The thermal wind 1. v g

Size: px
Start display at page:

Download "The thermal wind 1. v g"

Transcription

1 The thermal win The thermal win Introuction The geostrohic win is etermine by the graient of the isobars (on a horizontal surface) or isohyses (on a ressure surface). On a ressure surface the graient of the isohyses reflects the tilt of the ressure surface. If this tilt changes with ressure then also the geostrohic win will change with ressure in magnitue an/or irection. Generally seaking the thermal win is the change of the geostrohic win with ressure (or height): it is the vector ifference of the geostrohic win at two ifferent levels an as such it is not a real win. In this note we will treat the causes of the thermal win, an we will also see how this quantity can be use in ractice. The geostrohic win The exressions for the geostrohic win are: u g = ρg y an v g = ρ g x, () where the minus sign in the exression of the left is only imortant for the irection of the u-comonent of the geostrohic win. On a ressure surface with isohyses these exressions may be rewritten assuming hyrostatic equilibrium: This leas to: = ρg, (2) z u g g z = an f y v g g z = (3) f x From formula (3) it aears that the magnitue of the geostrohic win eens on the tilt of the ressure surface ( z/ y an z/ x). For a given istance ( y or x) of the isohyses the magnitue of the geostrohic win can be etermine with the ai of Equation 3. In the examle in Figure it is obvious that Μz/Μx < 0 (height z of the ressure surface ecreases in the ositive x-irection) an consequently for the v- comonent of the geostrohic win we have: v g < 0. The larger the tilt of the ressure surface the smaller the istance ( x) between the isohyses an hence the larger the geostrohic win see. A similar conclusion alies to the u-comonent of the geostrohic win. It aears that the magnitue (an the irection) of the geostrohic win may change if ressure surfaces are NOT arallel to one another. Just when such a situation may occur is exlaine in the next section.

2 The thermal win 2 Figure. The magnitue of the geostrohic win is etermine by the tilt of the ressure surfaces. For a small tilt (left) the isohyses are far aart an the magnitue of the geostrohic win is small; for a large tilt (right) the isohyses are close together an the magnitue of the geostrohic win is large. The relation with temerature Accoring to the equation of state (i.e. the gas law) the temerature etermines the air ensity (ρ) for a given value of the ressure (): = ρrt hence ρ = (4) RT Thus in an area with high temeratures the ensity at a given ressure is lower than in an area with low temeratures (where the ensity is higher). Because of the high ensity the ecrease of ressure with height in the col area is larger than the ecrease of ressure in the warm area. In Figure 2 (left) this is clearly visible. We have assume that the ressure at the surface (z = 0) is the same everywhere ( 0 ). In the col area less vertical istance is neee to have the same ecrease in ressure (). Figure 2. The effect of a horizontal temerature ifference (left) an a horizontal temerature graient (right) on the height an tilt of a ressure surface (assuming equal surface ressure ( 0 ). If temerature changes in the horizontal, then the ressure surface aloft is no longer horizontal but will have a tilt (Figure 2 right). A horizontal temerature graient

3 The thermal win 3 influences the tilt of all ressure surfaces. From Figure 3 it aears that the tilt of the ressure surfaces increases higher u in the atmoshere. This will have consequences on the magnitue of the geostrohic win: in the case sketche in Figure 3 it will increase with height. From Figures an 3 the following conclusion can be rawn: A horizontal temerature graient causes a change of the geostrohic win with height (or with ressure). The ifference between the geostrohic win at the two ressure surfaces is calle the thermal win. Figure 3. The effect of a horizontal temerature graient on the tilt of subsequent ressure surfaces. The magnitue of the thermal win thus eens on the value of the horizontal temerature graient. An exression for the magnitue of the thermal win is etermine by ifferentiating the exression of the geostrohic win with relation to ressure (): For the factor g z g z g z u = = = g (5) f y f y f y z we use the assumtion of hyrostatic equilibrium: z = ρg = g RT. Here we have use the gas law. Substituting this in Equation (5) an multilying by leas to: ug ug = = ln R f y. (6) We integrate this exression from 0 to, with 0 > :

