Introduction to Scientific Computing

Size: px
Start display at page:

Download "Introduction to Scientific Computing"

Transcription

1 Introduction to Scientific Computing Benson Muite benson 26 March 2018 [Public Domain, / 21

2 Course Aims General introduction to numerical and computational mathematics Review programming methods Learn about some numerical algorithms Understand how these methods are used in real world situations [Public Domain, / 21

3 Course Overview Lectures Monday J. Livii Benson Muite (benson dot muite at ut dot ee) Practical Monday J. Livii Benson Muite (benson dot muite at ut dot ee) Homework typically due once a week until project. Expected to start this in the labs. Exam/final project presentation will be scheduled at end of course. Grading: Homework 50%, Exam 30%, Active participation 10%, Tests 10% Course Texts: Solomon Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics Pitt-Francis and Whiteley Guide to scientific computing in C++ [Public Domain, / 21

4 Lecture Topics 1) 12 February: Graphing, differentiation and integration dimension 2) 19 February: programming, recursion, arithmetic operations 3) 26 February: Linear algebra 4) 5 March: Floating point numbers, errors and ordinary differential equations 5) 12 March: Image analysis using statistics 6) 19 March: Image analysis using differential equations - Lecture by Gul Wali Shah 7) 26 March: Case study: Application of machine learning to analyse literary corpora 8) 2 April: Case study: DNA simulation using molecular dynamics [Public Domain, / 21

5 Lab Topics 1) 12 February: Mathematical functions, differentiation and integration, plotting, reading: https: //doi.org/ / ) 19 February: Sequences, Series summation, convergence and divergence, Fibonacci numbers and Collatz conjecture or similar experimental mathematics 3) 26 February: Monte Carlo integration, parallel computing introduction, Matrix Multiply, LU decomposition 4) 5 March: Finite difference method, error analysis, interval analysis, image segmentation by matrix differences Reading [Public Domain, / 21

6 Lab Topics 5) 12 March: Eigenvalue computations, singular value decomposition, use of matrix operations in statistics - Eigenfaces 6) 19 March: fixed point iteration, image segmentation - solve partial differential equation from finite differences discretization with implicit timestepping (Mumford-Shah model), compare iterative and direct solvers 7) 26 March: Optimization algorithms, deep learning Reading 8) 2 April: Molecular dynamics simulation using Gromacs [Public Domain, / 21

7 Reading 1) 12 February: Solomon chapter 1 and 2) 19 February: Solomon chapters 2 and 3 3) 26 February: Monte Carlo integration, parallel computing introduction Solomon chapters 4, 5 4) 5 March: Solomon chapters 14 and 15, interval analysis Reading Differential Equations and Exact Solutions in the Moving Sofa Problem [Public Domain, / 21

8 Reading 5) 12 March: Matrix Multiply, Eigenvalue computations, singular value decomposition, use of matrix operations in statistics Solomon chapters 6 and 7 6) 19 March: Solomon chapters 11, 13 and 16 7) 26 March: Word count, clustering algorithms, optimization algorithms, deep learning Reading Solomon chapters 8, 9 and 12 8) 2 April: Molecular dynamics simulation [Public Domain, / 21

9 Root finding for polynomials - Fixed point iteration Theorem Let s be a solution of x = g(x) and g have a continuous derivative in some interval I containing s. The if g (s) K < 1 in I the iteration process x n+1 = g(x n ) converges for any initial value x 0 in I. If g (s) 0 then the convergence rate is linear, and if g (s) = 0, with g (s) 0 the the convergence rate is quadratic. [Public Domain, / 21

10 Root finding for polynomials - Newton-Raphson iteration Define f (x) = x g(x) x n+1 = x n f (x n) f (x n ) [Public Domain, / 21

11 Root finding for polynomials - Secant Method Approximate derivative by finite difference x n+1 = x n f (x n)(x n x n 1 ) f (x n ) f (x n 1 ) [Public Domain, / 21

12 Root finding for polynomials - Systems of Equations f 1 (x 1,..., x n ) = 0 f 2 (x 1,..., x n ) = 0... f n (x 1,..., x n ) = 0 or Let J = [ ] fi x j f(x) = 0 x n+1 = x n J 1 n f(x n ) [Public Domain, / 21

13 Root finding for polynomials - Systems of Equations Hard to find J analytically, therefore finite differences are often used It can be expensive to find J n every iteration, so sometimes just the initial value J 0 is used. [Public Domain, / 21

14 Steepest Descent for Linear Systems of Equations Solving Ax = b is equivalent to minimizing x T Ax x T b for symmetric and positive definite matrix A the algorithm is choose x 0 so that r 0 = Ax 0 b FOR n = 1, 2,.. ENDFOR rt n r n α n = r T n Ar n x n+1 = x n α n r n r n+1 = Ax n+1 b [Public Domain, / 21

