Duke Schropp Duke Lake Rd. Whitehall

Size: px
Start display at page:

Download "Duke Schropp Duke Lake Rd. Whitehall"

Transcription

1 3/12 uke Schropp uke Lake Rd. Whitehall 38'8" A1 A2 3/12 12' 3/12 3/12 Lot: UK LAKE R Layout: NL esigner: ALEIGH STOWE ontractor: UKE SHROPP ustomer: STANAR SUPPLY & LUMER- Address: UKE LAKE R 16' JO NO: PAGE NO: 1 OF 1

2 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / A 38'1"14 Gable ot chord 2x4 SPF #1/#2 2x4 SPF Stud 115 mph wind, ft mean hgt, ASE 7-10, LOSE bldg, Located anywhere in roof, RISK AT II, EXP, wind T L=4.2 psf, wind =6.0 psf. HOR SPAING(IN O) START(FT) EN(FT) (G1) Gusset Plates are 7/16" APA RATE OS SHEATHING, 24/16, EXP 1. Apply gusset to each face of truss and attach with evenly distributed 0.099"x2.0" Nails specified in circles. Hatched lines indicate portions on gussets protruding outside of the perimeter of the truss that may be trimmed flush with the truss profile. Minimum Nail/Screw Spacing Requirements ased on ANSI/AF&PA NS-2001: End istance 1-1/2" Edge istance 1/2" Spacing etween Rows 1/2" Spacing in a Row 1-1/2" Maximum Number of Rows for Member Size: 2x4 5 Rows Truss designed for unbalanced snow load based on Pg=60.00 psf, All plates are 1.5X3 except as noted. (**) 1 plate(s) require special positioning. Refer to scaled plate plot details for special positioning requirements. See WGS A11515EN101014, GLLETIN1014, & GARST for gable wind bracing and other requirements. Maximum Reactions (lbs), or *=PLF AN*128 / - / 34 / - / 1 / 457 A Min rg Width Req = - earing A Fcperp = 565psi. 4'9"10 0"6 3X4(1) A AM 3 AL 12 E F G H AK AJ AI AH AG 8X12X7/16"(G1) 1.5X3(**) JKL I 5 M 5 (S1) AF AE A A 38'1"14 N A O P Q R AA Z Y X S W T V 3X4(1) U AN 8'6"8 A E E - F F - G G - H H - I I - J J - K K - L L - M M - N N - O O - P P - Q Q - R R - S S - T T - U A -AM AM-AL AL-AK AK-AJ AJ-AI AI-AH AH-AG AG-AF AF-AE AE-A A-A A-A A-AA AA- Z Z - Y Y - X X - W W - V V - U ES = A 38'1"14 Gable ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 0 REV A as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to ATE - 08/09/17 A 38'1"14 Gable WEIGHT =180.2 SEQ

3 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / A 38'1"14 Gable (1) 2x4x6-5-4 x SPF #1/#2 ottom chord scab centered from left end. Attach to one face of chord with (2) rows of 0.131"x3", min. 6" oc, staggered 3". J -AE A- L Maximum Gable Forces Per Ply (lbs) -AM AL AK E -AJ G -AH H -AG I -AF A- M A- N AA- O Y - Q X - R W - S V - T ES = A 38'1"14 Gable ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 0 REV A as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to ATE - 08/09/17 A 38'1"14 Gable WEIGHT =180.2 SEQ

4 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / 16' ommon ot chord 2x4 SPF #1/#2 115 mph wind, ft mean hgt, ASE 7-10, LOSE bldg, Located anywhere in roof, RISK AT II, EXP, wind T L=4.2 psf, 2x4 SPF Stud wind =6.0 psf. HOR SPAING(IN O) START(FT) EN(FT) Truss designed for unbalanced snow load based on Pg=60.00 psf, Maximum Reactions (lbs) 1291 / - / 295 / - / 14 / 4.0 F 1291 / - / 295 / - / - / 4.0 Min rg Width Req = 2.0 F Min rg Width Req = 2.0 earings & F Fcperp = 565psi '3"5 8' 8'9'3"5 4X4 A E E - F F - G '5" 5" 3X6(A1) A 1.5X3 H 3X8 E 1.5X3 F 3X6(A1) G 2'6"10 8'1"2 - H H - F H H - E H ' 16' 1' LEFT RAKE = 1'0"6 RIGHT RAKE = 1'0"6 ES = 16' ommon ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 6 REV A as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to ATE - 08/08/17 16' ommon WEIGHT =64.4 SEQ TYPE OMN