4 The thermal win 4 0 R u g = ln. f y 0 This leas to an exression for the comonents of the thermal win (u T, v T ): u T R = ug( ) ug( 0) = ln( 0 ) (7) f y an v T R = vg( ) vg( 0) = ln( 0 ), (8) f x In the above integration we have use an average value (T ) for the temerature in the layer 0 - in orer to simlify the integration. From these exressions it is obvious that the thermal win eens on the horizontal temerature graient. The following rule also follows from these equations: The thermal win blows arallel to the isotherms with the col air on the left han sie. The closer the isotherms the stronger the thermal win. Avection of warm an col air From Equations (7) an (8) it aears that the irection of the thermal win is arallel to the isotherms. This leas to the following two ossible situations. Figure 4. Win backing with height is an inication of col air avection. Figure 5. Win veering with height is an inication of warm air avection. In Figure 4 the win is backing going from 0 (lower level) to < 0 (higher level), in this case from west to southwest. The thermal win is the win vector on the high level minus the win vector on the low level. The thermal win blows arallel to the isotherms with the col air on the left han sie. The geostrohic win on both levels is blowing from the col area: this is a case of col air avection. In Figure 5 the win is veering from west northwest. The thermal win again has col air on its left han sie, an in this case it aears that the win on both ressure levels is blowing from the warm area: this is a case of warm air avection.

5 The thermal win 5 The value of the temerature avection is etermine by the value of the thermal win (i.e. by the istance of the isotherms, i.e. by the horizontal temerature graient) an by the comonent of the geostrohic win which is at right angles to the isotherms. From Figure 6 it aears the area of the triangle with sies v g ( 0 ), v g ( ) an v T must be roortional to the value of the avection: the larger the area of the triangle the larger the temerature avection. Figure 6. The area of the triangle is roortional to the value of the avection. Qualitative alication: hoograh an stability Avection of air from a ifferent average temerature in a number layers in the vertical influences the stability of the atmoshere. It is relatively easy to gain an overview of the avection in ifferent layers by erforming what is calle a hoograh analysis. This involves the construction of a raial iagram with the station in the centre. From this centre the win see at several or all ressure levels is lotte as a vector (Figure 7). The vector is lotte in the irection of the win. This means that a westerly win is lotte as an arrow to the east (Figure 7). Going to the next higher ressure level the next arrow is lotte etc. The en oints of all vectors are connecte by straight lines (or arrows). These straight lines are the vectors of the thermal win (ref. Figure 6). The en result is calle a hoograh. The next ste is to consier the veering or backing of the win, starting from the lowest level to ever higher ressure levels. In this way the warm or col air avection in each layer can be etermine. By comaring the areas of the triangles in relation to warm or col air avection it is ossible to etermine the changes in atmosheric stability. As an examle in Figure 7 between 70 an 50 kpa there is more col air avection than between 90 an 70 kpa. This means that in this case the vertical temerature graient must increase an instability is increasing.

6 The thermal win 6 Figure 7. Examle of a hoograh. Win vectors on all ressure levels (black, ressure in kpa) are all lotte from the centre, thermal win vectors (re) connect the black arrows. In Figure 8 a number of examles of arts of hoograhs are resente an the following conclusions about the increase of ecrease of stability can be rawn: Figure 8. Examles of the alication of hoograh analysis for etermining the change in stability of a number of layers (see text). The layers are inicate by increasing numbers from bottom to to. A: This is the case where the thermal win is equal in each layer. The areas of the three triangles are therefore equal. It means that: at every level the same amount of col air avection is taking lace. The temerature will ro everywhere, but the vertical temerature graient an hence the stability will not change. B: In this case the thermal win, the areas of the triangles an hence the col air avection increase from bottom to to. As a result this art of the atmoshere will become more unstable (or less stable) because temerature ecrease near the to will be stronger than near the bottom.

