Integral Equation Method for Ring-Core Residual Stress Measurement

Size: px
Start display at page:

Download "Integral Equation Method for Ring-Core Residual Stress Measurement"

Transcription

1 Integral quation Method for Ring-Core Residual Stress Measurement Adam Civín, Miloš Vlk & Petr Navrátil 3 Astract: The ring-core method is the semi-destructive experimental method used for evaluation of the homogeneous and non-homogeneous residual stresses. In this paper, the integral equation method to quantify non-uniform residual stress fields is discussed. Therefore, correctly determined and properly used caliration factors a i and i, necessary for the residual stress measurement y the ring-core method, are essential. The finite element method is used for the simulation of residual states of stress and to calculate relieved strains on the top face of the core, which are necessary for the susequent caliration factors determination. Keywords: Caliration factor, Relaxation factor, Integral equation method, Residual stress, Ring-core method, Strain gauge rosette. Introduction The ring-core method (RCM) is a semi-destructive experimental method used for the evaluation of homogeneous and non-homogeneous residual stresses, acting over depth of drilled core. Therefore, the specimen is not totally destroyed during measurement and it could e used for further application in many cases. In this paper, the integral equation method (IM) to quantify non-uniform residual stress fields, acting over depth of drilled core, is discussed. This method is descried y a physical theory with a proper mathematical model. The IM overcomes typical drawacks of the incremental strain method (ISM), which leads to incorrect results, where a steep gradient of residual state of stress occurs. The incremental strain method assumes, that the measured deformations d a, d, and d c are functions only of the residual stresses, acting in the current depth z of the drilled groove and they do not depend on the previous increments dz, including another residual stresses. More information aout the ISM could e found in papers [, ]. In fact, relieved strains on the top face of the core do not depend only on the stress acting within the drilled layer and its position, ut also on the geometric changes of the ring groove during deepening. These two factors are taken into account y the integral equation method, which has een particularly developed for the Hole-drilling method in 988 [3, 4]. Anyway, the integral equation method assumes, that strain relaxation on the top face of the core, for the particular depth of the drilled groove, is superposition of all deformations. These deformations are caused y a partial residual stresses, acting within every drilled layer, of all depth increments (see Figs. and ). Ing. Adam Civín; Brno University of Technology; Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 896/; Brno; Czech Repulic, civin.adam@seznam.cz doc. Ing. Miloš Vlk, CSc.; Brno University of Technology; Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 896/; Brno; Czech Repulic, vlk@fme.vutr.cz 3 Ing. Petr Navrátil; Brno University of Technology; Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 896/; Brno; Czech Repulic, ynavra6@stud.fme.vutr.cz xperimental Stress Analysis 0, June 6-9, 0 Znomo. Czech Repulic. 3

2 Aovalasit et al. [5] and Zuccarello [6] extended theory of the IM into the ring-core application. They generally descrie the IM like a method, with a high sensitivity to the measurement errors, due to the numerical ill-conditioning of the equation set. This is caused y the position of the strain gauge on the top of the core, which is not enough sensitive to strains, relieved in the deeper layers of the drilled groove. Fig.. The ring-core method: geometry and general notation Fig.. Loading cases ased on theory of the integral equation method This paper descries how, application of the ring-core method with theory of the IM and the finite element method (FM) could e used for a numerical simulation and for determination of the uniform or non-uniform residual state of stress. The numerical simulation is used for the measurement of relieved strains on the top face of the model s core, at real positions of the strain gauge rosette s measuring grids. Caliration factors matrices a and, which are lower triangular, need to e calculated first in order to quantify the uniform or non-uniform residual state of stress, y the integral equation method. 3

