Dynamics of a Trapped Bose-Condensed Gas at Finite Temperatures

Size: px
Start display at page:

Download "Dynamics of a Trapped Bose-Condensed Gas at Finite Temperatures"

Transcription

1 Dynamics of a Trapped Bose-Condensed Gas at Finite Temperatures Tetsuro Nikuni, Tokyo University of Science Collaborators: Allan Griffin, University of Toronto (Canada) Eugene Zaremba, Queen s University (Canada) James E. Williams, NIST-Gaithersburg (USA) Brian Jackson, Queen s University (Canada) Overview of theoretical studies on the dynamics of trapped atomic Bose gases at finite temperatures The role of the noncondensate atoms. Dynamics in a Spin-1/2 Bose gas Recent JILA experiments.

2 Background Bose-Einstein condensation (BEC) in laser-cooled atomic gases has become an exciting new field of research in physics, since the first atomic condensate was created in BEC of 23 Na atoms (MIT) T>T c T T c T<<T c v y v x Velocity distribution

3 Trapped Atomic Bose Gas Trap potential U ext (r) = m ( 2 ω xx 2 +ω y y 2 +ω z z 2 ) Interaction V(r 1 r 2 ) gδ(r 1 r 2 ) g = 4πh2 a m a: s-wave scattering length Although the gas is very dilute (na 3 <<1), the interaction plays a crucial role in dynamic phenomena Many-body physics.

4 Bose-Condensate Wavefunction How is this new degree of freedom couples into the normal degrees of freedom? How is the normal fluid modified by the superfluid component? iθ (r,t ) Φ(r,t) = n c (r,t)e v c (r,t) = h m θ(r,t) v c = 0 Irrotational fluid Superfluid

5 Boltzmann Equation Normal Bose Gas (T>T BEC ) t + p m U(r,t) p f (r,p,t) = C 22[ f ] U(r,t) = δu ext (r,t) +U ext (r) + 2gn(r,t) small driving perturbation trap potential Hartree-Fock mean field (very small 0) Collision Integral 1+f 1+f 2 1+f 3 1+f 4 C 22 [f]=g 2 - f 3 f 4 f f 2

6 The Boltzmann equation was used to study various dynamical properties in trapped Bose gases above T BEC [see Chap. 11 of Pethick & Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge (2001)]. One can use various techniques: variational method, moment method, ergodic approximation, test-particle simulation. In the collision-dominated regime, one can use the Chapman- Enskog method to derive hydrodynamic equations for a few macroscopic variables. Griffin, Wu & Stringari, PRL 78, 1838 (1997). Nikuni & Griffin, JLTP 111, 793 (1998).

7 Microscopic Derivation of the Boltzmann Equation (T>T BEC ) Nonequilibrium Green s function G(r 1 t 1,r 2 t 2 ) = ψ ˆ + (r 1,t 1 ) ψ ˆ (r 2,t 2 ) Semiclassical Wigner distribution function f (r,p,t) = d r e ip r /h ψ ˆ + (r + r / 2,t) ψ ˆ (r r / 2,t) For details, see Kadanoff & Baym, Quantum Statistical Mechanics Benjamin, New York (1962). Zubarev, Morozov & Ropke, Statistical Mechanics of Nonequilibrium Processes, Akademie Verlag, Berlin (1997).

8 Bose-Condensed Trapped Gas (T<T BEC ) A condensate is described by a complex order parameter: Φ(r,t) iθ (r,t ) ψ ˆ (r,t) = n c (r,t)e Gross-Pitaevskii (GP) Equation for the pure condensate at T=0 (in effect, T<0.4T BEC ) ih Φ(r,t) t = h2 2 2m + U ext (r) + gn c (r,t) Φ(r,t) It gives an excellent quantitative description of the dynamic behavior, such as collective modes, vortices, solitons.

9 Condensate Dynamics (MIT) Quadrupole Oscillation Vortex lattice

10 Trapped Bose-Condensed Gas at Finite T Trap potential U ext (r) = m 2 ω 2 0 r 2 Condensate Noncondensate x The GP equation will be modified by coupling to the noncondensate atoms.