7 The thermal win 7 C: Each layer shows col air avection, but in the to layer this col air avection is larger than in the mile layer: above level the instability will increase. In the bottom layer the col air avection is larger than in the mile layer: below level 2 the instability will ecrease. D: This is a case of warm air avection. Above level the instability will ecrease because temeratures in the to layer will rise more than temeratures in the mile layer. Below level 2 the instability will increase because the temeratures in the mile layer will rise less than temeratures in the bottom layer. In ractice hoograh analysis will inicate if, at that moment, the stability on a certain location will increase or ecrease. Changes in the environmental lase rate have irect consequences for the stability an e.g. may be imortant for the eveloment of convective clous an showers. Using hoograh analysis it may be ossible to etermine if a warm front is aroaching or if a col front has asse. Quantitative alication: etermination of change in temerature From the thermal win equations (7) an (8) the value of the thermal win comonents can be calculate for a given horizontal temerature graient. If we rewrite this equation, then the value of the horizontal temerature graient can be calculate for given values of the thermal win comonents. If in an air layer the value of the comonent of the win which is at right angles to the isotherms (V N ) has been etermine (Figure 6), then the change in temerature in that layer can be calculate with the following exression: t = V n N = V N V T f R ln( 0 ) (9) This calculation assumes that no other rocesses such as vertical motions an iabatic rocesses are acting at the same time, as these may also effect the change in temerature.

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

1. Radiative transfer with emission. Atmosphere and surfaces emit infrared and microwave radiation. Recall the Beer-Bouguer-Lambert law for emission

1. Radiative transfer with emission. Atmosphere and surfaces emit infrared and microwave radiation. Recall the Beer-Bouguer-Lambert law for emission Lecture 8. Princiles of assive remote sensing using emission an alications: Remote sensing of atmosheric ath-integrate quantities clou liqui water content an reciitable water vaor.. Raiative transfer with

More information

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere Objective: To introuce the equations of motion an escribe the forces that act upon the Atmosphere Reaing: Rea pp 18 6 in Chapter 1 of Houghton & Hakim Problems: Work 1.1, 1.8, an 1.9 on pp. 6 & 7 at the

More information

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014 The Equations of Motion Synotic Meteorology I: The Geostrohic Aroimation 30 Setember, 7 October 2014 In their most general form, and resented without formal derivation, the equations of motion alicable

More information

Weather and Climate Laboratory Spring 2009

Weather and Climate Laboratory Spring 2009 MIT OenCourseWare htt://ocw.mit.edu 12.307 Weather and Climate Laboratory Sring 2009 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Thermal wind John

More information

kg m kg kg m =1 slope

kg m kg kg m =1 slope (5) Win loa Wen structure blocks te flow of win, te win's kinetic energy is converte into otential energy of ressure, wic causes a win loaing. ensity an velocity of air te angle of incience of te win 3

More information

5. THERMAL CONVERSION OF SOLAR RADIATION. Content

5. THERMAL CONVERSION OF SOLAR RADIATION. Content 5. Introuction 5. THEMAL CONVESION OF SOLA ADIATION Content 5. Introuction 5. Collectors without concentration 5.. Otical efficiency of the flat collector 5.. Thermal efficiency of the flat collector 5..3

More information

6.7 Thermal wind in pressure coordinates

6.7 Thermal wind in pressure coordinates 176 CHAPTER 6. THE EQUATIONS OF FLUID MOTION 6.7 Thermal wind in ressure coordinates The thermal wind relation aroriate to the atmoshere is untidy when exressed with height as a vertical coordinate (because

More information

Part 3. Atmospheric Thermodynamics The Gas Laws

Part 3. Atmospheric Thermodynamics The Gas Laws Part 3. Atmosheric Thermoynamics The Gas Laws Eq. of state V = mrt mass gas constant for 1 kg of a gas For ry air ρ = m/ = ρrt or α = RT where α = 1/ ρ = ρ R T, where R a R M * = uniersal gas constant