5 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / A1 38'1"14 Gable ot chord 2x4 SPF #1/#2 2x4 SPF Stud See WGS A11515EN101014, GLLETIN1014, & GARST for gable wind bracing and other requirements. All plates are 1.5X3 except as noted. Right end vertical not exposed to wind pressure. 115 mph wind, ft mean hgt, ASE 7-10, LOSE bldg, Located anywhere in roof, RISK AT II, EXP, wind T L=4.2 psf, wind =6.0 psf. HOR SPAING(IN O) START(FT) EN(FT) Truss designed for balanced snow load based on Pg=60.00 psf, Maximum Reactions (lbs), or *=PLF V* 130 / - / 34 / - / 7 / 143 Q* 126 / - / 34 / - / - / 85.2 V Min rg Width Req = - Q Min rg Width Req = - earings V & Q are a rigid surface. 0"6 A V 2X4(8R) ES = A1 38'1"14 Gable H 3 12 G F E U T S R Q P O 11'11"12 7'1"3 J K I L N M ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 1 REV A A F - G G - H H - I E I - J E - F 4-75 J - K 0-4 A - U Q - P 7-2 U - T P - O 4-1 T - S O - N 2-1 8'6"8 S - R N - M 0 0 R - Q M - L 0 0 J - M Maximum Gable Forces Per Ply (lbs) - U G - P T H - O S I - N ATE - 08/04/17 A1 38'1"14 Gable as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to WEIGHT =85.9 SEQ '9"10

6 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / A1 38'1"14 Gable E - R ES = A1 38'1"14 Gable ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 1 REV A as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to ATE - 08/04/17 A1 38'1"14 Gable WEIGHT =85.9 SEQ

7 Job:(95511) / -STANAR SUPPLY & LUMER- /UK LAKE R / A2 38'1"14 Gable ot chord 2x4 SPF #1/#2 2x4 SPF Stud All plates are 1.5X3 except as noted. 115 mph wind, ft mean hgt, ASE 7-10, LOSE bldg, Located anywhere in roof, RISK AT II, EXP, wind T L=4.2 psf, wind =6.0 psf. Left end vertical not exposed to wind pressure. See WGS A11515EN101014, GLLETIN1014, & GARST for gable wind bracing and other requirements. HOR SPAING(IN O) START(FT) EN(FT) Truss designed for balanced snow load based on Pg=60.00 psf, Maximum Reactions (lbs), or *=PLF K* 128 / - / 34 / - / 4 / 228 U Min rg Width Req = - earing U Fcperp = 565psi. 4'9"10 A UT ES = A2 38'1"14 Gable S A F - G G - H H - I E I - J E - F J - K E F G U - T 0 0 P - O H T - S 0 0 O - N I S - R 2-1 N - M J R - Q 4-1 M - L Q - P 7-2 L - K X4(1) K 8'6"8 0"6 - T R Q P O N M L Maximum Gable Forces Per Ply (lbs) S N - H R M - I Q - E L - J O - G ESIGN RIT=I 2015 /TPI-2014 FT/RT=3%(0%)/0(0) PLY= 1 QTY= 1 REV A ATE - 08/09/17 A2 38'1"14 Gable as applicable. Apply plates to each face of truss and position as shown above and on the Joint etails, unless noted otherwise. Refer to WEIGHT =85.9 SEQ

115 mph wind, ft mean hgt, ASCE 7-10, CLOSED bldg, Located anywhere in roof, RISK CAT II, EXP B, wind TC DL=4.2 psf, wind BC DL=6.0 psf.

115 mph wind, ft mean hgt, ASCE 7-10, CLOSED bldg, Located anywhere in roof, RISK CAT II, EXP B, wind TC DL=4.2 psf, wind BC DL=6.0 psf. ob:(91785) / -STNDE R GRNDVIE /HISCHMN OUT D / 40' 4/12 COMMON Top chord 2x4 SP #1/#2 ot chord 2x4 SP 1650f-1.5E 2x4 SP Stud 115 mph wind, 15.00 ft mean hgt, SCE 7-10, COSED bldg, ocated anywhere in roof,

More information

24' SEE DWG FOR SCREWING 2 PLY TOGETHER NOTE: FLOOR TRUSSES 19.2" O.C. **ALL FLOOR TRUSSES ARE THE SAME** 1'5"6 1'7"3 1'7"3 1'7"3 1'7"3 1'7"3