3 . Integral quation Method Like each method, the integral equation method has its own theoretical ackground to define certain relations etween known and unknown parameters. Generally, total deformation measured on the top face of the core, for the ring-groove having depth H, is the integral of an infinitesimal strain relaxation components, caused y the residual stresses, acting at all depths in the range of 0 z H: k(h) H {[ A ( σ + σ ) + B ( σ σ )] cosα } dz k a,, c = (H,z) (z) (z) (H,z) (z) (z) k(z) = () 0 where a(h), (H), c(h) are the strains, measured y the strain gauge rosette on the top of the core s surface after a milling a groove having depth H, σ (z) and σ (z) are the unknown residual stresses acting at current depth z, α k(z) is the angle etween the maximum principal stress σ (z) and the direction of the strain gauge s measuring grid k = a and A (H,z), B (H,z) are the caliration functions, dependent on the shape and geometry of the ring-groove (Fig.). Using a three-grid rosette, q. () leads to a three linear equation set, from which the principal residual stresses and their orientation can e evaluated too. For i =,..., n finite depth increments q. () can e written as: i ki = ki k = a,, c () where the strain ki depends only on the stresses existing in the th layer y means of q. (3). Consequently, it is necessary to divide the maximum depth H into i intervals with the depth increment of Δz i and to approximate the function of the principal residual stresses σ (z) and σ (z) in each interval y the proper uniform distriution (Fig.3). Therefore, considering i finite depth increments, q. () can e written as: ai i = σ + σ + σ σ cos α (3) ki ( ) ( ) k in which ki is the strain component, relaxed on the surface solely due to the stress acting in the th layer, when i th depth increments have een achieved, σ, σ are the stresses within the th layer and a i, i are caliration factors. Knowledge of their dependence on the geometric changes of the ring-groove and on the disposition of the residual state of stress cross the depth of metallic material is essential and correspond of theirs appropriate application. Fig. 3. Approximation of non-homogenous residual stress field y the integral equation method Caliration factors a i and i of the lower triangular matrices a and cannot e determined y caliration coefficients K and K used for the incremental strain method [, ]. They can e possily otained y the finite element simulation. a a = a a ; = (4) a 3 a3 a

4 .. Caliration factors determination For the correct determination of the depth-varying principal residual stresses σ, σ y the IM, it is necessary to determine caliration factors a i, i, respective generalized caliration factors A i, B i for each type of used depth increment distriution. Generalized caliration factors A i and B i are not dependent on the material properties. q. (3), followed from the asic equation of the integral equation method q. (), can e rewritten in order to determine the principal strains i and i as follows [5]: ( σ + σ ) + Bi ( σ ) ( σ + σ ) B ( σ ) i Ai σ = (5) i Ai i σ = (6) In order to determine factors a i, A i it is necessary to consider a iaxial state of uniform stress with σ = σ = MPa and the position of the strain gauge rosette placed centric on the top face of the core. Then, y considering q. (3) and relieved strains ai = i = ci = i : i ai i ai = ; Ai = = (7, 8) σ σ To evaluate factors i, B i, it is necessary to consider a pure shear state of uniform stress with σ = -σ = MPa. Then, considering q. (3), for α = 0 are relieved strains ai = - ci : ai i = ; σ B i ai i = = (9, 0) σ Finally, particular principal residual stresses σ,σ (α = 0 ), acting in th layer of drilled groove (Fig. and Fig.3), made y i =,..., n depth increments, can e determined as follows: ai + ci ai ci ai + ci ai ci σ = + ; σ = (, ) 4 Ai Bi 4 Ai Bi.. Residual stress determination The strain components e i, d i, m i [6], calculated from strains ai, i and ci, measured on the top face of the core y the three-element strain gauge rosette (Fig. ), after milling the i th step of the groove, are superposition of all strains, relieved in every th layer (see q. ()): ei = ai i s ci + = ai (3) di = i i p ci = ai (4) mi = i i q ci + ai i = The stress components s, p and q, represented y qs. (6 8), are calculated from stresses σ a, σ and σ c, acting in every th layer, when i =,..., n depth increments have een reached: s σ c + σ a = ; p σ c σ a = ; q c (5) σ σ a σ = (6, 7, 8) 34