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

An Improved Calibration Method for a Chopped Pyrgeometer

An Improved Calibration Method for a Chopped Pyrgeometer 96 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17 An Imroved Calibration Method for a Choed Pyrgeometer FRIEDRICH FERGG OtoLab, Ingenieurbüro, Munich, Germany PETER WENDLING Deutsches Forschungszentrum

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

[ K] McAlpine, hmwk #5, ATMS 611. J.D. McAlpine ATMS 611 HMWK #5

[ K] McAlpine, hmwk #5, ATMS 611. J.D. McAlpine ATMS 611 HMWK #5 McAline, hmwk 5, ATMS 6 J.D. McAline ATMS 6 HMWK 5 3.43 Rainro evaorating (is 2 C) : 8 C, calculate mixing ratio of - sat. mixing ratio at 2 C is 8.7 g/kg (assume wet-bulb temerature) - L e = 2.25*0 6

More information

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002 Notes on ressure coordinates Robert Lindsay Korty October 1, 2002 Obviously, it makes no difference whether the quasi-geostrohic equations are hrased in height coordinates (where x, y,, t are the indeendent

More information

Course Outline. Section Instructor Time Atmospheric Variables Cotton 1 class. vd Heever ~4 weeks

Course Outline. Section Instructor Time Atmospheric Variables Cotton 1 class. vd Heever ~4 weeks Course Outline 1 2 3 4 5 6 7 8 9 Section Instructor ime Atmosheric Variables Cotton 1 class Communication with the atmos Jirak 1 class Atmosheric hermoynamics Atmosheric Dynamics Heeer ~4 weeks Heeer ~4

More information

Name: Student Number: PRINT family name first UNIVERSITY OF VICTORIA EXAMINATIONS DECEMBER Chemistry 245 Introductory Physical Chemistry

Name: Student Number: PRINT family name first UNIVERSITY OF VICTORIA EXAMINATIONS DECEMBER Chemistry 245 Introductory Physical Chemistry Name: Stuent Number: PRIN family name first UNIERSIY OF ICORI EXMINIONS DECEMER 2015 Chemistry 245 Introuctory Physical Chemistry Duration: 3 hours Instructor: M. G. Moffitt Print your name an stuent number

More information

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Reading: Martin, Section 4.1 PRESSURE COORDINATES ESCI 342 Atmosheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Pressure is often a convenient vertical coordinate to use in lace of altitude.

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

A Simple Exchange Economy with Complex Dynamics

A Simple Exchange Economy with Complex Dynamics FH-Kiel Universitf Alie Sciences Prof. Dr. Anreas Thiemer, 00 e-mail: anreas.thiemer@fh-kiel.e A Simle Exchange Economy with Comlex Dynamics (Revision: Aril 00) Summary: Mukherji (999) shows that a stanar

More information

Chemical Kinetics and Equilibrium - An Overview - Key

Chemical Kinetics and Equilibrium - An Overview - Key Chemical Kinetics and Equilibrium - An Overview - Key The following questions are designed to give you an overview of the toics of chemical kinetics and chemical equilibrium. Although not comrehensive,

More information

By completing this chapter, the reader will be able to:

By completing this chapter, the reader will be able to: hater 4. Mechanics of Particles Particle mechanics governs many rinciles of article measurement instrumentation an air cleaning technologies. Therefore, this chater rovies the funamentals of article mechanics.

More information

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers Excert from the roceedings of the COMSOL Conference 1 aris Homogeneous and Inhomogeneous Model for Flow and Heat ransfer in orous Materials as High emerature Solar Air Receivers Olena Smirnova 1 *, homas

More information

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones.