24' SEE DWG FOR SCREWING 2 PLY TOGETHER NOTE: FLOOR TRUSSES 19.2 O.C. **ALL FLOOR TRUSSES ARE THE SAME** 1'56 1'73 1'73 1'73 1'73 1'73 89043 FLOOR TRUSSES 19.2" O.C. NO PLUMBING (BEDROOMS) SEE DWG FOR SCREWING 2 PLY TOGETHER NOTE: 1'5"6 24" CHASE 2 PLY FX F **ALL FLOOR TRUSSES ARE THE SAME** Lot: CHAPEL Layout: DCS Designer: Robert Herron

More information

Substituting T-braces for continuous lateral braces on wood truss webs

Substituting T-braces for continuous lateral braces on wood truss webs Substituting T-braces for continuous lateral braces on wood truss webs By heryl Anderson, Frank Woeste, PE, and Donald Bender, PE Introduction W eb bracing in trusses is essential for several reasons.

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

20.0 L SR 3/4 2L /2x /2x3/6x3/8 L /2x /2x3/6 L /2x /2x3/6 L /2x /2x3/6 3.4666 5 @ 4 884.6 DESIGNED APPURTENANE LOADING TYPE ELEVATION TYPE ELEVATION (9) FV90-2 20 Pirod 3' Low Profile Platform 20 TOWER

More information

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase

Section Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase Level II: Section 04 Simplified Method (optional) Section Downloads Section Downloads Handouts & Slides can be printed Version.0 Other documents cannot be printed Course binders are available for purchase

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

Structural Calculations For:

Structural Calculations For: Structural Calculations For: Project: Address: Job No. Revision: Date: 1400 N. Vasco Rd. Livermore, CA 94551 D031014 Delta 1 - Plan Check May 8, 2015 Client: Ferreri & Blau MEMBER REPORT Roof, Typical

More information

STRUCTURAL CALCULATIONS. Example 10 - Sign

STRUCTURAL CALCULATIONS. Example 10 - Sign CS09 Ver 10.01.10 www.struware.com STRUCTURAL CALCULATIONS FOR Example 10 - Sign Guide to Wind Load Procedures of ASCE 7-02 Code Search Code: ASCE 7-02 Occupancy: Occupancy Group = B Business Occupancy

More information

ENGINEERING MECHANICS STATIC

ENGINEERING MECHANICS STATIC Trusses Simple trusses The basic element of a truss is the triangle, three bars joined by pins at their ends, fig. a below, constitutes a rigid frame. The term rigid is used to mean noncollapsible and

More information

The Highland - List of materials needed to construct a weather tight home.

The Highland - List of materials needed to construct a weather tight home. Page:1 The Highland - List of materials needed to construct a weather tight home. PLEASE NOTE: 1. 'While every attempt has been made in the preparation of this materals list to avoid mistakes, B&H Cedar

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis RH 331 Note Set 5.2 F2013abn Method of Sections for Truss nalysis Notation: () = shorthand for compression = name for load or axial force vector (T) = shorthand for tension Joint onfigurations (special

More information

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK HELIODYNE RACK PROJECT: JOB NO: 2008-36 SHEET: DESIGNED BY: WCM DATE: CHECKED BY: SCOPE: KTD DATE: Racking Calculation Report 1 OF 1/22/2011 1/22/2011 17 Structural calculations for HELIODYNE SOLAR COLLECTOR

More information

2018 North Carolina Residential Code Prescriptive Tables for Selection of Support Elements for Beams, Girders, and Headers: Example Problems

2018 North Carolina Residential Code Prescriptive Tables for Selection of Support Elements for Beams, Girders, and Headers: Example Problems 2018 North Carolina Residential Code Prescriptive Tables for Selection of Support Elements for Beams, Girders, and Structural Building Components Association (SBCA) August 10, 2018 SBCA is an APPROVED

More information

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.) ENCE 455 Design of Steel Structures II. Tension Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Tension Members Following subjects are covered: Introduction

More information

Dr. Mohammed E. Haque, P.E. Lecture Notes

Dr. Mohammed E. Haque, P.E. Lecture Notes nalysis of Selected Determinate Structural Systems Planar Trusses Method of Joints Planar Trusses Method of Sections Pinned Frames with Multi-force Members Retaining Walls OS321Haque 1 Planar Trusses Method

More information

As always, show your work and follow the HW format. You may use Excel, but must show sample calculations.