5 Then, desired residual stresses s i, p i and q i, calculated from the strain components e i, d i, m i and stress components s, p and q, after every drilled groove s depth, can e found y following equations: i = s i ei ai s (9) a ii i = p i di i p (0) ii i = q i mi i q () ii The asis of the integral equation method is descried y qs. (9 ). These equations consider stresses, acting in every th layer, when i =,, n depth increments have een reached, and therefore strains, measured on the top face of core after milling another dept increment. Furthermore, correctly determined and properly used caliration factors a i, i, are required too. Finally, the principal residual stresses σ i and σ i, corresponding to the i th layer of drilled groove, can e re-calculated y q. (): ( p q ) σ σ = s ± + () i, i i i i.3. Step optimization Papers [5, 6] made y Aovalasit et al. and Zuccarello are focused on the step optimization, which is important for the IM too. The strain measurement errors influence, which occurs in practice, affects accuracy of the residual state of stress determination. Influence of the strain measurement errors depends particularly on the numer and magnitude of the depth increment distriutions Δz i and consequently on the maximum depth H of the drilled groove. Study of the step distriution s influence on the determination of caliration factors a i, i and on the susequent residual stress state determination is not in the scope of this paper. Therefore, total depth of drilled groove H = 5 mm has een made y n = 8 optimized depth increments (see Tale ), as recommended in [5, 6]. Optimum depth increment distriution minimizes error sensitivity of the experimental measurement and consideraly improves the numerical conditioning. Tale. Distriution of the depth n = 8 increments Δz i for a total depth of H = 5 mm Depth increment Δz i [mm]: Δz Δz Δz 3 Δz 4 Δz 5 Δz 6 Δz 7 Δz F-simulation A prerequisite for correct and accurate measurement of residual strains on the top of the core is to use the finite element simulation. Therefore, the ANSYS analysis system is used for the susequent F-simulation. F-analysis is ased on a specimen volume with dimensions of a x a = 50 mm and thickness of t = 50 mm. Due to symmetry, only a quarter of the model has een modelled with centre of the core on the surface as the origin. The shape of the model is simply represented y 35

6 a lock with planar faces with a quarter of the annular groove drilled away (Figs. 4 and 5). The annular groove has een made y n = 8 increments with the different step s size Δz i (Tale ). The maximum depth of drilled groove is H = 5 mm. Dimension of the outer diameter is D = r i = 8 mm and groove width is h = mm. Fig. 4. Quarter of gloal solid model Fig. 5. Detail of the core with finite element mesh Linear, elastic and isotropic material model is used with material properties of Young s modulus = 0 GPa and Poisson s ratio μ = 0.3. Length and width of each measuring of grid of FR-5--3LT strain gauge rosette is l = 5 mm and w =.9 mm respectively [7]. In case of known directions of principal residual stresses, placing of the three-element strain gauge rosette on the top of the ring-core is shown in Fig.. Strain measurement on the top of the core is made y the integration across rosettes measuring grid surface. In case of the iaxial state of uniform stress simulation, applied surface s pressure p = p r = MPa is demonstrated in Fig. 6a and pressure p r = p cos(α), p t = p sin(α) (load s magnitude is varying with the angle 0 α 90 ) in order to simulate the pure shear state of uniform stress is demonstrated in Fig. 6. All loading conditions are applied to the oth inner sides of the ring-groove, in the range of the each depth increment. Fig. 6a. Loading conditions for the iaxial state of uniform stress simulation Fig. 6. Loading conditions for the pure shear state of uniform stress simulation 4. Results Process of the ring-core method s F-simulation has een carried out. Strains, relieved on the top face of the core, have een measured for two types of loading oundary conditions, in order to determine caliration factors. Tale contains magnitudes of strains, measured in 36

7 case of the iaxial state of uniform stress ( ai = i = ci = i ), see Fig. 6a. Appropriate caliration factors a i, calculated from measured strains y the q. (7), are shown in Tale 3a. The last column of the Tale represents the sum of all strain increments, caused y the unit stress σ = MPa, acting in every drilled layer (see Fig. ). This sum i = e i is a necessary part of residual stress determination y the q. (9). Tale. Relieved strains measured y the F-simulation of the iaxial state of uniform residual stress i [] e i = i i= Tale of strains, measured y the simulation of pure shear state of uniform stress is not included in this scope. Corresponding caliration factors i, calculated y the q. (9) and necessary for solving qs. (0, ), are shown in Tale 3. Represented results are valid only for dimension of the groove s outer diameter D = 8 mm, groove s width h = mm and total depth of drilled ring-groove H = 5 mm. Furthermore, results are valid for the groove made y n = 8 increments, with the depth distriution according to Tale and for the FR-5--3LT strain gauge rosette. Tale 3a. Caliration factors a i for optimized depth increment a i [] i= Tale 3. Caliration factors i for optimized depth increment i [] i= The residual stress magnitudes s i = σ i = σ i, corresponding to the every drilled i th layer, in case of considered iaxial state of uniform stress, are shown in Tale 4. They have een calculated according to q. (9), y using sum of strains i = e i from Tale and y using caliration factors a i shown in Tale 3a. 37

