LIST OF PARTICIPANTS

Size: px
Start display at page:

Download "LIST OF PARTICIPANTS"

Transcription

1 LIST OF PARTICIPANTS Adnan S S Z ; Department of Chemistry. Calcutta University Calcutta Albert I D L ; S.S.C. Unit. I.I.Sc. Bangalore Ananthapadmanabhan P; Department of Applied Chemistry. Cochin University of Science and Technology. Cochin Bandopadhyay D Depar tment of Computer Sci ence. Nor th Bengal University. Darjeeling. West Bengal. Bartlett R J; Quantum Theory Project. 362 Williamson Hall. University of Florida. Gainesville. Florida USA. Bhattacharyy B ; Department of Inorganic and Physical Chemistry. I.I.Sc. Bangalore Bishop R; Department of Mathematics. Institute of Science and Technology. University of Manchester. P.O.Box 88. Manchester M U.K. Chakravarti N ; C/O Dr. R.S. Chakravorti. XI/766 Opposite University. Cochin Chanda A Depar tment of Chemi str y. Uni ver si t y of Bur dwan. Burdwan. West Bengal. Chattaraj P; Department of Chemistry. Punjab University Chandigarh Chatterjee A ; Department of Theoretical Physics. lacs. Calcutta Chowdhury R ; Department of Physical Chemistry. lacs. Calcutta Das K S.S.C.Unit. I.I.Sc. Bangalore Das K K ; Department of Chemistry. North Bengal University. Darjeeling. West Bengal. Das T K ; Department of Physics. University of Burdwan. Burdwan. West Bengal. Dasgupta S ; Department of Spectroscopy. lacs. Calcutta Datta S N Department of Chemistry. IITCPowai). Bombay De T B ; Department of Physics. Burdwan University. Burdwan. West Bengal.

2 560 Deb B M ; Department of Chemistry. Punjab University. Chandigarh Durgaprasad M School of Chemistry. Uni versi ty of Hyderabad. Hyderabad Dutta D ; Department of Chemistry. Manipur University. Imphal. Manipur. Gadre S R ; Department of Chemistry. University of Pune. Pune Ghosh S ; Heavy Water Division. Bhaba Atomic Research Centre. Bombay Guha S ; Department of Physical Chemistry. lacs. Calcutta Koch S ; Lehrstuhl fur Theoretische Chemie. Ruhr-Universitat. Bochum. D-4630 Bochum. Germany. Kryachko E S ; Institute for Theoretical Physics. USSR Academy of Science. Kiev USSR. Kundu B ; Department of Spectroscopy. IACS.Calcutta Kusmartsev F ; L.D. Landau Institute for Theoretical Physics. USSR Academy of Sciences GSP-1 Moscow.V-334 Kosygina-2.USSR. Kutzelnigg W ; Lehrstuhl fur Theoretische Chemie. Ruhr-Universitat. Bochum. D-4630 Bochum. Germany. Majumdar A ; Ramsaday College. Amta West Bengal. Malrieu J P ; Laboratorie de Physique Quanti que. Universite Paul Sabatier Route de Narbonne Toulouse Cedex. France. Mazumdar S ; Physi cal Chemi stry Di vi si on. Nati onal Chemi cal Laboratory. Pune Medhi C ; Department of Physical Chemistry. lacs. Calcutta Mishra M K ; Department of Chemistry. IITCPowai). Bombay Moit..ra R K Department of Physics. Saha Institute of Nuclear Physics. Calcutta Mukherjee A ; Depart..ment of Chemistry. Raj College. Burdwan. West Bengal. Mukherjee D ; Department of Physical Chemistry. lacs. Calcutta

3 561 Mukhopadhyay A ; Solid State Division, Saha Institute of Nuclear Physics, Calcutta-70000Q, Mukhopadhyay D ; Department of Physical Chemistry, lacs, Calcutta Mukhopadhyay S ; B.K.C. College. Calcutta , Oddershede J Department of Chemistry,Odense University, OK 5230 Odense M. Denmark. Ohrn Y ; Quantum Theory Project. 362 Williamson Hall, University of Florida. Gainesville, Florida USA. Priyadarshi S ; Department of Chemistry. IITCPowai). Bombay Ramasesha S ; sse Unit. I. I. Sc.Bangalore Rangarajan S K ; Department of Inorganic and Physical Chemistry I.I.Sc,Bangalore , Roy S ; Department of Physics, Burdwan University. Burdwan. West Bengal. Roy S ; Department of Physics, St. Paul's College. Calcutta-70000Q, Sarma C R ; Department of Physics, IITCBombay),Bombay Sebastian K L ; Department of Applied Chemistry, Cochin University of Science and Technology. Cochin , Sen R ; Department of Chemistry, Scottish Church College, Calcutta Simons J. ; Department of Chemistry. University of Utah. Salt Lake City. Utah USA. Singh V K Department of Chemistry, B. H. U.. Vanarasi Sinha D ; Department of Physical Chemistry, lacs. Calcutta Tembe B L ; Department of Chemistry. IITCPowai).Bombay

