Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I

Size: px
Start display at page:

Download "Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I"

Transcription

1 Sequenced Units for Arizona s College and Career Ready Standards MA27 Algebra I Year at a Glance Semester 1 Semester 2 Unit 1: Solving Linear Equations (12 days) Unit 2: Solving Linear Inequalities (12 days) Unit 3: Graphing Linear Functions (14 days) Unit 4: Writing Linear Functions (14 days) Unit 5: Solving Systems of Linear Equations and Linear Inequalities (15 days) Unit 6: Exponential Functions and Sequences (17 days) Unit 7: Polynomial Equations and Factoring (19 days) Unit 8: Graphing Quadratic Equations (16 days) Unit 9: Solving Quadratic Equations (16 days) Unit 10: Radical Functions and Equations (11 days) Unit 11: Data Analysis and Displays (14 days)

2 In the three years prior to Algebra I, students have already begun their study of algebraic concepts. They have investigated variables and expressions, solved equations, constructed and analyzed tables, used equations and graphs to describe relationships between quantities, and studied linear equations and systems of linear equations. The Algebra I course outlined in this scope and sequence document begins with connections back to that earlier work, efficiently reviewing algebraic concepts that students have already studied while at the same time moving students forward into the new ideas described in the high school standards. Students contrast exponential and linear functions as they explore exponential models using the familiar tools of tables, graphs, and symbols. Finally, they apply these same tools to a study of quadratic functions. Throughout, the connection between functions and equations is made explicit to give students more ways to model and make sense of problems. This document reflects our current thinking related to the intent of Arizona s College and Career Ready Standards and assumes 160 days for instruction, divided among 11 units. The number of days suggested for each unit assumes 45-minute class periods and is included to convey how instructional time should be balanced across the year. The units are sequenced in a way that we believe best develops and connects the mathematical content described in the standards; however, the order of the standards included in any unit does not imply a sequence of content within that unit. Some standards may be revisited several times during the course; others may be only partially addressed in different units, depending on the focus of the unit. Strikethroughs in the text of the standards are used in some cases in an attempt to convey that focus, and comments are included throughout the document to clarify and provide additional background for each unit. Throughout Algebra I, students should continue to develop proficiency with Arizona s College and Career Ready Standards eight Standards for Mathematical Practice: 1. Make sense of problems and persevere in solving them. 5. Use appropriate tools strategically. 2. Reason abstractly and quantitatively. 6. Attend to precision. 3. Construct viable arguments and critique the reasoning of others. 7. Look for and make use of structure. 4. Model with mathematics. 8. Look for and express regularity in repeated reasoning. These practices should become the natural way in which students come to understand and do mathematics. While, depending on the content to be understood or on the problem to be solved, any practice might be brought to bear, some practices may prove more useful than others. Opportunities for highlighting certain practices are indicated in different units in this document, but this highlighting should not be interpreted to mean that other practices should be neglected in those units. When using this document to help in planning your instructional program, you will also need to refer to the Mesa Public Schools Standards Implementation document, relevant progressions documents for the standards, and the appropriate assessment consortium framework. Mesa Public Schools 1 May 2015

3 Unit 1: Solving Linear Equations Suggested number of days: 12 Unit 1 presents the foundational skills related to solving linear equations and the connected skills of solving absolute value equations and rewriting equations and formulas. Most students will have prior experience with the Properties of Equality and techniques presented in the first three sections. It will sound familiar that whatever operation is performed on one side of the equation, the same operation must be performed on the other side of the equation to keep equality, or balance. During the unit students apply the techniques of equation solving to the context of absolute value equations, understanding absolute value as a function concept and not simply two vertical lines can be challenging for students and solving literal equations which requires students to see the structure of equations. Quantities N-Q A. Reason quantitatively and use units to solve problems. 1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Creating Equations A-CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm s law V = IR to highlight resistance R. Reasoning with Equations and Inequalities A-REI A. Understand solving equations as a process of reasoning and explain the reasoning 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. B. Solve equations and inequalities in one variable 3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. N-Q These standards are integrated throughout both the Algebra I and Algebra II course. Most notably in modeling tasks. For example, in a situation involving data, the student might autonomously decide that a measure of center is a key variable in a situation, and then choose to work with the mean. A-CED.A.1 Focus on linear, quadratic, or exponential equations with integer exponents. A-REI.A.1 Focus on quadratic equations. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 2 May 2015

