then kaxk 1 = j a ij x j j ja ij jjx j j: Changing the order of summation, we can separate the summands, kaxk 1 ja ij jjx j j: let then c = max 1jn ja

Size: px
Start display at page:

Download "then kaxk 1 = j a ij x j j ja ij jjx j j: Changing the order of summation, we can separate the summands, kaxk 1 ja ij jjx j j: let then c = max 1jn ja"

Transcription

1 Homework Haimanot Kassa, Jeremy Morris & Isaac Ben Jeppsen October 7, 004 Exercise 1 : We can say that kxk = kx y + yk And likewise So we get kxk kx yk + kyk kxk kyk kx yk kyk = ky x + xk kyk ky xk + kxk kyk kxk ky xk kxk kyk kx yk Exercise : (An Induced Matrix Norm.) Let A be a real n x n matrix. Show that: kak 1 = max ;;:::;n ja ij j: Hint: Use the denition of the induced matrix norm: kak 1 = max kaxk 1 : kxk 1 =1 Answer: let kxk 1 = jx j j 1

2 then kaxk 1 = j a ij x j j ja ij jjx j j: Changing the order of summation, we can separate the summands, kaxk 1 ja ij jjx j j: let then c = max 1jn ja ij j (1) kaxk 1 ckxk 1 and thus kak 1 c to show this as an equality, we demonstrate an x for which kaxk 1 kxk 1 = c let k be the column index for which the maximum in (1) is attained. Let x = e k, the k th unit vector. Then kxk 1 = 1 and kak 1 = j a ij x j j = ja ik j = c This proves that for the vector norm k k, the operator norm is kak 1 = max 1jn ja ij j Exercise : An induced norm is dened as kak = max kaxk kx

3 if we let A = I n then but kak F = kik F = vu u t n X a ij = p : : : + 1 = p n kak = kik = max kixk = max kxk = 1 kx kx Since max kaxk 6= kaxk F the Frobenius norm is not an induced norm. kx Exercise 4 : Does the spectral radius itself dene a norm? Why or why not? Answer. As we have seen it in class, for an arbitrary square matrix A, r (A) kak () Moreover, if " > 0 be given, then there is an operator matrix norm, for which kak " r (A) + " () This shows that r (A) is almost a matrix norm. But notice that it does not satisfy all the norm properties. For example kak = 0 $ A = 0 but this is not neccessarly true for spectral radius of a matrix. Take this example: A = (4) The spectral radius of A is 0, but A is not the zero matrix. Exercise 5 : Derivation: Given Ax = b we want to obtain an approximation ex to x, ~x 6= x. This leads to kek = k~x xk kek ( relative error) kxk Which leads to the following set of equations: Ax = b! kbk 6 kakkxj (1) A 1 b = x! kxk 6 ka 1 kkbk () Ae = r! krk 6 kakkek () A 1 r = e! kek 6 ka 1 kkrk (4)

4 Dividing the smaller side of (4) by the larger side of (1), and the larger side of (4) by the smaller side of (1) gives Similarly with () and (): kek kxk 6 kakka 1 k krk kbk krk ka 1 kkbk 6 kakkek kxk Which leads to 1 krk kakka 1 k kbk 6 kek kxk 6 kakka 1 k krk kbk In general this inequality can be shown to be sharp trivialy by denition. That is given kak = max kaxk kx By denition, there is some x such that kbk = kaxk = kakkxk Similarly for equations (),(),(4). Therefore there is some x such that for the right hand side we have kek kakkxk = ka 1 k krk kbk And for the left hand side we have: krk ka 1 kkbk = kakkek kxk or a) For the more specic case of k k : Using SVD kaxk = kbk becomes: Let x = v 1 then kek or kxk = kakja 1 k krk kbk krk ka 1 kkakkbk = kek kxk (i) kaxk = kuv T xk kaxk = kuv T v 1 k = (UV T v 1 ) T (UV T v 1 ) = v T 1 V T U T UV T v 1 4