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones. Relate Rates Introuction We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones For example, for the sies of a right triangle we have a 2 + b 2 = c 2 or

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4 Atmoshere, Ocean and Climate Dynamics Answers to Chater 4 1. Show that the buoyancy frequency, Eq.(4.22), may be written in terms of the environmental temerature rofile thus N 2 = g µ dte T E dz + Γ d

More information

Submitted to the Journal of Hydraulic Engineering, ASCE, January, 2006 NOTE ON THE ANALYSIS OF PLUNGING OF DENSITY FLOWS

Submitted to the Journal of Hydraulic Engineering, ASCE, January, 2006 NOTE ON THE ANALYSIS OF PLUNGING OF DENSITY FLOWS Submitte to the Journal of Hyraulic Engineering, ASCE, January, 006 NOTE ON THE ANALYSIS OF PLUNGING OF DENSITY FLOWS Gary Parker 1, Member, ASCE an Horacio Toniolo ABSTRACT This note is evote to the correction

More information

Application of Measurement System R&R Analysis in Ultrasonic Testing

Application of Measurement System R&R Analysis in Ultrasonic Testing 17th Worl Conference on Nonestructive Testing, 5-8 Oct 8, Shanghai, China Alication of Measurement System & Analysis in Ultrasonic Testing iao-hai ZHANG, Bing-ya CHEN, Yi ZHU Deartment of Testing an Control

More information

5. PRESSURE AND VELOCITY SPRING Each component of momentum satisfies its own scalar-transport equation. For one cell:

5. PRESSURE AND VELOCITY SPRING Each component of momentum satisfies its own scalar-transport equation. For one cell: 5. PRESSURE AND VELOCITY SPRING 2019 5.1 The momentum equation 5.2 Pressure-velocity couling 5.3 Pressure-correction methods Summary References Examles 5.1 The Momentum Equation Each comonent of momentum

More information

Synoptic Meterorology I. Some Thermodynamic Concepts

Synoptic Meterorology I. Some Thermodynamic Concepts Synotic Meteroroloy I Some hermoynamic Concets Geootential Heiht Geootential Heiht (h): the otential enery of a nit mass lifte from srface to. Φ 0 -Since constant in the trooshere, we can write Φ m m m

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Lecture 6 : Dimensionality Reduction

Lecture 6 : Dimensionality Reduction CPS290: Algorithmic Founations of Data Science February 3, 207 Lecture 6 : Dimensionality Reuction Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will consier the roblem of maing

More information

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes.

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes. The Role of Water Vaor Water can exist as either a vaor or liquid in the atmoshere (we will ignore the solid hase here) under a variety of Temerature and ressure conditions. Refer to the hase diagram in

More information

Meshless Methods for Scientific Computing Final Project

Meshless Methods for Scientific Computing Final Project Meshless Methods for Scientific Comuting Final Project D0051008 洪啟耀 Introduction Floating island becomes an imortant study in recent years, because the lands we can use are limit, so eole start thinking

More information

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property hater-6: Entroy When the first law of thermodynamics was stated, the existence of roerty, the internal energy, was found. imilarly, econd law also leads to definition of another roerty, known as entroy.

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Convergence Analysis of Terminal ILC in the z Domain

Convergence Analysis of Terminal ILC in the z Domain 25 American Control Conference June 8-, 25 Portlan, OR, USA WeA63 Convergence Analysis of erminal LC in the Domain Guy Gauthier, an Benoit Boulet, Member, EEE Abstract his aer shows how we can aly -transform

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

Module 4 Water Vapour in the Atmosphere

Module 4 Water Vapour in the Atmosphere Moule 4 Water Vaour in the Atmoshere 4.1 Statement of the General Meteorological Problem D. Brunt (1941) in his book Physical an Dynamical Meteorology has state, he main roblem to be iscusse in connection

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

Skiba without unstable equlibrium in a linear quadratic framework

Skiba without unstable equlibrium in a linear quadratic framework Skiba without unstable equlibrium in a linear quaratic framework Richar F. Hartl Institute of Management, University of Vienna, Brünnerstraße 8, -0 Vienna, ustria Richar.Hartl@univie.ac.at Tel. +43--477-3809

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels Module Lectures 6 to 1 High Seed Wind Tunnels Keywords: Blow down wind tunnels, Indraft wind tunnels, suersonic wind tunnels, c-d nozzles, second throat diffuser, shocks, condensation in wind tunnels,