15 Optimization find x such that f (x ) f (x) for all feasible x or find x such that f (x ) f (x) for all feasible x Constrained vs. Unconstrained Continuous vs. Discrete Differentiable vs. Non differentiable [Public Domain, / 21

16 Optimization: Hooke and Jeeves method a) choose a step size b) Successively sequentially check if f (x ± he i ) < f (x), and update x if so c) After checking all coordinate directions, check if x was updated. If the step size h < ɛ, stop, otherwise decrease h by a factor of 2. d) If x was updated If the step size h < ɛ, stop. Otherwise start searching from 2x new x old if f (2x new x old ) < f (x new x old ), if not search from f (x new x old ). [Public Domain, / 21

17 Optimization: Nelder and Mead method a) Generate a simplex of n + 1 points in R. b) Remove the vertex with the worst function value and replace it with a new point. Choose the point by reflecting, expanding or contracting the simplex along the line joining the worst vertex with the centroid of the remaining vertices. If this does not give a better value, keep the best vertex and shrink all other vertices towards the best one. [Public Domain, / 21

18 Optimization: Descent methods For a differentiable function x k+1 = x k + α k d k a) Newton s method: d k = H 1 (x k ) f (x k ) where H is the hessian of f b) Approximate Newton: d k = B 1 (x k ) f (x k ) where B approximates the hessian of f c) Steepest descent: d k = f (x k ) d) Conjugate gradient: d k = f (x k ) + β k d k 1 [Public Domain, / 21

19 Constrained Optimization Given f : R n R maximize f (x) subject to g i (x) b i g i (x) b i g i (x) = b i x i m 0 i = 1,..., l i = l + 1,..., k i = k + 1,..., m i = m + 1,..., n Typically define a Lagrangian L = f (x) + m λ i [b i g i (x)] i=1 n i=m+1 λ i x i m and use Kuhn-Tucker conditions to check for constrained extrema. [Public Domain, / 21

20 References Krasny Numerical Methods Lecture notes math.lsa.umich.edu/ krasny/math471.html Griffin Numerical Optimization: Penn State Math 555 Lecture Notes http: // Chi Wei Cliburn Chan Practical Optimization Routines ccc14/sta-663/ BlackBoxOptimization.html Matot, Leung and Sim Application of MATLAB and Python optimizers to two case studies involving groundwater flow and contaminant transport modeling [Public Domain, / 21

21 References Quarteroni, Sacco, Saleri chapters 1, 7, 9 and 10 Boyd and Vandenberghe Convex Optimization Cambridge (2004) Heath Scientific computing: An introductory survey McGraw Hill (2002) Greenbaum and Chartier Numerical Methods Princeton (2012) Greenbaum Iterative Methods for Solving Linear Systems SIAM (1997) Epperson An introduction to numerical methods and analysis Wiley (2007) [Public Domain, / 21

Introduction to Scientific Computing

Introduction to Scientific Computing Introduction to Scientific Computing Benson Muite benson.muite@ut.ee http://kodu.ut.ee/ benson https://courses.cs.ut.ee/218/isc/spring 5 March 218 [Public Domain, https://commons.wikimedia.org/wiki/file:curie

More information

Scientific Data Computing: Lecture 3

Scientific Data Computing: Lecture 3 Scientific Data Computing: Lecture 3 Benson Muite benson.muite@ut.ee 23 April 2018 Outline Monday 10-12, Liivi 2-207 Monday 12-14, Liivi 2-205 Topics Introduction, statistical methods and their applications

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 6: Monday, Mar 7. e k+1 = 1 f (ξ k ) 2 f (x k ) e2 k.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 6: Monday, Mar 7. e k+1 = 1 f (ξ k ) 2 f (x k ) e2 k. Problem du jour Week 6: Monday, Mar 7 Show that for any initial guess x 0 > 0, Newton iteration on f(x) = x 2 a produces a decreasing sequence x 1 x 2... x n a. What is the rate of convergence if a = 0?

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Intro to Linear & Nonlinear Optimization

Intro to Linear & Nonlinear Optimization ECE 174 Intro to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department UCSD Version 10.5.2017 Contact Information Fall 2017 Course Website Accessible from http://dsp.ucsd.edu/~kreutz/; Piazza:

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Intro to Linear & Nonlinear Optimization

Intro to Linear & Nonlinear Optimization ECE 174 Intro to Linear & Nonlinear Optimization i Ken Kreutz-Delgado ECE Department, UCSD Contact Information Course Website Accessible from http://dsp.ucsd.edu/~kreutz Instructor Ken Kreutz-Delgado kreutz@ece.ucsd.eduucsd

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review CE 191: Civil & Environmental Engineering Systems Analysis LEC 17 : Final Review Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Optimization Concepts and Applications in Engineering