5 Since U and V are orthogonal this becomes T = kk By denition of the induced matrix norm this becomes r n kk = max kxk orkk = max kxk =1 kxk =1 Since by denition 1 = max( i ), And since kxk = 1. r n kxk = 1 max x i = kxk 1 =1 i x i Similarly for ka 1 rk = kek letting x = u i yields: r n ka 1 rk = ka T u i k = kv 1 U T k = n 1 max x i = 1 n Similar steps for equations () and () yield kxk =1 Ax = b! kbk = kaxjj = 1 kxk (1.a) A 1 b = x! kxk = ka 1 bk = 1 n kbk (.a) Ae = r! krk = kaek = 1 kek (.a) A 1 r = e! kek = ka 1 rk = 1 n krk (4.a) Which gives for the right hand side: and for the left hand side: kejj kxk = 1 krk n kbk krk 1 n 1 kbk = kek kxk Therefore the inequality is sharp when A is a diagonal matrix. b) For k k 1 By denition: kak 1 = max kaxk 1 = max kx i 5 ja ij x j j 6 max i ja ij j = ja kj j

6 Supposing that the max row sum is obtained in the k th row, pick x to be 1 based on the signs of this k th -row. x = : : : C A Given this x the inequality (i) becomes an equality P Ax = b! kbk = max kaxjj 1 = n ja kj j = kx P A 1 b = x! kxk = maxka 1 bk1 = n kb Ae = r! krk = max ke ja 1 kj j = P kaek= n ja kj j = P A 1 r = e! kek = max ka 1 rk 1 = n kr ja 1 kj j = (1.a) (.a) (.a) (4.a) And thus, for the right hand side: kejj kxk = krk kbk And for the left hand side: krk kbk = kek kxk Exercise 6 : General case A is the Hermitian (complex symmetric matrix) i) If A = A then so hax; xi is real hax; xi = hx; Axi = hx; Axi = hax; xi ii) If Ax = x, then hax; xi = hx; xi = hx; xi. Since hax; xi and hx; xi are real must be real. 6

7 It follows directly that A = A T is a special case of this. Therefore, the eigenvalues of A are real. Exercise 7 : Let be an eigenvalue of AA nxn. Show that there exists an such that i f1; ; : : : :; ng ja ii j 6 Xn jaij j Proof: Let x i be the component of largest magnitude of one of the eigenvectors of A. From the ith equation of the system (A I)x = 0, we have Which leads to: (a ii )x i = ja ii j 6 j6=i j6=i j6=i ja ij j jx jj jx i j 6 a ij x j Let S be a set that is the union of k 6 n Gershgorin circles s.t. the intersection of S with all other Gershgorin circles is empty. Show that S contains precisely k eignvalues of A (counting multiplicities) Let k = n, this implies that A is a diagonal matrix, A = D, This yields n circles centered about the diagonal entries of a ii with radius 0. Give an example showing that on the other hand there may be Gershgorin circles that contain no eigenvalues of A at all. Let: 1 1 A = 1 4 The eigenvalues for this matrix are = 1:908 : : : ; 0:596 : : : which are both outside the circle of radius 0.5 centered at 1. NOTE: A woman by the name of Olga Taussky Todd was famous for using this theorem and worked with the utter group to help build more ecient aircrafts during WWII. The utter speed is extremely important to an aircrafts making and must be carefully calculated for it to be able to get o the ground. 4 j6=i ja ij j 7

8 Olga found a more simplied way to nd these calculations by nding the eigenvalues and eigenvectors using the Gershgorin Theorem. \Still, matrix theory reached me only slowly," Taussky noted in a 1988 article in the American Mathematical Monthly. \Since my main subject was number theory, I did not look for matrix theory. It somehow looked for me." (IvarsP Peterson's MathTrek). Exercise 8 : Let A R ml and B R ln and show that if we use partitioned matrices A11 A A = 1 B11 B B = 1 A 1 A B 1 B Where A ij R m il j and B ij R l in j. Then the matrix product can be computed using: A11 B AB = 11 + A 1 B 1 A 11 B 1 + A 1 B A 1 B 11 + A B 1 A 1 B 1 + A B To show this, we will take the statement for the upper left block matrix AB and expand it: (AB) ij = l 1 X (a 11 ) ik (b 11 ) kj + l X (a 1 ) ik (b 1 ) kj (5) Which can be written in terms of the original matrices A and B Xl 1 a ik b kj + lx 1 +l k=l 1 +1 And we can combine these sums by writing In general we can write lx 1 +l (AB) ij = a ik b kj (6) a ik b kj (7) A^ik B k^j (8) where n is the number of row matrices of A and the number of column matrices of B. And if A R ml with sub-matrices A ij R m il j where 8