As always, show your work and follow the HW format. You may use Excel, but must show sample calculations. As always, show your work and follow the HW format. You may use Excel, but must show sample calculations. 1. Single Mean. A new roof truss is designed to hold more than 5000 pounds of snow load. You test

More information

FINITE ELEMENT MODELING OF WOOD DIAPHRAGMS

FINITE ELEMENT MODELING OF WOOD DIAPHRAGMS FINITE ELEMENT MODELING OF WOOD DIAPHRAGMS By Robert H. Falk 1 and Rafii Y. Itani, 2 Member, ASCE ABSTRACT: This report describes a two-dimensional finite element model for analyzing vertical and horizontal

More information

SIP PANEL DESIGN EXAMPLES USING NTA IM 14 TIP 02 SIP DESIGN GUIDE AND LISTING REPORT DATA

SIP PANEL DESIGN EXAMPLES USING NTA IM 14 TIP 02 SIP DESIGN GUIDE AND LISTING REPORT DATA NTA IM 14 TIP 0 SIP PANEL DESIGN EXAMPLES USING NTA IM 14 TIP 0 SIP DESIGN GUIDE AND LISTING REPORT DATA INTRODUCTION It is intended that this document e used in conjunction with competent engineering

More information

Allowable Design Stresses (psi)

Allowable Design Stresses (psi) 8 0 0. 2 2 1. 2 3 2 6 w w w. a n t h o n y f o r e s t. c o m 2 Allowable Design Stresses (psi) Power Beam Section Properties and Allowable Capacities 7.0 9.0 9.2 10.9 11.6 13.6 15.6 17.5 11.1 14.1 14.5

More information

Column w/laterals. Steel Column A992 50ksi Steel (see sheets 4-7)

Column w/laterals. Steel Column A992 50ksi Steel (see sheets 4-7) olumn w/ SOREOR HEIGHT WITH ddtional display area consisting signs, arches, message centers or video above or below the scoreboard. (see sheets -6) for column and pier sizing) TOP SOREOR SETION Overall

More information

Introduction...COMB-2 Design Considerations and Examples...COMB-3

Introduction...COMB-2 Design Considerations and Examples...COMB-3 SECTION DIRECTORY General Information Introduction...COMB-2 Design Considerations and Examples...COMB-3 Combination Assembly Recommendations and Limitations Composite Configurations...COMB-4 Typical Sealant

More information

STRUCTURAL CALCULATIONS. for: ARIZONA

STRUCTURAL CALCULATIONS. for: ARIZONA STRUCTURA CACUATIONS for: ARIZONA 12/3/213 DESIGN CRITERIA CODE : IBC 26 Sht. DS1 ROOF OAD DURATION = 1.25 DF SNOW OADING? NO PITCHED ROOF ROOF D = 22.5 PSF ROOF PITCH = 5.:12 ROOF = 2 PSF PITCH REDUCTION

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis APPLICATIONS Trusses are commonly used to support a roof. For a given truss geometry and load, how can we determine the forces in the truss members and select their sizes?

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F015abn Case Study in Reinfored Conrete adapted from Simplified Design of Conrete Strutures, James Ambrose, 7 th ed. Building desription The building is a three-story offie building

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 19

ENGR-1100 Introduction to Engineering Analysis. Lecture 19 ENGR-1100 Introduction to Engineering Analysis Lecture 19 SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: In-Class Activities: a) Define a simple

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

2018 WFCM Changes. Wood Frame Construction Manual for One- and Two-Family Dwellings (STD350)

2018 WFCM Changes. Wood Frame Construction Manual for One- and Two-Family Dwellings (STD350) 2018 WFCM Changes Wood Frame Construction Manual for One- and Two-Family Dwellings (STD350) John Buddy Showalter, P.E. Vice President, Technology Transfer American Wood Council Lori Koch, P.E. Manager,

More information

Statics: Lecture Notes for Sections

Statics: Lecture Notes for Sections Chapter 6: Structural Analysis Today s Objectives: Students will be able to: a) Define a simple truss. b) Determine the forces in members of a simple truss. c) Identify zero-force members. READING QUIZ

More information

Wood Design. fv = shear stress fv-max = maximum shear stress Fallow = allowable stress Fb = tabular bending strength = allowable bending stress

Wood Design. fv = shear stress fv-max = maximum shear stress Fallow = allowable stress Fb = tabular bending strength = allowable bending stress Wood Design Notation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight b = width of a rectangle = name for height