More information

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9 Oregon State University PH 213 Spring Term 2018 Prep 1 Suggeste finish ate: Monay, April 9 The formats (type, length, scope) of these Prep problems have been purposely create to closely parallel those

More information

ANALYSIS OF PNEUMATIC FINE PARTICLE PEENING PROCESS BY USING A HIGH-SPEED-CAMERA

ANALYSIS OF PNEUMATIC FINE PARTICLE PEENING PROCESS BY USING A HIGH-SPEED-CAMERA International Journal of Moern Physics B Vol. 24, Nos. 15 & 16 (21) 347 352 Worl Scientific Publishing Comany DOI: 1.1142/S217979216669 ANALYSIS OF PNEUMATIC FINE PARTICLE PEENING PROCESS BY USING A HIGH-SPEED-CAMERA

More information

Discharge initiation and plasma column formation in aspect ratio A=2 tokamak.

Discharge initiation and plasma column formation in aspect ratio A=2 tokamak. Discharge initiation an lasma column formation in asect ratio A toama... Khayrutinov E.A. Azizov, A.D. Baralov, G.G.Glaush, I.L.Taibaeva, Ph.W.West 3 Troits, Moscow eg., ussia NNC, K 3 General Atomics,

More information

Flexible Pipes in Trenches with Stiff Clay Walls

Flexible Pipes in Trenches with Stiff Clay Walls Flexible Pies in Trenches with Stiff Clay Walls D. A. Cameron University of South Australia, South Australia, Australia J. P. Carter University of Sydney, New South Wales, Australia Keywords: flexible

More information

2.6 Primitive equations and vertical coordinates

2.6 Primitive equations and vertical coordinates Chater 2. The continuous equations 2.6 Primitive equations and vertical coordinates As Charney (1951) foresaw, most NWP modelers went back to using the rimitive equations, with the hydrostatic aroximation,

More information

He s Homotopy Perturbation Method for solving Linear and Non-Linear Fredholm Integro-Differential Equations

He s Homotopy Perturbation Method for solving Linear and Non-Linear Fredholm Integro-Differential Equations nternational Journal of Theoretical an Alie Mathematics 2017; 3(6): 174-181 htt://www.scienceublishinggrou.com/j/ijtam oi: 10.11648/j.ijtam.20170306.11 SSN: 2575-5072 (Print); SSN: 2575-5080 (Online) He

More information

EXERCISES Practice and Problem Solving

EXERCISES Practice and Problem Solving EXERCISES Practice and Problem Solving For more ractice, see Extra Practice. A Practice by Examle Examles 1 and (ages 71 and 71) Write each measure in. Exress the answer in terms of π and as a decimal

More information

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 004 Problem Solving 4 Solutions: Magnetic Force, Torque, an Magnetic Moments OJECTIVES 1. To start with the magnetic force on a moving

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

4. A Brief Review of Thermodynamics, Part 2

4. A Brief Review of Thermodynamics, Part 2 ATMOSPHERE OCEAN INTERACTIONS :: LECTURE NOTES 4. A Brief Review of Thermodynamics, Part 2 J. S. Wright jswright@tsinghua.edu.cn 4.1 OVERVIEW This chater continues our review of the key thermodynamics

More information

Related Rates. Introduction

Related Rates. Introduction Relate Rates Introuction We are familiar with a variet of mathematical or quantitative relationships, especiall geometric ones For eample, for the sies of a right triangle we have a 2 + b 2 = c 2 or the

More information

Mathematics as the Language of Physics.