9 l 1 + l + : : : + l n = l and, ^i, ^j refer to the appropriate matrices. Exercise 9 : a. False. By denition, the determinant is the sum of all possible products where we pick an element from each row and column of the matrix. This means that if we take a matrix A R 44 4, that we should have 4 = 4 products to sum. However, by this method we only get 8. det (A) = det (A 11 ) det (A ) det (A 1 ) det (A 1 ) = a 11 a a a 44 a 11 a a 4 a 4 a 1 a 1 a a 44 + a 1 a 1 a 4 a 4 a 1 a 4 a 1 a 4 + a 1 a 4 a a 41 + a 14 a a 1 a 4 a 14 a a a 41 Notice that there are only two terms with the coecient a 11, if we compute the determinant using the minor expansion, we should have six such terms. b. False, take the matrix Where we have sub-matrices A = 6 4 B = 1 C = D = Then we have rank(b) + rank(d) = but rank(a) =. This statement could be true if rank(b) = rank(c). Exercise 10 : To count the number of multiplications and divisions in the Cholesky decomposition, we use the equations derived in the book for nding the individual elements of the matrix L l ij = a ij 9 j 1 X l jj l ik l jk

10 l ii = " a ii Xi 1 l ik # 1= The number of divisions can be seen from the rst equation, there are divisions for every element below the diagonal. This is n n To get the number of multiplications we notice that we need the double sum X X n 1 n 1 j=i n j Using a method similar to the one used in the notes, we approximate this expression with integrals to get the number of multiplications Z n 1 Z n 1 1 i (n j) dj di = 1 6 n 1 n + For the case when i = j, we use the second equation to get the sum (n i) Z n 1 (n i) di = n n + 1 When we approximate using integrals, the leading term is the only one that is important. Therefore, we see that the Cholesky decomposition is of order n 6 10

Norms and Perturbation theory for linear systems

Norms and Perturbation theory for linear systems CHAPTER 7 Norms and Perturbation theory for linear systems Exercise 7.7: Consistency of sum norm? Observe that the sum norm is a matrix norm. This follows since it is equal to the l -norm of the vector

More information

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Deartment of Electrical Engineering and Comuter Science Massachuasetts Institute of Technology c Chater Matrix Norms

More information

Functional Analysis: Assignment Set # 11 Spring 2009 Professor: Fengbo Hang April 29, 2009

Functional Analysis: Assignment Set # 11 Spring 2009 Professor: Fengbo Hang April 29, 2009 Eduardo Corona Functional Analysis: Assignment Set # Spring 2009 Professor: Fengbo Hang April 29, 2009 29. (i) Every convolution operator commutes with translation: ( c u)(x) = u(x + c) (ii) Any two convolution

More information

ESTIMATION OF ERROR. r = b Abx a quantity called the residual for bx. Then

ESTIMATION OF ERROR. r = b Abx a quantity called the residual for bx. Then ESTIMATION OF ERROR Let bx denote an approximate solution for Ax = b; perhaps bx is obtained by Gaussian elimination. Let x denote the exact solution. Then introduce r = b Abx a quantity called the residual

More information

Linear Algebra: Characteristic Value Problem

Linear Algebra: Characteristic Value Problem Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Introduction to Linear Algebra. Tyrone L. Vincent

Introduction to Linear Algebra. Tyrone L. Vincent Introduction to Linear Algebra Tyrone L. Vincent Engineering Division, Colorado School of Mines, Golden, CO E-mail address: tvincent@mines.edu URL: http://egweb.mines.edu/~tvincent Contents Chapter. Revew

More information

Institute for Advanced Computer Studies. Department of Computer Science. On the Perturbation of. LU and Cholesky Factors. G. W.