8 Tale 4. Re-calculated stress components for the iaxial state of uniform residual stress s i [MPa] i= The residual stresses results, located on the diagonal in Tale 4, proove the correctness of used equations. In case of non-uniform residual state of stress distriution, qs. (9 ) in order to determine the principal residual stresses σ i and σ i y q. (), must e calculated all together. 5. Conclusion This paper descried how application of the ring-core method with theory of the integral equation method and the finite element method could e used for the numerical simulation and susequent determination of uniform or non-uniform residual state of stress. In order to descrie the non-uniform residual state of stress y the integral equation method a numerical caliration factor s matrices a and, which are lower triangular, have een determined. For this reason, two types of loading conditions have een applied to the F-model. Appropriate equations to evaluate particular principal residual stresses σ,σ (α = 0 ), acting in th layer, when groove has i =,, n depth increments and the principal residual stresses σ i and σ i, corresponding to the i th layer of drilled groove, have een demonstrated for optimized step distriution. Acknowledgement This work was supported y the specific research FSI-S--. References [] Civín A. and Vlk M.: Assessment of Incremental Strain Method Used for Residual Stress Measurement y Ring-Core Method, In 48 th International Scientific Conference xperimental Stress Analysis 00, Velké Losiny, 00, pp. 7-34, ISBN [] Civín A. and Vlk M.: Ring-Core Residual Stress Measurement: Analysis of Caliration Coefficients for Incremental Strain Method, Bulletin of Applied Mechanics, Vol. 6, No.4, pp.77-8, ISSN 80-7 [3] Schaer G. S.: Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling method, Part I - Stress Calculation Procedures, Transactions of the ASM, ser. H, Journal of ngineering Materials and Technology, Octoer 988, vol. 0, no. 4, pp [4] Schaer G. S.: Measurement of Non-Uniform Residual-Stresses Using The Hole-Drilling Method, Part II - Practical Application of the Integral Method, Transactions of the ASM, ser. H, Journal of ngineering Materials and Technology, Octoer 988, vol. 0, no.4, pp [5] Aovalasit A., Petrucci G. and Zuccarello B.: Determination of Nonuniform Residual Stresses Using the Ring-Core Method Transactions of the ASM Journal of ngineering Materials and Technology, April 996, vol. 8, no., pp. 4-8 [6] Zuccarello B.: Optimization of Depth Increment Distriution in the Ring-Core Method, Journal of Strain Analysis for ngineering Design, 996, vol. 3, no. 4, pp [7] Preusser Messtechnik GmH [online] URL: < [cit ] 38

Determination of principal residual stresses directions by incremental strain method

Determination of principal residual stresses directions by incremental strain method Applied and Computational Mechanics 5 (011) 5 14 Determination of principal residual stresses directions by incremental strain method A. Civín a,,m.vlk a a Institute of Solid Mechanics, Mechatronics and

More information

RESIDUAL STRESS EVALUATION BY THE HOLE-DRILLING METHOD WITH ECCENTRIC HOLE

RESIDUAL STRESS EVALUATION BY THE HOLE-DRILLING METHOD WITH ECCENTRIC HOLE Engineering MECHANICS, Vol. 14, 2007, No. 1, p. 191 197 191 RESIDUAL STRESS EVALUATION BY THE HOLE-DRILLING METHOD WITH ECCENTRIC HOLE Karel Švaříček, Miloš Vlk* The hole drilling method is the commonest

More information

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Evy Van Puymbroeck 1, a *, Wim Nagy 1,b and Hans De Backer 1,c 1 Ghent University, Department

More information

Integral method coefficients and regularization procedure for the ringcore residual stress measurement technique

Integral method coefficients and regularization procedure for the ringcore residual stress measurement technique Advanced Materials Research Online: 214-8-11 ISSN: 1662-8985, Vol. 996, pp 331-336 doi:1.428/www.scientific.net/amr.996.331 214 Trans Tech Publications, Switzerland Integral method coefficients and regularization

More information

Homework 6: Energy methods, Implementing FEA.

Homework 6: Energy methods, Implementing FEA. EN75: Advanced Mechanics of Solids Homework 6: Energy methods, Implementing FEA. School of Engineering Brown University. The figure shows a eam with clamped ends sujected to a point force at its center.