4 SUBJECT INDEX action functional, 82, algebraic diagrammatic technique, 267, alternancy symmetry, 281,282,285, Anderson orthogonality, catastrophe, 334,335, antisymmetrized geminal powers, ,213, 214,441, average-value functional, 85, Bernal-Fowler configuration, 302, Bernal-Fowler ice rule, 301, biorthogonality, 90, bivariational self-consistent field equation, 228, Bjerrum orientational defect, 302,303, Bloch equation, 124,149,171,180,369, Bogoliubov-Valatin transformation, 262,271. Born-Oppenheimer approximation, 235,261,337, Born-Oppenheimer potential surface, 322, Born-von Karman periodicity condition, 270, Bose fluid, condensed -, 241,258, Breit interaction, 379,381,400, Brillouin theorem, generalized -, 71, Brillouin zone, 281, broken symmetry solution, 262,264, Brown-Ravenhall disease, 354, Brueckner condition, 262,268,272,.274, canonical unitary normalization, 48, catastrophe theory, , classical mean field, generalized -, 258, 'closed'operators, 12, cluster expansion, 15-29, , cluster operator, 44,168, (also see 'excitation operator') complete model space, see 'model space', complex-scaled hamiltonian, 229, complex-scaled propagator, 226, complex-scaling method, 224,235, condensate wavefunction, 241, condensed Bose fluid, 241,258, configuration state function, 70, conjugated molecules, 101, excited states of -, 104, ionized states of -, 104, connected diagram theorem, see 'linked diagram theorem', coupled cluster approach, method theory, 79,101,143,155,166,241,261, - and dynamical variational principle, , (see also 'extended coupled cluster, method') - multi-reference, , - normal, 79,80, - open-shell, applications of, , - quantum fluid dynamics, , - quasi-particles in extended systems, , - symmetry-adapted, , coupled differential eigenvalue equation, 450, covalent valence state, 101, current density, , cusp condition, 353, - relativistic and non-relativistic , density functional theory, 98, - in momentum space, , time-dependent -, 542, , density matrix, 125,528, density of states, 338, diagonal, definition of -, 45, dilated electron propagator, 225,229,230, dilated gaussian wave packet, 328, Dirac-Coulomb hamiltonian, 359,378,393,394, Dirac-Coulomb-Breit hamiltonian, 359,379, Dirac- Hartree-Fock theory, 378,393, , double self-consistency problem, 273, dynamic linear response, 96, Dyson equation, 84, effective hamiltonian, 36,50,54,96,123,148, 156,369, - formalism, 123) hermitean -, 370,376, effective interaction, 369, electric dipole moment, atomic -, 411, electron density, , ,541,542, , electron energy loss spectroscopy, 106, electron propagator, Hartree-Fock -, 190, electronic transition moment, , , energy band model, 261, energy density functional, 71, , , , equation of motion, perturbation solution of -, , - relativistic method, , excitation amplitude, 156,

