ˆ [a,b] df dx = f(b) f(a) dx df dx = f(b) f(a) dx = f(b)i i +f(a)i i = F(b) n+f(a) n

29 Fundamental Theorem of Calculus ˆ [a,b] Let F = f(x)i ˆ df dx = f(b) f(a) dx [a,b] df dx = f(b) f(a) dx = f(b)i i +f(a)i i = F(b) n+f(a) n = total outward flux of F across the boundary

30 Fundamental Theorem of Calculus ˆ [a,b] Let F = f(x)i ˆ df dx = f(b) f(a) dx [a,b] df dx = f(b) f(a) dx = f(b)i i +f(a)i i = F(b) n+f(a) n = total outward flux of F across the boundary ˆ = Fdx [a,b]

31 Integral of the differential operator acting on a field over a region equal the sum of (or integral of ) field components appropriate to the operator on the boundary of the region

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Vector Calculus. Dr. D. Sukumar. February 1, 2016 Vector Calculus Dr. D. Sukumar February 1, 2016 Green s Theorem Tangent form or Ciculation-Curl form c Mdx + Ndy = R ( N x M ) da y Green s Theorem Tangent form or Ciculation-Curl form Stoke s Theorem

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

ARNOLD PIZER rochester problib from CVS Summer 2003

ARNOLD PIZER rochester problib from CVS Summer 2003 ARNOLD PIZER rochester problib from VS Summer 003 WeBWorK assignment Vectoralculus due 5/3/08 at :00 AM.( pt) setvectoralculus/ur V.pg onsider the transformation T : x 8 53 u 45 45 53v y 53 u 8 53 v A.

More information

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3 Math 114 Practice Problems for Test 3 omments: 0. urface integrals, tokes Theorem and Gauss Theorem used to be in the Math40 syllabus until last year, so we will look at some of the questions from those

More information

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Name: Student ID#: Section: Final Exam Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be

More information

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VectorCalculus1 due 05/03/2008 at 02:00am EDT. Arnie Pizer Rochester Problem Library Fall 005 WeBWorK assignment Vectoralculus due 05/03/008 at 0:00am EDT.. ( pt) rochesterlibrary/setvectoralculus/ur V.pg onsider the transformation T : x = 35 35 37u

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Answers and Solutions to Section 13.7 Homework Problems 1 19 (odd) S. F. Ellermeyer April 23, 2004

Answers and Solutions to Section 13.7 Homework Problems 1 19 (odd) S. F. Ellermeyer April 23, 2004 Answers and olutions to ection 1.7 Homework Problems 1 19 (odd). F. Ellermeyer April 2, 24 1. The hemisphere and the paraboloid both have the same boundary curve, the circle x 2 y 2 4. Therefore, by tokes

More information

Green s, Divergence, Stokes: Statements and First Applications

Green s, Divergence, Stokes: Statements and First Applications Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Calculus III 2004 Summer Practice Final 8/3/2004

Calculus III 2004 Summer Practice Final 8/3/2004 .. Calculus III 4 ummer Practice Final 8/3/4. Compute the following limits if they exist: (a) lim (x,y) (,) e xy x+. cos x (b) lim x. (x,y) (,) x 4 +y 4 (a) ince lim (x,y) (,) exy and lim x + 6 in a (x,y)

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A A B1A003 Pages:3 (016 ADMISSIONS) Reg. No:... Name:... APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 017 MA101: CALCULUS Ma. Marks: 100 Duration: 3 Hours PART

More information

Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem

Stokes Theorem. MATH 311, Calculus III. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Stokes Theorem tokes Theorem MATH 311, alculus III J. Robert Buchanan Department of Mathematics ummer 2011 Background (1 of 2) Recall: Green s Theorem, M(x, y) dx + N(x, y) dy = R ( N x M ) da y where is a piecewise

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

16.2. Line Integrals

16.2. Line Integrals 16. Line Integrals Review of line integrals: Work integral Rules: Fdr F d r = Mdx Ndy Pdz FT r'( t) ds r t since d '(s) and hence d ds '( ) r T r r ds T = Fr '( t) dt since r r'( ) dr d dt t dt dt does

More information

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus Math 5BI: Problem et 9 Integral Theorems of Vector Calculus June 2, 2010 A. ivergence and Curl The gradient operator = i + y j + z k operates not only on scalar-valued functions f, yielding the gradient

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

10.9 Stokes's theorem

10.9 Stokes's theorem 09 tokes's theorem This theorem transforms surface integrals into line integrals and conversely, line integrals into surface integrals Hence, it generalizes Green's theorem in the plane of ec 04 Equation

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product Gradient operator In our calculation of dφ along the vector ds, we see that it can be described as the scalar product ( φ dφ = x î + φ y ĵ + φ ) z ˆk ( ) u x dsî + u y dsĵ + u z dsˆk We take dφ = φ ds