More information

Composite Plates Under Concentrated Load on One Edge and Uniform Load on the Opposite Edge

Composite Plates Under Concentrated Load on One Edge and Uniform Load on the Opposite Edge Mechanics of Advanced Materials and Structures, 7:96, Copyright Taylor & Francis Group, LLC ISSN: 57-69 print / 57-65 online DOI:.8/5769955658 Composite Plates Under Concentrated Load on One Edge and Uniform

More information

Riveted Joints and Linear Buckling in the Steel Load-bearing Structure

Riveted Joints and Linear Buckling in the Steel Load-bearing Structure American Journal of Mechanical Engineering, 017, Vol. 5, No. 6, 39-333 Availale online at http://pus.sciepu.com/ajme/5/6/0 Science and Education Pulishing DOI:10.1691/ajme-5-6-0 Riveted Joints and Linear

More information

Exact Shape Functions for Timoshenko Beam Element

Exact Shape Functions for Timoshenko Beam Element IOSR Journal of Computer Engineering (IOSR-JCE) e-iss: 78-66,p-ISS: 78-877, Volume 9, Issue, Ver. IV (May - June 7), PP - www.iosrjournals.org Exact Shape Functions for Timoshenko Beam Element Sri Tudjono,

More information

3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer. M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G.

3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer. M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G. 3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G. Tepehan*** * TÜBİTAK, Ulusal Metroloji Enstitüsü (UME), Gebze- Kocaeli, Turkey

More information

Tunnel Reinforcement Optimization for Nonlinear Material

Tunnel Reinforcement Optimization for Nonlinear Material November 25-27, 2012, Gold Coast, Australia www.iccm-2012.org Tunnel Reinforcement Optimization for Nonlinear Material T. Nguyen* 1,2, K. Ghabraie 1,2, T. Tran-Cong 1,2 1 Computational Engineering and

More information

The Non Linear Behavior of the Microplane Model in COMSOL

The Non Linear Behavior of the Microplane Model in COMSOL The on Linear Behavior of the Microplane Model in COMSOL A. Frigerio 1 1 RSE S.p.A. *via Ruattino, 54 20134 Milan (Italy), antonella.frigerio@rse-we.it Astract: umerical models ased on the Finite Element

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

A Prying Action Force and Contact Force Estimation Model for a T-Stub Connection with High-Strength Bolts

A Prying Action Force and Contact Force Estimation Model for a T-Stub Connection with High-Strength Bolts A Prying Action Force and Contact Force Estimation Model for a T-Stu Connection with High-Strength Bolts Jae-Guen Yang* 1, Jae-Ho Park, Hyun-Kwang Kim and Min-Chang Back 1 Professor, Department of Architectural

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

Design Parameter Sensitivity Analysis of High-Speed Motorized Spindle Systems Considering High-Speed Effects

Design Parameter Sensitivity Analysis of High-Speed Motorized Spindle Systems Considering High-Speed Effects Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation August 5-8, 2007, Harin, China Design Parameter Sensitivity Analysis of High-Speed Motorized Spindle Systems Considering

More information

ANALYTICAL AND EXPERIMENTAL ELASTIC BEHAVIOR OF TWILL WOVEN LAMINATE

ANALYTICAL AND EXPERIMENTAL ELASTIC BEHAVIOR OF TWILL WOVEN LAMINATE ANALYTICAL AND EXPERIMENTAL ELASTIC BEHAVIOR OF TWILL WOVEN LAMINATE Pramod Chaphalkar and Ajit D. Kelkar Center for Composite Materials Research, Department of Mechanical Engineering North Carolina A

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

SIMILARITY METHODS IN ELASTO-PLASTIC BEAM BENDING

SIMILARITY METHODS IN ELASTO-PLASTIC BEAM BENDING Similarity methods in elasto-plastic eam ending XIII International Conference on Computational Plasticity Fundamentals and Applications COMPLAS XIII E Oñate, DRJ Owen, D Peric and M Chiumenti (Eds) SIMILARIT

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design. CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

More information

SIMULATION OF MECHANICAL TESTS OF COMPOSITE MATERIAL USING ANISOTROPIC HYPERELASTIC CONSTITUTIVE MODELS

SIMULATION OF MECHANICAL TESTS OF COMPOSITE MATERIAL USING ANISOTROPIC HYPERELASTIC CONSTITUTIVE MODELS Engineering MECHANICS, Vol. 18, 2011, No. 1, p. 23 32 23 SIMULATION OF MECHANICAL TESTS OF COMPOSITE MATERIAL USING ANISOTROPIC HYPERELASTIC CONSTITUTIVE MODELS Tomáš Lasota*, JiříBurša* This paper deals

More information

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Strength Study of Spiral Flexure Spring of Stirling Cryocooler Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Strength Study of Spiral of Stirling Cryocooler WANG Wen-Rui, NIE Shuai, ZHANG Jia-Ming School of Mechanical Engineering, University of Science