5 564 excitation energy, 144,150,151,158, non-relativistc limit of -, , excitation operator, 37,85,102,130,147,155, extended coupled-cluster method, 79,241, (see also 'coupled cluster method') extensivity, see 'size-extensivity', external gauge-field, 242,246, 'external' operators, 13, f-sum rule, 255, Fock space, 35,37,43,50,54,123,152,171,263,370, Fock space operator, 36,42,125, Frank-Condon spectrum, 323,330, Frankel-Dirac variational principle, 324, Fukutome class, 277, gauge transformation, local -, 247, gaussian wave packet method, 323, Gelfand states, 39,125, , geminal, 433,434 generalized - Brillouin Theorem, 71, - classical mean field, 258, - Davidson correction, 75, - Gross-Pitaevskii theory, 248,249, - Poisson bracket, 92,245, - quasilocal order parameter, 258, - time ordering, 80, - Wick's theorem, 40, geometric approximation, 189, geometrical structure coefficient, 451,452, Ginzburg-Landau model, 465, grand catastrophe theory, , Green's function, see 'propagator' Hartree-Fock-Bogoliubov method, , Hartree-Fock electron propagator, 190, Hausdorff expansion, 325, Heisenberg antiferromagnet, 285,292, Heisenberg spin model, 298, Hellmann-Feynman theorem, 338, high-to superconductivity, 277, hole-particle formalism, 40, hopping integral, 281, Hubbard model, 284,285,288, Huckel model, 281,293,297, hyperpolarizabili ty, 297, hyperspherical coordinates, ,466, hyperspherical harmonics, ,467, hyperspherical harmonic expansion method, 452,453, , hypervirial lin expansion, 470, incomplete model space, see 'model space' information-entropy sum, , integro-differential equation method, , intermediate normalization, see 'normalization' intruder state, 51,123,144,157,166,375, ionic diagram, 290, ionization potential, 110,145,152,158,372, ising model, continuous generalization of -, 464, iterative technique of lin expansion, 476, Klein-Gordon equation, see 'large-n solution' kink defect, 310, kink soli tonic nature, 312, Kohn-Sham model, 542,544, Kohn-Sham orbital, 533, Kondo chain hamiltonian, 298, Kondo lattice model, 298, large-n expansion in critical phenomena, , large-n equant urn mechanics, , Layzer operator, 233, linear response function, see 'response function' linked-configuration excitation amplitude, 81, linked-diagram expansion, see 'linked-diagram theorem', linked-diagram theorem, 36,49,56,59,84,123,144, 150,157,370, many-body perturbation theory, non-relativistic -, 156,161, , relativistic -, , , maximum entropy principle, 534, model space, complete -,63,70,123,144,156,165,369, general -, 375, incomplete -,37,63,123,144,157,161,166,370, quasicomplete -, 64,131,157, model state cyclic vector, 243, moment expansion of propagators, 188, momentum.density, 254, , no pair approximation, 353,363,380,383,396,399, non-degenerate quasiparticle vacuum, 275, non-dilatation analyticity, 235, non-lo~/l.l density approximation, , norll,, lization, canonical unitary -, 48, intermediate -, 48,130,148,369,374, separable unitary -,48,129, Ohno parametrization, 284, one-electron density, see 'electron density' one-electron propagator, ,441, 'open' operators, 14, optical gap, , pair correction of excitation energy, 405,

6 565 pairing property, 282, Pariser-Parr-Pople hamiltonian, 284,288,292,294, parity violation, 411, particle-hole formalism, 40, perturbation theory, many-body -, see 'many-body perturbation theory' perturbed oscillator method, 468, polarization propagator, see 'response function' polarization propagator approximation, 151,213,214, potential energy surface, 141,322,339,340,345, potential harmonics, 455,456, propagator, complex-scaled -, 226, dialated electron -, 225,229,230, moment expansion of -, 188, one-electron -, ,441, polarization -, see 'response function' pole structure of -, 225, resonant pole of -, 230, Siegart boundary condition for -, 233, spectral representation of -, 225,227, pseudo-spin formulation, 471, quadratic response function, see 'reponse function', q'-1antum electrodynamic correction, , quantum electrodynamic hamiltonian, 394, quantum electrodynamic method, 394,395, quantum fluid dynamics, 549,550, quasicomplete model space, see 'model space' quasilocal order, 242,258, quasiparticle, 261. quasiparticle vacuum, 263, radiative correction of excitation energy, 406, random phase approximation, 97,151,194,201,208, , ,398,403, reaction coordinate, 340, reciprocal-n expansion, , relati vis tic, - configuration interaction, 393, - equation of mention method, , - RPA correction, 404, renormalization procedure, 266, resonant pole of propagators, 230, response function, 96,187, ,441, response theory, see 'response function' Riccati equation method, 469, Rumer-Pauling rule, 286,287, Rumer-Pauling spin function, 298, Rydberg state, 101, separability, 43, separable unitary normalization, see 'normalization' shifted expansion, 477, Siegart boundary condition, 233, size-consistency, 84,159,165, size-extensivity, 36,69,84,165, solitons, 282,313, spinor basis, , spontaneous symmetry breakdown, 276, step operator, , subsystem cluster amplitude, 81, superoperator, 172,188, supersymmetric expansion, 478, symmetry-adapted cluster operators, 62,101, symplectic structure, 258, Tafel plot, 334, Tann-Daucoff approximation, 194,201, theory of singularities, , Thomas- Fermi model, 509,513,524,535,542,544, time-reversal violation, 411, transition energy, 158, transition moment, , , travelling gaussian wave packet, 328, tree diagram, 80, unitary group formalism, 39,125,425428, , V-state, 101, valence universality, 170,171,370, variational principle, dynamic -, 82, Frenkel-Dirac -, 324, wave operator, 36,42,124,145,147,155,369, Wie-Norman form, 325, Weyl tableaux, ~, Young diagram, 39, schizophrenia of water, 301, Schriidinger-Pauli-Breit hamiltonian, 401,

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids KALMÄN VARGA AND JOSEPH A. DRISCOLL Vanderbilt University, Tennessee Щ CAMBRIDGE HP UNIVERSITY PRESS Preface Part I One-dimensional