11 Generalized GP Equation at Finite T ih Φ t = h2 2 2m + U ext + gn c Φ + 2g n Φ + gm Φ * + g ψ + ψ ψ ψ (r,t) = ψ ˆ (r,t) Φ(r,t) n (r,t) = ψ + (r,t) ψ (r,t) noncondensate operator m (r,t) = ψ (r,t) ψ (r,t) We need equations for the noncondensate Green s functions: G 11 (rt, r t ) = ψ + (r,t) ψ ( r, t ), G 12 (rt, r t ) = ψ (r,t) ψ ( r, t ) The semiclassical Wigner distribution function is defined as f (r,p,t) = d r e ip r /h ψ + (r + r / 2,t) ψ (r r / 2,t)

12 Kinetic Theory for Bose-Condensed Gases Homogeneous Bose Gas Kane & Kadanoff, J. Math. Phys. 6, 1902 (1965). Kirkpatrick & Dorfman, JLTP 58, 308 (1985). Trapped Bose Gas Proukakis, Burnett & Stoof, PRA 57, 1230 (1998). Gardiner & Zoller, PRA 61, (2000), and Refs. therein. Stoof, JLTP 114, 11 (1999). Walser, Williams, Cooper & Holland, PRA 59, 3878 (1999). Zaremba, Nikuni & Griffin (ZNG), JLTP 116, 277 (1999). Imamovic-Tomasovic & Griffin, JLTP 122, 617 (2001). Many other papers All these kinetic theories have essentially the same structure, while different approximations are used in detail.

13 ZNG Model Restricted to temperatures high enough (but T<T BEC!) so that thermal excitations can be described as atoms moving in a self-consistent Hartree-Fock (HF) mean field ε p (r,t) = p2 2m + U (r) + 2g[n (r,t)+ ext c n (r,t)] = p2 2m + U(r,t) New kinetic equation: t + p m U(r,t) p f (r,p,t) = C 12[ f,φ]+ C 22 [ f ] C 12 : Collisions between atoms in condensate and noncondensate components

14 1+f C 12 Collision Integral n 1+f 1+f c f 1+f 2 C 12 [f,f]=g 2 f 2 f 3 1+f 2 1+f 3 n c f 3 f 3 n c n c 1+f 3 1+f n 3 c f n c f f 2 f f 2 condensate atom energy ε c (r,t) = h2 2 n c 2m n c +U ext + g( n c + 2n )+ mv c 2 2 condensate momentum mv c (r,t) = h θ(r,t)

15 Generalized Gross-Pitaevskii Equation ih Φ(r,t) t = h2 2 2m +U ext (r)+ gn c (r,t) + 2g n (r,t) ir(r,t) Φ(r,t) R(r,t) = hγ 12 (r,t) 2n c (r,t) Γ 12 = dp C (2πh) 3 12 [ f,φ] It is coupled to the noncondensate component through the HF mean field and C 12 collisions. Collisions between atoms in condensate and noncondensate may change number of atoms in condensate N c.

16 Collisionless v.s. Hydrodynamic Recall two domains at T 0 Collisionless Mean fields dominate T some collective mode ω=2π/t τ coll mean collision time Hydrodynamic T Local equilibrium τ coll

17 Collisionless Dynamics Collective modes (Bijlsma & Stoof, Jackson & Zaremba) Scissors mode (Jackson & Zaremba, T. Nikuni) Condensate growth (Gardiner & Zoller, Bijlsma, Zaremba & Stoof, Yamashita et al.) Vortex nucleation (Williams et al., Tsubota, et al., Gardiner et al.) Theoretical methods Moment method collective modes Ergodic approximation condensate growth N-particle simulation recently developed by Jackson & Zaremba: can solve a lot of dynamical problems!