More information

12300 SWANHAVEN DR, OK 73170, OKLAHOMA CITY, OK

12300 SWANHAVEN DR, OK 73170, OKLAHOMA CITY, OK 300 SWANHAVEN DR, OK 73170, OKLAHOMA CITY, OK 73170 942 Property Address 300 SWANHAVEN DR, OK 73170 OKLAHOMA CITY, OK 73170 Latitude: 40.00001 Longitude: -90.00001 Details Claim Number: RAM-5623448 Requested:

More information

Structural Calculations

Structural Calculations Structural Calculations 5ive Engeerg Job Name: Larkspur Residence Job Number: 1431 Scope Number: 1 Client: John Shirley Company: Thk rchitecture 5151 South 9 East, Suite #2 Salt Lake City, UT 84117 Date:

More information

WIND LOADS ON ARENA ROOFS USING AERODYNAMIC MODELS. Daryl W. Boggs 1 and Jon A. Peterka 2

WIND LOADS ON ARENA ROOFS USING AERODYNAMIC MODELS. Daryl W. Boggs 1 and Jon A. Peterka 2 Structural Engineering in Natural Hazards Mitigation, Vol. 1 (Proceedings of papers presented at the Structures Congress 93, Irvine, CA), ed. A.H-S. Ang and R. Villaverde, ASCE, 1993. WIND LOADS ON ARENA

More information

Dr. Ceasar Hearne. Structural Calculations. Project Address: 1700 East 3000 North, Layton, Utah

Dr. Ceasar Hearne. Structural Calculations. Project Address: 1700 East 3000 North, Layton, Utah Dr. Ceasar Hearne Structural Calculations Project Address: 1700 East 3000 North, Layton, Utah This engineering report is valid only for the aforementioned building located at the address above. This report

More information

Calculating Truss Forces. Method of Joints

Calculating Truss Forces. Method of Joints Calculating Truss Forces Method of Joints Forces Compression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together at their end points. They are usually

More information

500 Delaware Ave. APPENDICES

500 Delaware Ave. APPENDICES APPENDICES i APPENDICES APPENDIX A: LOAD CALCULATIONS... iii A.1 Snow Loading...iv A.2 Lateral Loading...vi A.2.1 Wind... vi A.2.2 Seismic...xi APPENDIX B: PRELIMINARY MEMBER DESIGN... xiii B.1 Post-tensioned

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

10012 Creviston DR NW Gig Harbor, WA fax

10012 Creviston DR NW Gig Harbor, WA fax C.R. Laurence Co., Inc. ATTN: Chris Hanstad 2503 East Vernon Los Angeles, CA 90058 27 March 2013 SUBJ: CRL SRS STANDOFF RAILING SYSTEM GLASS BALUSTRADE GUARDS The SRS Standoff Railing System is an engineered

More information

SEAoT State Conference Seminar Topics. Early knowledge needed. 11/5/2009. Wind Versus Seismic Which Controls? The Code

SEAoT State Conference Seminar Topics. Early knowledge needed. 11/5/2009. Wind Versus Seismic Which Controls? The Code /5/29 SEAoT State Conference 29 Austin, Texas Wind Versus Seismic Which Controls? by Larry Griffis P.E. Walter P. Moore and Associates, Inc. Seminar Topics ASCE 7 Simplified Wind Provisions ASCE 7 Seismic

More information

GENERAL INFORMATION FOR COLUMN BASE REACTIONS

GENERAL INFORMATION FOR COLUMN BASE REACTIONS U09Y0061A - GaragePlus - RV Storage R1 of 12 1050 North Watery Lane Ph: (435) 919-3100 Brigham City, UT 84302Fax: (435) 919-3101 Page R1 of Date: 3/24/09 GENERAL INFORMATION FOR COLUMN BASE REACTIONS FOR

More information

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC.

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC. ICC ES Report ICC ES () 7 () www.icc es.org Most Widely Accepted and Trusted ESR 1 Reissued /1 This report is subject to renewal /. DIVISION: METALS SECTION: METAL FASTENINGS SECTION: 1 STEEL ING REPORT

More information

Calculating Truss Forces Unit 2 Lesson 2.1 Statics

Calculating Truss Forces Unit 2 Lesson 2.1 Statics alculating Truss Forces alculating Truss Forces Principles of Engineering 22 Forces ompression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together

More information

5.3 Rigid Bodies in Three-Dimensional Force Systems

5.3 Rigid Bodies in Three-Dimensional Force Systems 5.3 Rigid odies in Three-imensional Force Sstems 5.3 Rigid odies in Three-imensional Force Sstems Eample 1, page 1 of 5 1. For the rigid frame shown, determine the reactions at the knife-edge supports,,.