Mathematics as the Language of Physics. Mathematics as the Language of Physics. J. Dunning-Davies Deartment of Physics University of Hull Hull HU6 7RX England. Email: j.dunning-davies@hull.ac.uk Abstract. Courses in mathematical methods for

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018 Comuter arithmetic Intensive Comutation Annalisa Massini 7/8 Intensive Comutation - 7/8 References Comuter Architecture - A Quantitative Aroach Hennessy Patterson Aendix J Intensive Comutation - 7/8 3

More information

Free Vibration Analysis of a Model Structure with New Tuned Cradle Mass Damper

Free Vibration Analysis of a Model Structure with New Tuned Cradle Mass Damper Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 37 (0) 37(0)3-8 3-8 Free Vibration Analysis of a Moel Structure with New Tune Crale Mass Damer by Jitjinakun AMONPHAN * an Yoji SHIMAZAKI * (Receive

More information

REFINED STRAIN ENERGY OF THE SHELL

REFINED STRAIN ENERGY OF THE SHELL REFINED STRAIN ENERGY OF THE SHELL Ryszard A. Walentyński Deartment of Building Structures Theory, Silesian University of Technology, Gliwice, PL44-11, Poland ABSTRACT The aer rovides information on evaluation

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Grain elevator. You need to convince your boss that this is a very inefficient system.

Grain elevator. You need to convince your boss that this is a very inefficient system. Grain elevator You are working for a grain storage comany over the summer, and they have a roblem with the grain elevator, that kees breaking down. This morning, your boss woke u feeling like a genius

More information

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics

EE 508 Lecture 13. Statistical Characterization of Filter Characteristics EE 508 Lecture 3 Statistical Characterization of Filter Characteristics Comonents used to build filters are not recisely redictable L C Temerature Variations Manufacturing Variations Aging Model variations

More information

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1 First law of thermodynamics (Jan 12, 2016) age 1/7 Here are some comments on the material in Thomkins Chater 1 1) Conservation of energy Adrian Thomkins (eq. 1.9) writes the first law as: du = d q d w

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

The directivity of the forced radiation of sound from panels and openings including the shadow zone

The directivity of the forced radiation of sound from panels and openings including the shadow zone The directivity of the forced radiation of sound from anels and oenings including the shadow zone J. Davy RMIT University, Alied Physics, GPO Box 476V, 3001 Melbourne, Victoria, Australia john.davy@rmit.edu.au

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

whether a process will be spontaneous, it is necessary to know the entropy change in both the

whether a process will be spontaneous, it is necessary to know the entropy change in both the 93 Lecture 16 he entroy is a lovely function because it is all we need to know in order to redict whether a rocess will be sontaneous. However, it is often inconvenient to use, because to redict whether

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

CHS GUSSET PLATE CONNECTIONS ANALYSES Theoretical and Experimental Approaches

CHS GUSSET PLATE CONNECTIONS ANALYSES Theoretical and Experimental Approaches EUROSTEEL 8, 3-5 Setember 8, Graz, Austria 561 CHS GUSSET PLATE CONNECTIONS ANALYSES Theoretical an Exerimental Aroaches Arlene M. S. Freitas a, Daniela G. V. Minchillo b, João A. V. Requena c, Afonso

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Consider for simplicity a 3rd-order IIR filter with a transfer function. where

Consider for simplicity a 3rd-order IIR filter with a transfer function. where Basic IIR Digital Filter The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient ifference equation

More information

3-dimensional Evolution of an Emerging Flux Tube in the Sun. T. Magara

3-dimensional Evolution of an Emerging Flux Tube in the Sun. T. Magara 3-imensional Evolution of an Emerging Flux Tube in the Sun T. Magara (Montana State University) February 6, 2002 Introuction of the stuy Dynamical evolution of emerging fiel lines Physical process working

More information

Basic IIR Digital Filter Structures

Basic IIR Digital Filter Structures Basic IIR Digital Filter Structures The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient

More information

6.003 Homework #7 Solutions

6.003 Homework #7 Solutions 6.003 Homework #7 Solutions Problems. Secon-orer systems The impulse response of a secon-orer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters

More information

A M,ETHOD OF MEASURING THE RESISTIVITY AND HALL' COEFFICIENT ON LAMELLAE OF ARBITRARY SHAPE

A M,ETHOD OF MEASURING THE RESISTIVITY AND HALL' COEFFICIENT ON LAMELLAE OF ARBITRARY SHAPE '. ' 220 HILlS TECHNICAL REVIEW VOLUME 20 A M,ETHOD OF MEASURING THE RESISTIVITY AND HALL' COEFFICIENT ON LAMELLAE OF ARBITRARY SHAE 621.317.331:538.632.083 Resistivity and Hall-coefficient measurements

More information

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia roceedings World Geothermal Congress 00 Bali, Indonesia, 5-9 Aril 00 Analysis of ressure Transient Resonse for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia Jorge A.