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis THE THEORY OF MAGNETISM MADE SIMPLE An Introduction to Physical Concepts and to Some Useful Mathematical Methods Daniel C. Mattis Department of Physics, University of Utah lb World Scientific NEW JERSEY

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Lectures on Quantum Mechanics

Lectures on Quantum Mechanics Lectures on Quantum Mechanics Steven Weinberg The University of Texas at Austin CAMBRIDGE UNIVERSITY PRESS Contents PREFACE page xv NOTATION xviii 1 HISTORICAL INTRODUCTION 1 1.1 Photons 1 Black-body radiation

More information

M.Sc. Physics

M.Sc. Physics --------------------------------------- M.Sc. Physics Curriculum & Brief Syllabi (2012) --------------------------------------- DEPARTMENT OF PHYSICS NATIONAL INSTITUTE OF TECHNOLOGY CALICUT CURRICULUM

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41 Contents Preface 1. The structure of the space of the physical states 1 1.1 Introduction......................... 1 1.2 The space of the states of physical particles........ 2 1.3 The Weyl Heisenberg algebra

More information

Condensed matter physics FKA091

Condensed matter physics FKA091 Condensed matter physics FKA091 Ermin Malic Department of Physics Chalmers University of Technology Henrik Johannesson Department of Physics University of Gothenburg Teaching assistants: Roland Jago &

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Green's Function in Condensed Matter Physics Wang Huaiyu SCIENCE PRESS 2 Beijing \S7 Oxford, U.K. Alpha Science International Ltd. CONTENTS Part I Green's Functions in Mathematical Physics Chapter 1 Time-Independent

More information

A guide to Feynman diagrams in the many-body Problem

A guide to Feynman diagrams in the many-body Problem A guide to Feynman diagrams in the many-body Problem Second edition Richard D.[Mattuck H. C. ßrsted Institute University of Copenhagen, Denmark ausgesondert am 2 h. April \%%' McGraw-Hill International

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop Field Theories in Condensed Matter Physics Edited by Sumathi Rao Harish-Chandra Research Institute Allahabad lop Institute of Physics Publishing Bristol and Philadelphia Contents Preface xiii Introduction

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

1.1 Variational principle Variational calculations with Gaussian basis functions 5

1.1 Variational principle Variational calculations with Gaussian basis functions 5 Preface page xi Part I One-dimensional problems 1 1 Variational solution of the Schrödinger equation 3 1.1 Variational principle 3 1.2 Variational calculations with Gaussian basis functions 5 2 Solution

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Advanced quantum mechanics Reading instructions

Advanced quantum mechanics Reading instructions Advanced quantum mechanics Reading instructions All parts of the book are included in the course and are assumed to be read. But of course some concepts are more important than others. The main purpose

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

Static and covariant meson-exchange interactions in nuclear matter

Static and covariant meson-exchange interactions in nuclear matter Workshop on Relativistic Aspects of Two- and Three-body Systems in Nuclear Physics - ECT* - 19-23/10/2009 Static and covariant meson-exchange interactions in nuclear matter Brett V. Carlson Instituto Tecnológico

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Instructors Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri Closed-shell Atomic Electric Dipole Moments K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri An observation of EDM of a non-degenerate physical system is a direct unambiguous evidence of

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of Lecture Notes Quantum Theory by Prof. Maximilian Kreuzer Institute for Theoretical Physics Vienna University of Technology covering the contents of 136.019 Quantentheorie I and 136.027 Quantentheorie II

More information

PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200

PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200 CSIR-UGC (NET) EXAM FOR AWARD OF JUNIOR RESEARCH FELLOWSHIP AND ELIGIBILITY FOR LECTURERSHIP PHYSICAL SCIENCES EXAM SCHEME TIME: 3 HOURS MAXIMUM MARKS: 200 CSIR-UGC (NET) Exam for Award of Junior Research

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics

PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics Lorenzo Stella, R. Miranda, A.P. Horsfield, A.J. Fisher London Centre for Nanotechnology

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids Computer simulation is an indispensable research tool in modeling, understanding, and predicting nanoscale phenomena. However,

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Physics (PHYS) Courses. Physics (PHYS) 1

Physics (PHYS) Courses. Physics (PHYS) 1 Physics (PHYS) 1 Physics (PHYS) Courses PHYS 5001. Introduction to Quantum Computing. 3 Credit Hours. This course will give an elementary introduction to some basics of quantum information and quantum

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 10 The Dirac equation WS2010/11: Introduction to Nuclear and Particle Physics The Dirac equation The Dirac equation is a relativistic quantum mechanical wave equation formulated by British physicist

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information