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

A NEW HYBRID TESTING PROCEDURE FOR THE LOW CYCLE FATIGUE BEHAVIOR OF STRUCTURAL ELEMENTS AND CONNECTIONS

A NEW HYBRID TESTING PROCEDURE FOR THE LOW CYCLE FATIGUE BEHAVIOR OF STRUCTURAL ELEMENTS AND CONNECTIONS SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, Septemer 8-10, 010 A NEW HYBRID TESTING PROCEDURE FOR THE LOW CYCLE FATIGUE BEHAVIOR

More information

ME 323 Examination #2

ME 323 Examination #2 ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

Stresses and Strains in flexible Pavements

Stresses and Strains in flexible Pavements Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same

More information

Effect of Uniform Horizontal Magnetic Field on Thermal Instability in A Rotating Micropolar Fluid Saturating A Porous Medium

Effect of Uniform Horizontal Magnetic Field on Thermal Instability in A Rotating Micropolar Fluid Saturating A Porous Medium IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue Ver. III (Jan. - Fe. 06), 5-65 www.iosrjournals.org Effect of Uniform Horizontal Magnetic Field on Thermal Instaility

More information

Stresses in Curved Beam

Stresses in Curved Beam Stresses in Curved Beam Consider a curved beam subjected to bending moment M b as shown in the figure. The distribution of stress in curved flexural member is determined by using the following assumptions:

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization

Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization IOP Conference Series: Materials Science and Engineering Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization To cite

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

More information

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL 4. BEMS: CURVED, COMPOSITE, UNSYMMETRICL Discussions of beams in bending are usually limited to beams with at least one longitudinal plane of symmetry with the load applied in the plane of symmetry or

More information

2014 International Conference on Computer Science and Electronic Technology (ICCSET 2014)

2014 International Conference on Computer Science and Electronic Technology (ICCSET 2014) 04 International Conference on Computer Science and Electronic Technology (ICCSET 04) Lateral Load-carrying Capacity Research of Steel Plate Bearing in Space Frame Structure Menghong Wang,a, Xueting Yang,,

More information

Simple Examples. Let s look at a few simple examples of OI analysis.

Simple Examples. Let s look at a few simple examples of OI analysis. Simple Examples Let s look at a few simple examples of OI analysis. Example 1: Consider a scalar prolem. We have one oservation y which is located at the analysis point. We also have a ackground estimate

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens Monika G. Garrell, 1 Albert J. Shih, 2 Edgar Lara-Curzio, 3 and Ronald O. Scattergood 4 Journal of Testing and Evaluation, Vol. 31, No. 1 Paper ID JTE11402_311 Available online at: www.astm.org Finite-Element

More information

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.

More information

DD3MAT - a code for yield criteria anisotropy parameters identification.

DD3MAT - a code for yield criteria anisotropy parameters identification. Journal of Physics: onference Series PAPER OPEN AESS DD3MA - a code for yield criteria anisotropy parameters identification. o cite this article: P D Barros et al 216 J. Phys.: onf. Ser. 734 3253 View

More information

Simulation of low pressure water hammer

Simulation of low pressure water hammer IOP Conference Series: arth and nvironmental Science Simulation of low pressure water hammer To cite this article: D Himr and V Haán 2010 IOP Conf. Ser.: arth nviron. Sci. 12 012087 View the article online

More information

Modeling the bond of GFRP and concrete based on a damage evolution approach

Modeling the bond of GFRP and concrete based on a damage evolution approach Modeling the ond of GFRP and concrete ased on a damage evolution approach Mohammadali Rezazadeh 1, Valter Carvelli 2, and Ana Veljkovic 3 1 Dep. Architecture, Built environment and Construction engineering,

More information

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess Nonlinear Theory of Elasticity Dr.-Ing. Martin Ruess geometry description Cartesian global coordinate system with base vectors of the Euclidian space orthonormal basis origin O point P domain of a deformable

More information

The Effects of Convolution Geometry and Boundary Condition on the Failure of Bellows

The Effects of Convolution Geometry and Boundary Condition on the Failure of Bellows Indian Journal of Science and Technology, Vol 8(S1), 462 466, January 2015 ISSN (Online) : 0974-5645 ISSN (Print) : 0974-6846 DOI: 10.17485/ijst/2015/v8iS1/59417 The Effects of Convolution Geometry and