Institute for Advanced Computer Studies. Department of Computer Science. On the Perturbation of. LU and Cholesky Factors. G. W. University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{95{93 TR{3535 On the Perturbation of LU and Cholesky Factors G. W. Stewart y October, 1995

More information

4 Linear Algebra Review

4 Linear Algebra Review Linear Algebra Review For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder of the text 1 Vectors and Matrices For the context of data analysis, the

More information

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x)

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x) 1.4. INNER PRODUCTS,VECTOR NORMS, AND MATRIX NORMS 11 The estimate ^ is unbiased, but E(^ 2 ) = n?1 n 2 and is thus biased. An unbiased estimate is ^ 2 = 1 (x i? ^) 2 : n? 1 In x?? we show that the linear

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number 10.34: Numerical Methods Applied to Chemical Engineering Lecture 2: More basics of linear algebra Matrix norms, Condition number 1 Recap Numerical error Operations Properties Scalars, vectors, and matrices

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

Scientiae Mathematicae Vol. 2, No. 3(1999), 263{ OPERATOR INEQUALITIES FOR SCHWARZ AND HUA JUN ICHI FUJII Received July 1, 1999 Abstract. The g

Scientiae Mathematicae Vol. 2, No. 3(1999), 263{ OPERATOR INEQUALITIES FOR SCHWARZ AND HUA JUN ICHI FUJII Received July 1, 1999 Abstract. The g Scientiae Mathematicae Vol. 2, No. 3(1999), 263{268 263 OPERATOR INEQUALITIES FOR SCHWARZ AND HUA JUN ICHI FUJII Received July 1, 1999 Abstract. The geometric operator mean gives us an operator version

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col Review of Linear Algebra { E18 Hanout Vectors an Their Inner Proucts Let X an Y be two vectors: an Their inner prouct is ene as X =[x1; ;x n ] T Y =[y1; ;y n ] T (X; Y ) = X T Y = x k y k k=1 where T an

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the Relative Perturbation Bound for Invariant Subspaces of Graded Indenite Hermitian Matrices Ninoslav Truhar 1 University Josip Juraj Strossmayer, Faculty of Civil Engineering, Drinska 16 a, 31000 Osijek,

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment Two Caramanis/Sanghavi Due: Tuesday, Feb. 19, 2013. Computational

More information

[3] (b) Find a reduced row-echelon matrix row-equivalent to ,1 2 2

[3] (b) Find a reduced row-echelon matrix row-equivalent to ,1 2 2 MATH Key for sample nal exam, August 998 []. (a) Dene the term \reduced row-echelon matrix". A matrix is reduced row-echelon if the following conditions are satised. every zero row lies below every nonzero

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Dominant Eigenvalue of a Sudoku Submatrix

Dominant Eigenvalue of a Sudoku Submatrix Sacred Heart University DigitalCommons@SHU Academic Festival Apr 20th, 9:30 AM - 10:45 AM Dominant Eigenvalue of a Sudoku Submatrix Nicole Esposito Follow this and additional works at: https://digitalcommons.sacredheart.edu/acadfest

More information

4 Frequent Directions

4 Frequent Directions 4 Frequent Directions Edo Liberty[3] discovered a strong connection between matrix sketching and frequent items problems. In FREQUENTITEMS problem, we are given a stream S = hs 1,s 2,...,s n i of n items

More information

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1 Scientific Computing WS 2018/2019 Lecture 9 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 9 Slide 1 Lecture 9 Slide 2 Simple iteration with preconditioning Idea: Aû = b iterative scheme û = û

More information

Lecture 2: Review of Prerequisites. Table of contents

Lecture 2: Review of Prerequisites. Table of contents Math 348 Fall 217 Lecture 2: Review of Prerequisites Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this

More information

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices Chapter 7 Iterative methods for large sparse linear systems In this chapter we revisit the problem of solving linear systems of equations, but now in the context of large sparse systems. The price to pay

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

APPROXIMATING THE COMPLEXITY MEASURE OF. Levent Tuncel. November 10, C&O Research Report: 98{51. Abstract

APPROXIMATING THE COMPLEXITY MEASURE OF. Levent Tuncel. November 10, C&O Research Report: 98{51. Abstract APPROXIMATING THE COMPLEXITY MEASURE OF VAVASIS-YE ALGORITHM IS NP-HARD Levent Tuncel November 0, 998 C&O Research Report: 98{5 Abstract Given an m n integer matrix A of full row rank, we consider the