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

Divergence Theorem December 2013

Divergence Theorem December 2013 Divergence Theorem 17.3 11 December 2013 Fundamental Theorem, Four Ways. b F (x) dx = F (b) F (a) a [a, b] F (x) on boundary of If C path from P to Q, ( φ) ds = φ(q) φ(p) C φ on boundary of C Green s Theorem:

More information

Math Final Exam

Math Final Exam Math 221 - Final Exam University of Utah Summer 27 Name: s 1. (1 points) For the vectors: Calculate: (a) (2 points) a + b a = 3i + 2j 2k and b = i + 2j 4k. a + b = ( 3 + ( 1))i + (2 + 2)j + ( 2 + ( 4))k

More information

Tom Robbins WW Prob Lib1 Math , Fall 2001

Tom Robbins WW Prob Lib1 Math , Fall 2001 Tom Robbins WW Prob Lib Math 220-2, Fall 200 WeBWorK assignment due 9/7/0 at 6:00 AM..( pt) A child walks due east on the deck of a ship at 3 miles per hour. The ship is moving north at a speed of 7 miles

More information

Review for the Final Test

Review for the Final Test Math 7 Review for the Final Test () Decide if the limit exists and if it exists, evaluate it. lim (x,y,z) (0,0,0) xz. x +y +z () Use implicit differentiation to find z if x + y z = 9 () Find the unit tangent

More information

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

MATH2000 Flux integrals and Gauss divergence theorem (solutions) DEPARTMENT O MATHEMATIC MATH lux integrals and Gauss divergence theorem (solutions ( The hemisphere can be represented as We have by direct calculation in terms of spherical coordinates. = {(r, θ, φ r,

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem Divergence Theorem 17.3 11 December 213 Fundamental Theorem, Four Ways. b F (x) dx = F (b) F (a) a [a, b] F (x) on boundary of If C path from P to Q, ( φ) ds = φ(q) φ(p) C φ on boundary of C Green s Theorem:

More information

Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc

Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc Vector Analysis Vector Fields Suppose a region in the plane or space is occupied by a moving fluid such as air or water. Imagine this fluid is made up of a very large number of particles that at any instant

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

Multivariable Calculus

Multivariable Calculus Math Spring 05 BY: $\ Ron Buckmire Multivariable alculus Worksheet 6 TITLE Path-Dependent Vector Fields and Green s Theorem URRENT READING Mcallum, Section 8.4 HW # (DUE Wednesday 04/ BY 5PM) Mcallum,

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

More information

Peter Alfeld Math , Fall 2005

Peter Alfeld Math , Fall 2005 WeBWorK assignment due 9/2/05 at :59 PM..( pt) Consider the parametric equation x = 2(cosθ + θsinθ) y = 2(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 7 6 π? 2.( pt) Let a = (-2 4 2) and

More information

Math 6A Practice Problems II

Math 6A Practice Problems II Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following

More information

Chapter 3 - Vector Calculus

Chapter 3 - Vector Calculus Chapter 3 - Vector Calculus Gradient in Cartesian coordinate system f ( x, y, z,...) dr ( dx, dy, dz,...) Then, f f f f,,,... x y z f f f df dx dy dz... f dr x y z df 0 (constant f contour) f dr 0 or f

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 2018 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

Review Questions for Test 3 Hints and Answers

Review Questions for Test 3 Hints and Answers eview Questions for Test 3 Hints and Answers A. Some eview Questions on Vector Fields and Operations. A. (a) The sketch is left to the reader, but the vector field appears to swirl in a clockwise direction,

More information

UNIVERSITY OF INDONESIA FACULTY OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

UNIVERSITY OF INDONESIA FACULTY OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY OF INDONESIA FACULTY OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING ENGINEERING MATHEMATICS (MCS-21007) 1. Course Name/Units : Engineering Mathematics/4 2. Department/Semester : Mechanical

More information

6.14 Review exercises for Chapter 6

6.14 Review exercises for Chapter 6 6.4 Review exercises for Chapter 6 699 6.4 Review exercises for Chapter 6 In Exercise 6., B is an n n matrix and ϕ and ψ are both - forms on R 3 ; v and w are vectors 6. Which of the following are numbers?

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

Practice problems ********************************************************** 1. Divergence, curl

Practice problems ********************************************************** 1. Divergence, curl Practice problems 1. Set up the integral without evaluation. The volume inside (x 1) 2 + y 2 + z 2 = 1, below z = 3r but above z = r. This problem is very tricky in cylindrical or Cartesian since we must

More information

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy. APPM 35 FINAL EXAM FALL 13 INSTUTIONS: Electronic devices, books, and crib sheets are not permitted. Write your name and your instructor s name on the front of your bluebook. Work all problems. Show your

More information

Ma 227 Final Exam Solutions 12/17/07

Ma 227 Final Exam Solutions 12/17/07 Ma 7 Final Exam olutions /7/7 Name: Lecture ection: I pledge my honor that I have abided by the tevens Honor ystem. You may not use a calculator, cell phone, or computer while taking this exam. All work