More information

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS Advanced Materials Development and Performance (AMDP2011) International Journal of Modern Physics: Conference Series Vol. 6 (2012) 343-348 World Scientific Publishing Company DOI: 10.1142/S2010194512003418

More information

Finite-Element Analysis of Parts Stress State of Tight Joint Assembled by Press Fitting

Finite-Element Analysis of Parts Stress State of Tight Joint Assembled by Press Fitting Modern Mechanical Engineering, 04, 4, 98-06 Published Online November 04 in SciRes. http://www.scirp.org/journal/mme http://dx.doi.org/0.46/mme.04.4409 Finite-Element Analysis of Parts Stress State of

More information

**********************************************************************

********************************************************************** Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 3-33 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235

More information

Prediction of Micromechanical Behaviour of Elliptical Frp Composites

Prediction of Micromechanical Behaviour of Elliptical Frp Composites Prediction of Micromechanical Behaviour of Elliptical Frp Composites Kiranmayee.Nerusu Dept. of Mechanical Engg. P. V. P. Siddhartha Institute of Technology, Vijayawada 520 007, A.P, India. P. Phani Prasanthi

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Biplab Chatterjee, Prasanta Sahoo 1 Department of Mechanical Engineering, Jadavpur University

More information

P = ρ{ g a } + µ 2 V II. FLUID STATICS

P = ρ{ g a } + µ 2 V II. FLUID STATICS II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant

More information

AN IMPROVED EFFECTIVE WIDTH METHOD BASED ON THE THEORY OF PLASTICITY

AN IMPROVED EFFECTIVE WIDTH METHOD BASED ON THE THEORY OF PLASTICITY Advanced Steel Construction Vol. 6, No., pp. 55-547 () 55 AN IMPROVED EFFECTIVE WIDTH METHOD BASED ON THE THEORY OF PLASTICITY Thomas Hansen *, Jesper Gath and M.P. Nielsen ALECTIA A/S, Teknikeryen 34,

More information

Figure 1: General Plane Motion (Translation and Rotation)

Figure 1: General Plane Motion (Translation and Rotation) STRIN ND TH TRNSFORMTION OF STRIN INTRODUCTION - DFORMBL BODY MOTION ) Rigid Bod Motion T T Translation Rotation Figure : General Plane Motion (Translation and Rotation) Figure shows the general plane

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos

Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos J. F. Cárdenas-García, PhD, PE Becario Prometeo Escuela Politécnica Nacional Quito, ECUADOR 1 of 69 Outline Motivation

More information

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material ENGN 2340 Final Project Report Optimization of Mechanical Isotropy of Soft Network Material Enrui Zhang 12/15/2017 1. Introduction of the Problem This project deals with the stress-strain response of a

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study: I) The response

More information

EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD

EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD 63 EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD M. Scafidi a, E. Valentini b, B. Zuccarello a scafidi@dima.unipa.it, emilio.valentini@sintechnology.com,

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 113 CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 7. 1 INTRODUCTION Finite element computational methodology for rolling contact analysis of the bearing was proposed and it has several

More information

Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF Cylinders Under Pressure Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

More information

Chapter 2: Elasticity

Chapter 2: Elasticity OHP 1 Mechanical Properties of Materials Chapter 2: lasticity Prof. Wenjea J. Tseng ( 曾文甲 ) Department of Materials ngineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W.F.

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 1 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 1 MOULE NO: AME4052 ate: Saturda 14 Januar 2017 Time :

More information

Discrete Analysis for Plate Bending Problems by Using Hybrid-type Penalty Method

Discrete Analysis for Plate Bending Problems by Using Hybrid-type Penalty Method 131 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 21 (2008) Published online (http://hdl.handle.net/10114/1532) Discrete Analysis for Plate Bending Problems by Using

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

More information

Critical applied stresses for a crack initiation from a sharp V-notch

Critical applied stresses for a crack initiation from a sharp V-notch Focussed on: Fracture and Structural Integrity related Issues Critical applied stresses for a crack initiation from a sharp V-notch L. Náhlík, P. Hutař Institute of Physics of Materials, Academy of Sciences

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol-7

More information

Determination of Poisson s Ratio of Rock Material by Changing Axial Stress and Unloading Lateral Stress Test

Determination of Poisson s Ratio of Rock Material by Changing Axial Stress and Unloading Lateral Stress Test Rock Mech Rock Eng DOI 10.1007/s00603-014-0586-9 TECHNICAL NOTE Determination of Poisson s Ratio of Rock Material by Changing Axial Stress and Unloading Lateral Stress Test Xiangtao Xu Runqiu Huang Hua