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016 Linear Algebra Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Large-Scale ML, Fall 2016 Shan-Hung Wu (CS, NTHU) Linear Algebra Large-Scale ML, Fall

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 17 LECTURE 5 1 existence of svd Theorem 1 (Existence of SVD) Every matrix has a singular value decomposition (condensed version) Proof Let A C m n and for simplicity

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Analysis of a Fast Hankel Eigenvalue Algorithm Franklin T. Luk a and Sanzheng Qiao b a Department of Computer Science Rensselaer Polytechnic Institute

Analysis of a Fast Hankel Eigenvalue Algorithm Franklin T. Luk a and Sanzheng Qiao b a Department of Computer Science Rensselaer Polytechnic Institute nalysis of a Fast Hankel Eigenvalue lgorithm Franklin T. Luk a and Sanzheng Qiao b a Department of omputer Science Rensselaer Polytechnic Institute Troy, New York 28 US b Department of omputing and Software

More information

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence)

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) David Glickenstein December 7, 2015 1 Inner product spaces In this chapter, we will only consider the elds R and C. De nition 1 Let V be a vector

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

PROOF OF TWO MATRIX THEOREMS VIA TRIANGULAR FACTORIZATIONS ROY MATHIAS

PROOF OF TWO MATRIX THEOREMS VIA TRIANGULAR FACTORIZATIONS ROY MATHIAS PROOF OF TWO MATRIX THEOREMS VIA TRIANGULAR FACTORIZATIONS ROY MATHIAS Abstract. We present elementary proofs of the Cauchy-Binet Theorem on determinants and of the fact that the eigenvalues of a matrix

More information

Problem Set 1. Homeworks will graded based on content and clarity. Please show your work clearly for full credit.

Problem Set 1. Homeworks will graded based on content and clarity. Please show your work clearly for full credit. CSE 151: Introduction to Machine Learning Winter 2017 Problem Set 1 Instructor: Kamalika Chaudhuri Due on: Jan 28 Instructions This is a 40 point homework Homeworks will graded based on content and clarity

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Linearized Alternating Direction Method: Two Blocks and Multiple Blocks. Zhouchen Lin 林宙辰北京大学

Linearized Alternating Direction Method: Two Blocks and Multiple Blocks. Zhouchen Lin 林宙辰北京大学 Linearized Alternating Direction Method: Two Blocks and Multiple Blocks Zhouchen Lin 林宙辰北京大学 Dec. 3, 014 Outline Alternating Direction Method (ADM) Linearized Alternating Direction Method (LADM) Two Blocks

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H A TOUR OF LINEAR ALGEBRA FOR JDEP 384H Contents Solving Systems 1 Matrix Arithmetic 3 The Basic Rules of Matrix Arithmetic 4 Norms and Dot Products 5 Norms 5 Dot Products 6 Linear Programming 7 Eigenvectors

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Linear algebra for computational statistics

Linear algebra for computational statistics University of Seoul May 3, 2018 Vector and Matrix Notation Denote 2-dimensional data array (n p matrix) by X. Denote the element in the ith row and the jth column of X by x ij or (X) ij. Denote by X j

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

total work bounds to approximately solve the linear systems are O(n); if = O(1): For class (4) we are within a small increasing factor of these bounds

total work bounds to approximately solve the linear systems are O(n); if = O(1): For class (4) we are within a small increasing factor of these bounds Ecient Approximate Solution of Sparse Linear Systems John H. Reif z Abstract. We consider the problem of approximate solution ex of a linear system Ax = b over the reals, such that kaex? bk kbk; for a

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Institute for Advanced Computer Studies. Department of Computer Science. On the Adjoint Matrix. G. W. Stewart y ABSTRACT

Institute for Advanced Computer Studies. Department of Computer Science. On the Adjoint Matrix. G. W. Stewart y ABSTRACT University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{97{02 TR{3864 On the Adjoint Matrix G. W. Stewart y ABSTRACT The adjoint A A of a matrix A