18 Condensate Growth MIT experiment (1999) Bijlsma, Zaremba & Stoof PRA 62, (2000) Similar results by Gardiner & coworkers

19 N-Body Simulation Semiclassical kinetic equation is solved by the N-body (test particles) simulation. Collisions are treated by the Monte-Carlo sampling technique. Jackson & Zaremba, cond-mat/ GP equation is solved by the sprit-operator Fast Fourier Transform (FFT) method. f (r, p,t) N i=1 δ[r r i (t)] δ[p p i (t)] Φ(r,t)

20 Quadrupole Collective Mode JILA experiment: Jin et al., PRL 78, 764 (1997) Theory: Jackson & Zaremba, PRL 88, (2002) Oscillations of cloud widths Frequency Damping

21 Transverse Breathing Mode ENS experiment: Chevy et al., PRL 88, (2002) Theory: Jackson & Zaremba, cond-mat/ Theory v.s. Experiment A(t)

22 Two-Fluid Hydrodynamics In the collision-dominated regime, we can derive two-fluid hydrodynamics starting from the coupled ZNG equations. Following Chapman-Enskog for classical Boltzmann equation, we expand the noncondensate distribution around local equilibrium: f local (r,p,t) = exp β [p mv n(r,t)] 2 2m + U(r,t) µ (r,t) 1 1 This leads to a closed set of hydrodynamic equations for a few macroscopic quantities. Note that the condensate is always hydrodynamic n c, v c.

23 Landau-Khalatnikov (LK) Equations Our two-fluid equations can be written in the LK form. For details, see Nikuni & Griffin, PRA 63, (2001). δn t + δj = 0 Density δj µ t = δp x µ δn U + η δv nµ x µ x ν x ν ζ 1 [ ρ s (δv s δv n )]+ ζ 2 δv n x µ + δv nν x µ { } 2 3 δ µν δv n Momentum density δv s t = δµ m ζ 3 [ ρ s (δv s δv n )] ζ 4 δv n Superfluid velocity δs t + (sδv n) = (κ δt ) T Entropy

24 Local Transport Coefficients Thermal conductivity Shear viscosity κ(r) = 5 2 τ κ n 0 k 2 B T m B κ η(r) = τ η n 0 k B TB η Four second (bulk) viscosity coefficients ζ 1 = ζ 4 = gn c0 3m σ Hτ µ, ζ 2 = gn 2 c0 9 σ Hτ µ, ζ 3 = g σ m 2 H τ µ B κ, B η, σ H are the renormalization factors involving the equilibrium thermodynamic quantities. The three relaxation times τ κ,τ η,τ µ determine how fast the system reaches local equilibrium.

25 Transport Relaxation Times Nikuni & Griffin, PRA 65, (2002) Classical relaxation rate 1/t cl =nsv ~ th (v th ~(k B T/m) 1/2 ) Relaxation rate in a trapped BEC gas 1/t BE =n c sv th Relaxation times for the MIT trap t cl >> t BE (position in a trap) Collisions with the condensate enhances the relaxation rate.

26 Spin Dynamics in a Dilute Bose Gas Trapped 87 Rb Gas in JILA Experiment (T>T BEC ) F = 2 rf microwave 2,1 Bloch vector S Ω r Ω z 1,-1 F = 1 Effective 2 two-level system: 1 Ω External field S=1/2 Bose gas Ω r

27 Exciting the Spin Dynamics p/2 pulse: All the atoms are prepared in the coherent superposition. density Bloch vector S x D 2æ 1æ Inhomogeneous D(x): Transverse spin component precesses at different rates, depending on position in trap D(x) f(x) x

28 Nonlinear Dynamics: Spin Segregation Lewandowski et al. PRL 88, (2002) 1æ 2æ n 1 (x) n 2 (x) The mean field is usually negligible for the thermal gas equilibrium properties: gn<<k B T. x

29 Kinetic Theory for a Spin-1/2 Bose Gas See for example, Lhuillier & Laloë, J. Physique 43, 197 (1982). We must include internal coherence in kinetic theory: f ˆ = f 11 f 12 f 21 f 22 f ij (r,p,t) ψ ˆ + j (r,t) ψ ˆ i ( r,t) Work with center of mass & spin variables f (r, p,t) Tr[ f ˆ (r,p,t)] r r σ (r,p,t) Tr[ τ ˆ f ˆ (r,p,t)] r τ ˆ = ( τ ˆ x, τ ˆ y, τ ˆ y ): Pauli matrices Spin kinetic equation σ r t + p m σ r r U ext p σ Ω r n + g 12 h exchange interaction r S σ r = σ r t coll

30 Theoretical Results Williams, Nikuni & Clark, PRL 88, (2002) The exchange interaction induces the longitudinal spin oscillation. We compare numerical simulation result with experimental data.