Optimization Concepts and Applications in Engineering Optimization Concepts and Applications in Engineering Ashok D. Belegundu, Ph.D. Department of Mechanical Engineering The Pennsylvania State University University Park, Pennsylvania Tirupathi R. Chandrupatia,

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Factors of Polynomials Factoring For Experts

Factors of Polynomials Factoring For Experts Factors of Polynomials SUGGESTED LEARNING STRATEGIES: Shared Reading, Activating Prior Knowledge, Discussion Group, Note-taking When you factor a polynomial, you rewrite the original polynomial as a product

More information

Constrained optimization

Constrained optimization Constrained optimization In general, the formulation of constrained optimization is as follows minj(w), subject to H i (w) = 0, i = 1,..., k. where J is the cost function and H i are the constraints. Lagrange

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Polynomials Polynomials A polynomial is of the form: ( x) = a 0 + a 1 x + a 2 x 2 +L+ a n x n f

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn

Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn Chapter 1: Functions and Derivatives: The Graphical View 1. Functions, Calculus Style 2. Graphs 3. A Field

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Root Finding and Optimization

Root Finding and Optimization Root Finding and Optimization Root finding, solving equations, and optimization are very closely related subjects, which occur often in practical applications. Root finding : f (x) = 0 Solve for x Equation

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St Structured Lower Rank Approximation by Moody T. Chu (NCSU) joint with Robert E. Funderlic (NCSU) and Robert J. Plemmons (Wake Forest) March 5, 1998 Outline Introduction: Problem Description Diculties Algebraic

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Prerequisite: Qualification by assessment process or completion of Mathematics 1050 or one year of high school algebra with a grade of "C" or higher.

Prerequisite: Qualification by assessment process or completion of Mathematics 1050 or one year of high school algebra with a grade of C or higher. Reviewed by: D. Jones Reviewed by: B. Jean Reviewed by: M. Martinez Text update: Spring 2017 Date reviewed: February 2014 C&GE Approved: March 10, 2014 Board Approved: April 9, 2014 Mathematics (MATH)

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Dominican International School PRECALCULUS

Dominican International School PRECALCULUS Dominican International School PRECALCULUS GRADE EVEL: 11 1 Year, 1 Credit TEACHER: Yvonne Lee SY: 2017-2018 email: ylee@dishs.tp.edu.tw COURSE DESCRIPTION Pre-Calculus serves as a transition between algebra

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

1 Introduction

1 Introduction 2018-06-12 1 Introduction The title of this course is Numerical Methods for Data Science. What does that mean? Before we dive into the course technical material, let s put things into context. I will not

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Math 409/509 (Spring 2011)

Math 409/509 (Spring 2011) Math 409/509 (Spring 2011) Instructor: Emre Mengi Study Guide for Homework 2 This homework concerns the root-finding problem and line-search algorithms for unconstrained optimization. Please don t hesitate

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Course Information Course Overview Study Skills Background Material. Introduction. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Course Information Course Overview Study Skills Background Material. Introduction. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Introduction CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James CS 205A: Mathematical Methods Introduction 1 / 16 Instructor Prof. Doug James Office: Gates 363 Telephone: (650)

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations Subsections One-dimensional Unconstrained Optimization Golden-Section Search Quadratic Interpolation Newton's

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Modern Optimization Techniques

Modern Optimization Techniques Modern Optimization Techniques 0. Overview Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 1 / 44 Syllabus Mon.

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

INTRODUCTION, FOUNDATIONS

INTRODUCTION, FOUNDATIONS 1 INTRODUCTION, FOUNDATIONS ELM1222 Numerical Analysis Some of the contents are adopted from Laurene V. Fausett, Applied Numerical Analysis using MATLAB. Prentice Hall Inc., 1999 2 Today s lecture Information

More information

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION 15-382 COLLECTIVE INTELLIGENCE - S19 LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION TEACHER: GIANNI A. DI CARO WHAT IF WE HAVE ONE SINGLE AGENT PSO leverages the presence of a swarm: the outcome

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

Homework 5. Convex Optimization /36-725

Homework 5. Convex Optimization /36-725 Homework 5 Convex Optimization 10-725/36-725 Due Tuesday November 22 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

Lecture 1: Introduction

Lecture 1: Introduction EE 227A: Convex Optimization and Applications January 17 Lecture 1: Introduction Lecturer: Anh Pham Reading assignment: Chapter 1 of BV 1. Course outline and organization Course web page: http://www.eecs.berkeley.edu/~elghaoui/teaching/ee227a/

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Conjugate Gradient Tutorial

Conjugate Gradient Tutorial Conjugate Gradient Tutorial Prof. Chung-Kuan Cheng Computer Science and Engineering Department University of California, San Diego ckcheng@ucsd.edu December 1, 2015 Prof. Chung-Kuan Cheng (UC San Diego)

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information