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

Some inequalities for sum and product of positive semide nite matrices

Some inequalities for sum and product of positive semide nite matrices Linear Algebra and its Applications 293 (1999) 39±49 www.elsevier.com/locate/laa Some inequalities for sum and product of positive semide nite matrices Bo-Ying Wang a,1,2, Bo-Yan Xi a, Fuzhen Zhang b,

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex

More information

The Singular Value Decomposition

The Singular Value Decomposition CHAPTER 6 The Singular Value Decomposition Exercise 67: SVD examples (a) For A =[, 4] T we find a matrixa T A =5,whichhastheeigenvalue =5 Thisprovidesuswiththesingularvalue =+ p =5forA Hence the matrix

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Introduction. Vectors and Matrices. Vectors [1] Vectors [2] Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector - one dimensional array Matrix -

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Direct Methods for Solving Linear Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview General Linear Systems Gaussian Elimination Triangular Systems The LU Factorization

More information

that of the SVD provides new understanding of left and right generalized singular vectors. It is shown

that of the SVD provides new understanding of left and right generalized singular vectors. It is shown ON A VARIAIONAL FORMULAION OF HE GENERALIZED SINGULAR VALUE DECOMPOSIION MOODY.CHU,ROBER. E. FUNDERLIC y AND GENE H. GOLUB z Abstract. A variational formulation for the generalized singular value decomposition

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Department of Mathematics Technical Report May 2000 ABSTRACT. for any matrix norm that is reduced by a pinching. In addition to known

Department of Mathematics Technical Report May 2000 ABSTRACT. for any matrix norm that is reduced by a pinching. In addition to known University of Kentucky Lexington Department of Mathematics Technical Report 2000-23 Pinchings and Norms of Scaled Triangular Matrices 1 Rajendra Bhatia 2 William Kahan 3 Ren-Cang Li 4 May 2000 ABSTRACT

More information

Math/CS 466/666: Homework Solutions for Chapter 3

Math/CS 466/666: Homework Solutions for Chapter 3 Math/CS 466/666: Homework Solutions for Chapter 3 31 Can all matrices A R n n be factored A LU? Why or why not? Consider the matrix A ] 0 1 1 0 Claim that this matrix can not be factored A LU For contradiction,

More information

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen

More information

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation Lecture Cholesky method QR decomposition Terminology Linear systems: Eigensystems: Jacobi transformations QR transformation Cholesky method: For a symmetric positive definite matrix, one can do an LU decomposition

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES We obtain some further results for pairs of commuting matrices. We show that a pair of commutin

STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES We obtain some further results for pairs of commuting matrices. We show that a pair of commutin On the stability of invariant subspaces of commuting matrices Tomaz Kosir and Bor Plestenjak September 18, 001 Abstract We study the stability of (joint) invariant subspaces of a nite set of commuting

More information

Math Fall Final Exam

Math Fall Final Exam Math 104 - Fall 2008 - Final Exam Name: Student ID: Signature: Instructions: Print your name and student ID number, write your signature to indicate that you accept the honor code. During the test, you

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

An Analog of the Cauchy-Schwarz Inequality for Hadamard. Products and Unitarily Invariant Norms. Roger A. Horn and Roy Mathias

An Analog of the Cauchy-Schwarz Inequality for Hadamard. Products and Unitarily Invariant Norms. Roger A. Horn and Roy Mathias An Analog of the Cauchy-Schwarz Inequality for Hadamard Products and Unitarily Invariant Norms Roger A. Horn and Roy Mathias The Johns Hopkins University, Baltimore, Maryland 21218 SIAM J. Matrix Analysis

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Problem Set 9 Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class).

Problem Set 9 Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class). Math 3, Fall Jerry L. Kazdan Problem Set 9 Due In class Tuesday, Nov. 7 Late papers will be accepted until on Thursday (at the beginning of class).. Suppose that is an eigenvalue of an n n matrix A and

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2.

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2. SSM: Linear Algebra Section 61 61 Chapter 6 1 2 1 Fails to be invertible; since det = 6 6 = 0 3 6 3 5 3 Invertible; since det = 33 35 = 2 7 11 5 Invertible; since det 2 5 7 0 11 7 = 2 11 5 + 0 + 0 0 0

More information