31 Linear Response: Spin Waves JILA experiment: Mcguirk et al., PRL 89, (2002) Theory: Nikuni, Williams, and Clark, cond-mat/ We study transverse spin fluctuations: r σ σ r r σ = 0 r + δσ { 0,0 n } 0 =, 0 Linearized equation for the transverse spin σ + =σ x +iσ y σ + t + p m σ + U ext p σ + + i g ( h f 0δS + n 0 δσ + ) = σ + t coll We solve for dipole and quadrupole modes by moment method (analytical) and simulation (numerical).

32 Quadrupole spin wave excited by (z) z 2. θ φ total density Beautiful Experimental Data! z D=const. D 0

33 Spin Oscillations Theory Experiment

34 Frequency and Damping

35 Briefly, what happens below T c? Two-component spinor order parameter Φ(r,t) = Φ 1(r,t ) e i = n Φ 2 (r,t) c e iθ c α c 2 cos β c 2 e iα c 2 sin β c 2 Condensate spin vector r S c (r,t ) = n c (cos α c sin β c,sin α c sin β c, cos β c ) How does condensate affect the spin waves? How does thermal cloud affect the condensate spin textures (such as vortex)?

36 Summary Dynamics of a trapped Bose gas at finite T is described by a generalized GP equation for the condensate and a quantum kinetic equation for noncondensate atoms. N-particle simulation of the ZNG kinetic theory by Jackson & Zaremba successfully explains various dynamic phenomena. Two-fluid hydrodynamics in the high-density collisiondominated regime: MIT ( 23 Na), Amsterdam ( 87 Rb), ENS (He * ). Spin-1/2 kinetic theory for the recent JILA experiments.

BOSE-CONDENSED GASES AT FINITE TEMPERATURES

BOSE-CONDENSED GASES AT FINITE TEMPERATURES BOSE-CONDENSED GASES AT FINITE TEMPERATURES The discovery of Bose Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research

More information

arxiv:cond-mat/ v1 5 Nov 1997

arxiv:cond-mat/ v1 5 Nov 1997 Hydrodynamic damping in trapped Bose gases T. Nikuni Department of Physics, Tokyo Institute of Technology, Oh-okayama, Tokyo, 152 Japan and Department of Physics, University of Toronto, Toronto, Ontario,

More information

arxiv:cond-mat/ v3 4 Jan 1998

arxiv:cond-mat/ v3 4 Jan 1998 Hydrodynamic damping in trapped Bose gases T. Nikuni Department of Physics, Tokyo Institute of Technology, Oh-okayama, Tokyo, 152 Japan and Department of Physics, University of Toronto, Toronto, Ontario,

More information

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto The discovery of Bose-Einstein condensation ( BEC ) in 1995 in dilute, ultracold trapped atomic gases is one of the most exciting developments

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

Anisotropic Spin Diffusion in Trapped Boltzmann Gases

Anisotropic Spin Diffusion in Trapped Boltzmann Gases Anisotropic Spin Diffusion in Trapped Boltzmann Gases W. J. Mullin 1 and R. J. Ragan 2 1 Physics Department, Hasbrouck Laboratory University of Massachusetts, Amherst, MA 01003 USA 2 Physics Department,

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate

Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate PHYSICAL REVIEW A 67, 053607 2003 Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate M. Guilleumas 1 and L. P. Pitaevskii 2,3 1 Departament d Estructura i Constituents

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation Alan Aversa December 29, 2011 Abstract Summary: The Gross-Pitaevskii equation, also called the non-linear Schrödinger equation, describes

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Dynamics of Trapped Fermion Clouds

Dynamics of Trapped Fermion Clouds Laser Physics, Vol. 14, No. 2, 2004, pp. 302 306. Original Text Copyright 2004 by Astro, Ltd. Copyright 2004 by MAIK Nauka /Interperiodica (Russia). PHYSICS OF COLD TRAPPED ATOMS Dynamics of Trapped Fermion

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence.