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

ARCH 614 Note Set 5 S2012abn. Moments & Supports

ARCH 614 Note Set 5 S2012abn. Moments & Supports RCH 614 Note Set 5 S2012abn Moments & Supports Notation: = perpenicular istance to a force from a point = name for force vectors or magnitue of a force, as is P, Q, R x = force component in the x irection

More information

Where: Where: f Wave s frequency (Hz) c Speed of light ( ms -1 ) Wavelength (m)

Where: Where: f Wave s frequency (Hz) c Speed of light ( ms -1 ) Wavelength (m) in a direction to both of the fields as shown in Figure 1. In wave model, the electromagnetic radiation is commonly associated with wavelength and frequency, exressed mathematically as: c f...(1) f Wave

More information

ONE. The Earth-atmosphere system CHAPTER

ONE. The Earth-atmosphere system CHAPTER CHAPTER ONE The Earth-atmoshere system 1.1 INTRODUCTION The Earth s atmoshere is the gaseous enveloe surrounding the lanet. Like other lanetary atmosheres, it figures centrally in transfers of energy between

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA

The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA The Effect of a Finite Measurement Volume on Power Sectra from a Burst Tye LDA Preben Buchhave 1,*, Clara M. Velte, an William K. George 3 1. Intarsia Otics, Birkerø, Denmark. Technical University of Denmark,

More information

7. Introduction to Large Sample Theory

7. Introduction to Large Sample Theory 7. Introuction to Large Samle Theory Hayashi. 88-97/109-133 Avance Econometrics I, Autumn 2010, Large-Samle Theory 1 Introuction We looke at finite-samle roerties of the OLS estimator an its associate

More information

Solutions to Assignment #02 MATH u v p 59. p 72. h 3; 1; 2i h4; 2; 5i p 14. p 45. = cos 1 2 p!

Solutions to Assignment #02 MATH u v p 59. p 72. h 3; 1; 2i h4; 2; 5i p 14. p 45. = cos 1 2 p! Solutions to Assignment #0 MATH 41 Kawai/Arangno/Vecharynski Section 1. (I) Comlete Exercises #1cd on. 810. searation to TWO decimal laces. So do NOT leave the nal answer as cos 1 (something) : (c) The

More information

ector ition 1. Scalar: physical quantity having only magnitue but no irection is calle a scalar. eg: Time, mass, istance, spee, electric charge, etc.. ector: physical quantity having both magnitue an irection

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

22 ELECTROMAGNETIC INDUCTION

22 ELECTROMAGNETIC INDUCTION CHAPTER ELECTROMAGNETIC INDUCTION ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. 3.5 m/s. (e) The work done by the hand equals the energy dissiated in the bulb. The energy dissiated in the bulb equals the ower

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chater / Fluid Statics CHAPTER Fluid Statics FE-tye Exam Review Problems: Problems - to -9. (C) h (.6 98) (8.5.54) 96 6 Pa Hg. (D) gh 84. 9.8 4 44 76 Pa. (C) h h. 98. 8 Pa w atm x x water w.4 (A) H (.6

More information

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves Lecture : Clarifications of lecture 1: Hydrostatic balance: Under static conditions, only gravity will work on the fluid. Why doesn't all the fluid contract to the ground? Pressure builds u and resists

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter Physics 2A (Fall 2012) Chaters 11:Using Energy and 12: Thermal Proerties of Matter "Kee in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing,

More information