More information

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job No. Sheet 1 of 6 Rev B, Route de Limours Tel : (0)1 0 85 5 00 Fax : (0)1 0 5 75 8 Revised by MEB Date April 006 DESIGN EXAMPLE 6 BOLTED JOINT A 0 0 angle loaded in tension is to be connected to a gusset

More information

RODS: THERMAL STRESS AND STRESS CONCENTRATION

RODS: THERMAL STRESS AND STRESS CONCENTRATION RODS: HERML SRESS ND SRESS CONCENRION Example 5 rod of length L, cross-sectional area, and modulus of elasticity E, has been placed inside a tube of the same length L, but of cross-sectional area and modulus

More information

ME Statics. Structures. Chapter 4

ME Statics. Structures. Chapter 4 ME 108 - Statics Structures Chapter 4 Outline Applications Simple truss Method of joints Method of section Germany Tacoma Narrows Bridge http://video.google.com/videoplay?docid=-323172185412005564&q=bruce+lee&pl=true

More information

The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition 18.

The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition 18. The following pages are an excerpt from the North American Product Technical Guide, Volume 1: Direct Fastening Technical Guide, Edition. Please refer to the publication in its entirety for complete details

More information

Combined Stress. Axial Stress. Axial vs. Eccentric Load Combined Stress Interaction Formulas

Combined Stress. Axial Stress. Axial vs. Eccentric Load Combined Stress Interaction Formulas Architecture 324 Structures II Combined Stress Axial vs. Eccentric Load Combined Stress Interaction Formulas from Man und Frau den Mond betrachtend 1830-35 by Caspar David Friedrich Alte Nationalgalerie,

More information

FOR MORE PAPERS LOGON TO

FOR MORE PAPERS LOGON TO IT430 - E-Commerce Quesion No: 1 ( Marks: 1 )- Please choose one MAC sand for M d a A ss Conro a M d a A ss Consor M r of As an Co n on of s Quesion No: 2 ( Marks: 1 )- Please choose one C oos orr HTML

More information

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb.

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb. 1 1. The floor of a heavy storage warehouse building is made of 6-in.-thick stone concrete. If the floor is a slab having a length of 15 ft and width of 10 ft, determine the resultant force caused by the

More information

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5 SUJECT: HEADER EAM SELECTION SHEET 108 of 131 INTERIOR HEADER EAM SELECTION - ay length = 36 ft. (stairwell) INTERIOR HEADER EAM Header eam 1 2 Total ay Length = 36 (ft) Total ay Width = 10 (ft) 20.5 Fill

More information

5.1 Triangle Congruence Postulates

5.1 Triangle Congruence Postulates 5.1 Triangle Congruence Postulates Congruent Figures: Figures that are the same shape and size. All corresponding angles are congruent All corresponding sides are congruent Name: How are congruent figures

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis. Lecture 23 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

For sunshades using the Zee blades wind loads are reduced by 10 psf.

For sunshades using the Zee blades wind loads are reduced by 10 psf. C.R. Laurence Co., Inc. 2503 East Vernon Los Angeles, CA 90058 24 July 2009 SUBJ: CR LAURENCE UNIVERSAL SUN SHADES The CRL Universal Aluminum Sun Shades were evaluated in accordance with the 2006 International

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

You must have a compass, ruler, and protractor for this exam

You must have a compass, ruler, and protractor for this exam ES30 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 14 TH, 4PM TO 7PM, HUGEL 100 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit Given: Law

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

PROBLEM 6.1 SOLUTION. Free body: Entire truss: (3.2 m) (48 kn)(7.2 m) = 0 = = = BC. 60 kn. Free body: Joint B: = kn T. = 144.

PROBLEM 6.1 SOLUTION. Free body: Entire truss: (3.2 m) (48 kn)(7.2 m) = 0 = = = BC. 60 kn. Free body: Joint B: = kn T. = 144. PROBLEM 6.1 Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression. Free bod: Entire truss: Σ F = 0: B = 0 B = 0 Σ M =

More information

Solution: (a) (b) (N) F X =0: A X =0 (N) F Y =0: A Y + B Y (54)(9.81) 36(9.81)=0

Solution: (a) (b) (N) F X =0: A X =0 (N) F Y =0: A Y + B Y (54)(9.81) 36(9.81)=0 Prolem 5.6 The masses of the person and the diving oard are 54 kg and 36 kg, respectivel. ssume that the are in equilirium. (a) Draw the free-od diagram of the diving oard. () Determine the reactions at

More information

ES230 STRENGTH OF MATERIALS

ES230 STRENGTH OF MATERIALS ES230 STRENGTH OF MATERIALS Exam 1 Study Guide. Exam 1: Wednesday, February 8 th, in-class Updated 2/5/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will

More information

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK

SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SRSD 2093: Engineering Mechanics 2SRRI SECTION 19 ROOM 7, LEVEL 14, MENARA RAZAK SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: a) Define a simple

More information

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 09.14.07 1. The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin in the gusset plate of the truss supporting

More information

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles.