4 Unit 2: Solving Linear Inequalities Suggested number of days: 12 Students have just finished a unit on solving linear equations simple and multi-step equations along with absolute value equations. The techniques used in solving linear equations are applied to linear inequalities in this unit. In grade 7, students solved and graphed linear inequalities; so many of the topics in this unit should be familiar to them. The unit begins with an introduction to writing and graphing inequalities. Color coding and verbal models are used to help students develop confidence in writing inequalities, a necessary skill for the unit. The graphs are used to display and check solutions. As the unit progresses students focus on solving increasingly complex inequalities. Tools used in developing facility with these problems include symbolic manipulation, tables, and spreadsheets. Practice with real number operations is integrated throughout. The unit introduces compound inequalities, which are necessary in solving absolute value inequalities. Look for the helpful teaching strategies offered in the lessons within this unit. Formative assessment tips are offered in many of the lessons, and tips from the previous unit are referenced throughout the notes at point of use. Creating equations A-CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Reasoning with Equations and Inequalities A-REI B. Solve equations and inequalities in one variable 3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. A-CED.A.1 Focus on linear, quadratic, or exponential equations with integer exponents. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 3 May 2015

5 Unit 3: Graphing Linear Functions Suggested number of days: 14 Students should have a conceptual understanding of functions from a prior grade. Their understanding may be of a function machine where there is an input, a function is performed, and an output results. There is a pairing of the input and output, and each input is associated with exactly one output. Unit 3 extends this introductory understanding of functions and presents the notation of functions. Consistent use of the notation and language of functions will help students become more confident. The unit purposefully focuses on function notation, representing functions, discrete and continuous functions, and evaluating functions. Students may be resistant to using function notation, preferring the simpler y = notation. It is hard for students to appreciate what the broader notation enables us to do because they have not learned enough at this stage. When two equations are graphed on the same axes, we can clearly refer to f and g, versus saying the first y = and the second y =. We compose functions and have functions with multiple inputs, two examples where function notation is useful. The unit also introduces two forms of linear equations standard and slope-intercept. Students should be able to do quick sketches of each by inspecting information from the equation. The unit looks at transformations of linear and absolute value functions and these same transformations will be applied to other types of functions, such as quadratic and trigonometric. Function notation is used to describe the transformations. Creating Equations A-CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Reasoning with Equations and Inequalities A-REI D. Represent and solve equations and inequalities graphically 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Interpreting Functions F-IF A. Understand the concept of a function and use function notation 1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. F-IF.B.4 Include problem-solving opportunities utilizing a real-world context. Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F- IF.7, and F-IF.9. Mesa Public Schools 4 May 2015

6 Unit 3: Graphing Linear Functions Suggested number of days: 14 C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Building Functions F-BF B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Linear, Quadratic, and Exponential Models F-LE A. Construct and compare linear, quadratic, and exponential models and solve problems 1. Distinguish between situations that can be modeled with linear functions and with exponential functions. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. B. Interpret expressions for functions in terms of the situation they model 5. Interpret the parameters in a linear or exponential function in terms of a context. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F- IF.7, and F-IF.9. F-IF.C.9 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. F-BF.B.3 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-LE.B.5 Include problem-solving opportunities utilizing a real-world context. Focus on exponential functions with domains in the integers. Mesa Public Schools 5 May 2015

7 Unit 4: Writing Linear Functions Suggested number of days: 14 Students have just finished a unit on graphing linear equations in various forms, including transformations of graphs of linear functions. This unit continues with lessons on writing linear equations in slope-intercept form and standard form. These forms are extended in to include the cases of parallel and perpendicular lines. Many real-life applications involve data that can be modeled by a linear equation and another focus is on graphing scatter plots and writing a best-fit line for the data. Students first approximate a line of best fit and then use graphing calculators (or spreadsheets) to generate the regression equation of the line of best fit. Connections to linear equations are made in this unit. Students should make the connection between the common difference in an arithmetic sequence and the slope of a linear equation. Further, a 0 is the y-intercept of a linear equation and write the linear equations for each part of a piecewise function. Graphing calculator techniques are presented as helpful teaching strategies. Quantities N-Q A. Reason quantitatively and use units to solve problems. 2. Define appropriate quantities for the purpose of descriptive modeling. 3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. Creating Equations A-CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Reasoning with Equations and Inequalities A-REI D. Represent and solve equations and inequalities graphically 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Interpreting Functions F-IF A. Understand the concept of a function and use function notation 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n 1. C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. Building Functions F-BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. N-Q These standards are integrated throughout both the Algebra I and Algebra II course. Most notably in modeling tasks. For example, in a situation involving data, the student might autonomously decide that a measure of center is a key variable in a situation, and then choose to work with the mean. F-IF.A.3 This standard is part of the Major content in Algebra I. F-IF.C.7 Include problem-solving opportunities utilizing a real-world context. Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F- IF.9. F-BF.A.1a Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on Mesa Public Schools 6 May 2015