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

Constitutive Equations

Constitutive Equations Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module

More information

Stress Analysis of Mandrel Used In Pilger Technology

Stress Analysis of Mandrel Used In Pilger Technology Stress Analysis of Mandrel Used In Pilger Technology Ruchil A. Patel 1, Apurvkumar Patel 2, Rajesh Kumar 3, Dr. D. V. Patel 4 1, 2, 3,4 Mechanical Engineering, GTU, Ahmedabad Abstract Cold pilgering is

More information

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO)

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO) National Institute for Nuclear Physics and High Energy Physics Kruislaan 409 1098 SJ Amsterdam The Netherlands NIKHEF Reference no.: MT-VELO 04-2 EDMS no: 466608 OF THE LIFTING DEVICE DETECTOR SUPPORTS

More information

Mechanics of Biomaterials

Mechanics of Biomaterials Mechanics of Biomaterials Lecture 7 Presented by Andrian Sue AMME498/998 Semester, 206 The University of Sydney Slide Mechanics Models The University of Sydney Slide 2 Last Week Using motion to find forces

More information

Study on the Bursting Strength of Jute Fabric Asis Mukhopadhyay 1, Biwapati Chatterjee 2, Prabal Kumar Majumdar 3 1 Associate Professor,

Study on the Bursting Strength of Jute Fabric Asis Mukhopadhyay 1, Biwapati Chatterjee 2, Prabal Kumar Majumdar 3 1 Associate Professor, American International Journal of Research in Science, Technology, Engineering & Mathematics Availale online at http://www.iasir.net ISSN (Print): 38-3491, ISSN (Online): 38-3580, ISSN (CD-ROM): 38-369

More information

Probabilistic Modelling of Duration of Load Effects in Timber Structures

Probabilistic Modelling of Duration of Load Effects in Timber Structures Proailistic Modelling of Duration of Load Effects in Timer Structures Jochen Köhler Institute of Structural Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland. Summary In present code

More information

Experimental Approach to Determine the Stress at a Section of Semi Circular Curved Beam Subjected to Out-Of-Plane Load Using Strain Rosette

Experimental Approach to Determine the Stress at a Section of Semi Circular Curved Beam Subjected to Out-Of-Plane Load Using Strain Rosette Experimental Approach to Determine the Stress at a Section of Semi Circular Curved Beam Subjected to Out-Of-Plane Load Using Strain Rosette Rakshith N 1, Dr. D S Ramakrishna 2, Srinivasa K 3, Md Nadeem

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Abdul Manan Haroon A. Baluch AERO, P.O Box 91, Wah Cantt. 47040 Pakistan Abstract Control Surfaces or Fins are very essential parts

More information

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT Yuri KLIGERMAN( ), Yuri Kadin( ), Izhak ETSION( ) Faculty of

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

Development of the Incremental Core-drilling Method for Non-Destructive Investigation of Stresses in Concrete Structures

Development of the Incremental Core-drilling Method for Non-Destructive Investigation of Stresses in Concrete Structures Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 2--2008 Development of the Incremental Core-drilling Method for Non-Destructive Investigation of Stresses in Concrete

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Numerical Analysis and Measurement of Non-Uniform Torsion

Numerical Analysis and Measurement of Non-Uniform Torsion Paper Civil-Comp Press, 0 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V. Topping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Numerical Analysis

More information

Borehole deformation under a stressed state and in situ stress measurement

Borehole deformation under a stressed state and in situ stress measurement Deep Mining 17: Eighth International Conference on Deep and High Stress Mining J Wesseloo (ed.) 17 Australian Centre for Geomechanics, Perth, ISBN 978--99481-6-3 https://papers.acg.uwa.edu.au/p/174_14_wang/

More information

Exact Free Vibration of Webs Moving Axially at High Speed

Exact Free Vibration of Webs Moving Axially at High Speed Eact Free Viration of Wes Moving Aially at High Speed S. HATAMI *, M. AZHARI, MM. SAADATPOUR, P. MEMARZADEH *Department of Engineering, Yasouj University, Yasouj Department of Civil Engineering, Isfahan

More information

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK J. Pina-Henriques and Paulo B. Lourenço School of Engineering, University of Minho, Guimarães, Portugal Abstract Several continuous and discontinuous

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

More information