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Kirk Madison Vincent Bretin Frédéric Chevy Peter Rosenbuch Wendel Wohlleben Jean Dalibard

More information

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) Dynamics of trapped two-component Fermi gas : temperature dependence of the transition from the collisionless to the collisional regime Toschi, F.; Vignolo, P.; Succi, S.; Tosi, M.P. Published in: Physical

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Publication II American Physical Society. Reprinted with permission.

Publication II American Physical Society. Reprinted with permission. II Publication II Tomoya Isoshima, Jukka Huhtamäki, and Martti M. Salomaa, Precessional motion of a vortex in a finite-temperature Bose-Einstein condensate, Phys. Rev. A69, 063601 (2004). 2004 American

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007 L.P. Pitaevskii Dipartimento di Fisica, Universita di Trento, INFM BEC CNR,Trento, Italy; Kapitza Institute for Physical Problems, ul.

More information

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice.

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice. Inauguration Meeting & Celebration of Lev Pitaevskii s 7 th Birthday Bogoliubov excitations with and without an optical lattice Chiara Menotti OUTLINE OF THE TALK Bogoliubov theory: uniform system harmonic

More information

Lecture 3 : ultracold Fermi Gases

Lecture 3 : ultracold Fermi Gases Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation Many-Body Physics with Cold Gases Diluteness:

More information

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas Second sound and the superfluid fraction in a resonantly interacting Fermi gas Meng Khoon Tey Tsinghua University China Workshop on Probing and Understanding Exotic Superconductors and Superfluids Trieste,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Cold Quantum Gas Group Hamburg

Cold Quantum Gas Group Hamburg Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture BEC in Space Spinor-BEC Atom-Guiding in PBF Fermi Bose Mixture Project Quantum Degenerate Fermi-Bose Mixtures of 40K/87Rb at Hamburg: since 5/03 Special

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Basic concepts of cold atomic gases

Basic concepts of cold atomic gases ECT* Workshop January 2015 Basic concepts of cold atomic gases Franco Dalfovo INO-CNR BEC Center Dipartimento di Fisica, Università di Trento Plan for the lectures: v Cold gases and BEC v Order parameter

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001 arxiv:cond-mat/010751v1 [cond-mat.stat-mech] 4 Jul 001 Beyond the Thomas-Fermi Approximation for Nonlinear Dynamics of Trapped Bose-Condensed Gases Alexander L. Zubarev and Yeong E. Kim Department of Physics,

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2009

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2009 Sound propagation in a Bose-Einstein condensate at finite temperatures arxiv:0909.3455v1 [cond-mat.quant-gas] 18 Sep 2009 R. Meppelink, S. B. Koller, and P. van der Straten 1 1 Atom Optics and Ultrafast

More information

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions Lecture 4 Bose Einstein condensate (BEC) Optical lattices Nano in Dubna and Russia Conclusions Bose Einstein condensate (BEC) - definition -history - main characteristics - laser cooling - role of interaction

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Bose-Einstein Condensation

Bose-Einstein Condensation Bose-Einstein Condensation Kim-Louis Simmoteit June 2, 28 Contents Introduction 2 Condensation of Trapped Ideal Bose Gas 2 2. Trapped Bose Gas........................ 2 2.2 Phase Transition.........................

More information

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright Thermalisation and vortex formation in a mechanically perturbed condensate Jack Dodd Centre ACQAO R.J. Ballagh and Tod Wright Jack Dodd centre for Photonics and Ultra-cold Atoms Department of Physics University

More information

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance Signatures of Superfluidity in Dilute ermi Gases near a eshbach Resonance A. Bulgac (Seattle), Y. Yu (Seattle Lund) P.. Bedaque (Berkeley), G.. Bertsch (Seattle), R.A. Broglia (Milan), A.C. onseca (Lisbon)

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

A stable c-field theory that includes quantum fluctuations

A stable c-field theory that includes quantum fluctuations A stable c-field theory that includes quantum fluctuations Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland Collaboration: Nick Proukakis University of Newcastle, United Kingdom

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Dipolar Bose-Einstein condensates at finite temperature

Dipolar Bose-Einstein condensates at finite temperature PHYSICAL REVIEW A 76, 4367 7 Dipolar Bose-Einstein condensates at finite temperature Shai Ronen JILA and Department of Physics, University of Colorado, Boulder, Colorado 839-44, USA John L. Bohn* JILA,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information