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles. Section Downloads Section 06: Design Principles 1 Download & Print TTT I Sec 06 Slides TTT I Sec 06 Handout Section 05 Truss Materials Design Values PS 20 Section 01 TPI 1-2007 Selection 6.4.2 Repetitive

More information

SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS

SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS Today s Objectives: Students will be able to: a) Define a simple truss. b) Determine the forces in members of a simple truss. c) Identify zero-force

More information

PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

DES140: Designing for Lateral-Torsional Stability in Wood Members

DES140: Designing for Lateral-Torsional Stability in Wood Members DES140: Designing for Lateral-Torsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline Lateral-Torsional Buckling Basic Concept Design ethod Examples In this ecourse,

More information

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1

Lecture 23. ENGR-1100 Introduction to Engineering Analysis FRAMES S 1 ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

More information

Engineering Mechanics: Statics STRUCTURAL ANALYSIS. by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics

Engineering Mechanics: Statics STRUCTURAL ANALYSIS. by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics CHAPTER Engineering Mechanics: Statics STRUCTURAL ANALYSIS College of Engineering Department of Mechanical Engineering Tenth Edition 6a by Dr. Ibrahim A. Assakkaf SPRING 2007 ENES 110 Statics Department

More information

Dynamic Analysis and Modeling of Wood-framed Shear Walls

Dynamic Analysis and Modeling of Wood-framed Shear Walls Dynamic Analysis and Modeling of Wood-framed Shear Walls Yasumura, M. 1 ABSTRACT Dynamic performance of wood-framed shear walls was analyzed by means of the non-linear earthquake response analysis and

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

The first NDS (1944) was based on allowable stress design (ASD). Copyright American Wood Council. All rights reserved.

The first NDS (1944) was based on allowable stress design (ASD). Copyright American Wood Council. All rights reserved. History ASD and LRFD with the 2005 NDS Part 1 Member Design Presented by: John Buddy Showalter, P.E. Vice President, Technology Transfer The first NDS (1944) was based on allowable stress design (ASD).

More information

W E L L S I T E S E R V I C E S

W E L L S I T E S E R V I C E S E SE SERVCES AE OF COES OF COES Ax Cg C CA-- Cv FA- Q- C g CA-- Cv f F CgA- A Cg - Sz CA- A Rg J Fg A- Fg Rf CA--k Cg C Cg g Cg Cg O /f f Sz S -/ -/ -/ -/ A Rg -/ -/ -/ -/ -/ A Rg -/ -/ -/ -/ -/ -/ A Rg

More information

CE 312 Structural Analysis and Design Sessional-I (Lab Manual)

CE 312 Structural Analysis and Design Sessional-I (Lab Manual) CE Structural Analysis and Design Sessional-I (ab Manual) Department of Civil Engineering Ahsanullah University of Science and Technology December, 07 Preface Structural Analysis and Design Sessional-I

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Made by PTY/AAT Date Jan 2006

Made by PTY/AAT Date Jan 2006 Job No. VALCOSS Sheet of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb

More information

Plane Trusses Trusses

Plane Trusses Trusses TRUSSES Plane Trusses Trusses- It is a system of uniform bars or members (of various circular section, angle section, channel section etc.) joined together at their ends by riveting or welding and constructed

More information

Interaction of newly defined stress intensity factors for angular corners in two diamondshaped

Interaction of newly defined stress intensity factors for angular corners in two diamondshaped Transactions on Engineering Sciences vol 3, 996 WIT Press, www.witpress.com, ISSN 743-3533 Interaction of newly defined stress intensity factors for angular corners in two diamondshaped inclusions N.-A.

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Method of Sections for Truss Analysis Notation: (C) = shorthand for compression P = name for load or axial force vector (T) = shorthand for tension Joint Configurations (special cases to recognize for

More information

MECHANICAL DATA. EXTENSION AA FRAME Hp 2E 2E 2F 2F H K BA S R ES N-W U D.E. O.D.E.