More information

6. Vector Integral Calculus in Space

6. Vector Integral Calculus in Space 6. Vector Integral alculus in pace 6A. Vector Fields in pace 6A-1 Describegeometricallythefollowingvectorfields: a) xi +yj +zk ρ b) xi zk 6A-2 Write down the vector field where each vector runs from (x,y,z)

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Unit 6 Line and Surface Integrals

Unit 6 Line and Surface Integrals Unit 6 Line and Surface Integrals In this unit, we consider line integrals and surface integrals and the relationships between them. We also discuss the three theorems Green s theorem, the divergence theorem

More information

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS) OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

More information

Coordinates 2D and 3D Gauss & Stokes Theorems

Coordinates 2D and 3D Gauss & Stokes Theorems Coordinates 2 and 3 Gauss & Stokes Theorems Yi-Zen Chu 1 2 imensions In 2 dimensions, we may use Cartesian coordinates r = (x, y) and the associated infinitesimal area We may also employ polar coordinates

More information

Math Divergence and Curl

Math Divergence and Curl Math 23 - Divergence and Curl Peter A. Perry University of Kentucky November 3, 28 Homework Work on Stewart problems for 6.5: - (odd), 2, 3-7 (odd), 2, 23, 25 Finish Homework D2 due tonight Begin Homework

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 EE2007:

More information

McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, Advanced Calculus for Engineers McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Brief Review of Vector Algebra

Brief Review of Vector Algebra APPENDIX Brief Review of Vector Algebra A.0 Introduction Vector algebra is used extensively in computational mechanics. The student must thus understand the concepts associated with this subject. The current

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

MTH101A (2016), Tentative Marking Scheme - End sem. exam

MTH101A (2016), Tentative Marking Scheme - End sem. exam MTH11A (16), Tentative Marking Scheme - End sem. eam 1. (a) Let f(, y, z) = yz and S be + y + z = 6. Using Lagrange multipliers method, find the maimum and minimum values of f on S. [7] Lag. Eqns.: yz

More information

Ma 227 Final Exam Solutions 12/13/11

Ma 227 Final Exam Solutions 12/13/11 Ma 7 Final Exam Solutions /3/ Name: Lecture Section: (A and B: Prof. Levine, C: Prof. Brady) Problem a) ( points) Find the eigenvalues and eigenvectors of the matrix A. A 3 5 Solution. First we find the

More information

(A) (B) (C) (D) (E) (F) Figure 1: Graphs of functions from Question 1. Answer Positive: C, D; zero: B, E; negative: A, F. :)

(A) (B) (C) (D) (E) (F) Figure 1: Graphs of functions from Question 1. Answer Positive: C, D; zero: B, E; negative: A, F. :) Question ( marks) Each of the six diagrams in Figure represents the graph of some function of two variables whose second partial derivatives are continuous on R. Diagrams show the graphs in a neighbourhood

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

APPM 2350 FINAL EXAM FALL 2017

APPM 2350 FINAL EXAM FALL 2017 APPM 25 FINAL EXAM FALL 27. ( points) Determine the absolute maximum and minimum values of the function f(x, y) = 2 6x 4y + 4x 2 + y. Be sure to clearly give both the locations and values of the absolute

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Fundamental Theorems of Vector

Fundamental Theorems of Vector Chapter 17 Analysis Fundamental Theorems of Vector Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated

More information

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available. MTH 234 Solutions to Exam 2 April 3, 25 Multiple Choice. Circle the best answer. No work needed. No partial credit available.. (5 points) Parametrize of the part of the plane 3x+2y +z = that lies above

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4 LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

More information

Marking Scheme for the end semester examination of MTH101, (I) for n N. Show that (x n ) converges and find its limit. [5]

Marking Scheme for the end semester examination of MTH101, (I) for n N. Show that (x n ) converges and find its limit. [5] Marking Scheme for the end semester examination of MTH, 3-4 (I). (a) Let x =, x = and x n+ = xn+x for n N. Show that (x n ) converges and find its limit. [5] Observe that x n+ x = x x n [] The sequence

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

4B. Line Integrals in the Plane

4B. Line Integrals in the Plane 4. Line Integrals in the Plane 4A. Plane Vector Fields 4A-1 Describe geometrically how the vector fields determined by each of the following vector functions looks. Tell for each what the largest region

More information

16.3. Conservative Vector Fields

16.3. Conservative Vector Fields 16.3 onservative Vector Fields Review: Work F d r = FT ds = Fr '( t ) dt Mdx Nd Pdz if F Mi Nj Pk F d r is also called circulation if F represents a velocit vector field. Outward flux across a simple closed

More information

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4 LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

More information

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C 15. Green s theorem Math 212-Lecture 2 A simple closed curve in plane is one curve, r(t) : t [a, b] such that r(a) = r(b), and there are no other intersections. The positive orientation is counterclockwise.

More information