MECHANICAL DATA. EXTENSION AA FRAME Hp 2E 2E 2F 2F H K BA S R ES N-W U D.E. O.D.E. jet pump motors nema 56 odp single phase KEYWAY SHAFT A B L 1 D O P XO EXTENSION AA FRAME Hp 2E 2E 2F 2F H K BA S R ES N-W U D.E. O.D.E. W56 E56 1/4 10.748 10.236 6.299 1/3 6.378 5.669 1.516 1/2 11.142

More information

Suspended Beam Roof with Pylons

Suspended Beam Roof with Pylons Cable Supported Structures George.Hearn@colorado.edu 25 Suspended Beam Roof with Pylons A roof structure is a suspended beam. The roof span is 200 ft. Main cable sag is 20 ft. Suspender length varies.

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

Unit M1.4 (All About) Trusses

Unit M1.4 (All About) Trusses Unit M1.4 (ll bout) Trusses Readings: DL 1.9 16.001/002 -- Unified Engineering Department of eronautics and stronautics Massachusetts Institute of Technology LERNING OBJETIVES FOR UNIT M1.4 Through participation

More information

page 1 Total ( )

page 1 Total ( ) A B C D E F Costs budget of [Claimant / Defendant] dated [ ] Estimated page 1 Work done / to be done Pre-action Disbs ( ) Time ( ) Disbs ( ) Time ( ) Total ( ) 1 Issue /statements of case 0.00 0.00 CMC

More information

Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

More information

APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT

APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT Report prepared for the New Initiatives Office by Simpson Gumpertz & Heger Inc., January 2001. Strawman Structural Design of a 30-m Giant Segmented

More information

In this chapter trusses, frames and machines will be examines as engineering structures.

In this chapter trusses, frames and machines will be examines as engineering structures. In the previous chapter we have employed the equations of equilibrium in order to determine the support / joint reactions acting on a single rigid body or a system of connected members treated as a single

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

a 1 ft2 144 in 2 b 26 in.

a 1 ft2 144 in 2 b 26 in. 1 1. The floor of a heavy storage warehouse building is made of 6-in.-thick stone concrete. If the floor is a slab having a length of 15 ft and width of 10 ft, determine the resultant force caused by the

More information

Characteristics of a Force Loads on Structures. Dead Load. Load Types Dead Live Wind Snow Earthquake. Load Combinations ASD LRFD

Characteristics of a Force Loads on Structures. Dead Load. Load Types Dead Live Wind Snow Earthquake. Load Combinations ASD LRFD Architecture 314 Structures I Characteristics of a Force Loads on Structures Load Types Dead Live Wind Snow Earthquake Load Combinations ASD LRFD University of Michigan, TCAUP Structures I Slide 1 of 27

More information

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. READING

More information

2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN

2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN Original Title Presented by Northwest Signal copyright 2010 Designing & Building Structural Steel Products since 1976 Primary Users Traffic Signal Strain & Mast Arm Poles Cantilever & Bridge Sign Structures

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

2018 NDS Changes. National Design Specification for Wood Construction (STD120)

2018 NDS Changes. National Design Specification for Wood Construction (STD120) 2018 NDS Changes National Design Specification for Wood Construction (STD120) John Buddy Showalter, P.E. Vice President, Technology Transfer American Wood Council 13847IP The American Wood Council is a

More information

Farquhar Park Aquatic Center. York, PA

Farquhar Park Aquatic Center. York, PA Jason Kukorlo Consultant: March 7, 2010 1 2 TABLE OF CONTENTS I. Executive Summary.5 II. III. IV. Acknowledgements..7 Building Design Summary...8 Existing Structural System Overview Foundation.10 Superstructure

More information

Equilibrium Equilibrium and Trusses Trusses

Equilibrium Equilibrium and Trusses Trusses Equilibrium and Trusses ENGR 221 February 17, 2003 Lecture Goals 6-4 Equilibrium in Three Dimensions 7-1 Introduction to Trusses 7-2Plane Trusses 7-3 Space Trusses 7-4 Frames and Machines Equilibrium Problem

More information

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point RHITETURL STRUTURES: FORM, EHVIOR, N ESIGN R. NNE NIHOLS SUMMER 2014 lecture three Equilibrium balanced steady resultant of forces on a particle is 0 X point equilibrium and planar trusses http:// nisee.berkeley.edu/godden

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information