8 Unit 4: Writing Linear Functions Suggested number of days: 14 Linear, Quadratic, and Exponential Models F-LE A. Construct and compare linear, quadratic, and exponential models and solve problems 1. Distinguish between situations that can be modeled with linear functions and with exponential functions. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). B. Interpret expressions for functions in terms of the situation they model 5. Interpret the parameters in a linear or exponential function in terms of a context. Interpreting Categorical and Quantitative Data S-ID B. Summarize, represent, and interpret data on two categorical and quantitative variables 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association. C. Interpret linear models 7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 8. Compute (using technology) and interpret the correlation coefficient of a linear fit. 9. Distinguish between correlation and causation. F-LE.A.2 Focus on constructing linear and exponential functions in simple context (not multi-step). F-LE.B.5 Include problem-solving opportunities utilizing a real-world context. Focus on exponential functions with domains in the integers. S-ID.B.6a Include problem-solving opportunities utilizing a real-world context. Focus on exponential functions with domains in the integers. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 7 May 2015

9 Unit 5: Solving Systems of Linear Equations Suggested number of days: 15 There are three common techniques for solving a system of equations: graphing, substitution, and elimination. These techniques are presented in this unit. Students are introduced to the definition of a linear system, and they learn to check their solutions. Students look at special linear systems, where there is no solution because the lines are parallel or there are infinitely many solutions because the lines coincide. Students learn that solving a system by graphing can be used to solve an equation with variables on both sides. This is actually a technique that students will use extensively in future mathematics courses. Creating equations A-CED A. Create equations that describe numbers or relationships 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. Reasoning with Equations and Inequalities A-REI C. Solve systems of equations 5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. D. Represent and solve equations and inequalities graphically 11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. 12. Graph the solutions to a linear inequality in two variables as a half- plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. A-REI.C.6 Include problem-solving opportunities utilizing a real-world context. Tasks have hallmarks of modeling as a mathematical practice (less defined tasks, more of the modeling cycle, etc.). A-REI.D.11 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piece-wise. Focus on exponential functions with domains in the integers. Mesa Public Schools 8 May 2015

10 Unit 6: Exponential Functions and Sequences Suggested number of days: 17 Having finished work with linear equations, this unit involves polynomials and work with quadratics. This unit introduces students to exponential functions and sequences. Students will revisit exponential functions and learn about logarithmic functions in Algebra 2. The properties of exponents that are presented should be a review for students. Many of the problems involve numeric expressions, although there are algebraic expressions as well. The same properties of exponents are applied to radicals and rational exponents. The unit moves into exponential functions and the attributes of exponential growth and decay functions. Exponential equations are solved using the properties of exponents initially and then graphically with a graphing calculator. Geometric sequences are introduced with the connection made to exponential functions. Additionally, recursively defined sequences looks at both arithmetic and geometric sequences, writing them as recursive rules. Seeing Structure in Expressions A-SSE B. Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 t can be rewritten as (1.15 1/12 ) 12t t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. Creating Equations A-CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Reasoning with Equations and Inequalities A-REI A. Understand solving equations as a process of reasoning and explain the reasoning 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. D. Represent and solve equations and inequalities graphically 11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Interpreting Functions F-IF A. Understand the concept of a function and use function notation 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n 1. A-SSE.B.3c Include problem-solving opportunities utilizing a real-world context. As described in the standard, there is an interplay between the mathematical structure of the expression and the structure of the situation such that choosing and producing an equivalent form of the expression reveals something about the situation. Focus on expressions with integer exponents. A-CED.A.1 Focus on linear, quadratic, or exponential equations with integer exponents. A-REI.A.1 Focus on quadratic equations. A-REI.D.11 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piece-wise. Focus on exponential functions with domains in the integers. F-IF.A.3 This standard is part of the Major content in Algebra I. Mesa Public Schools 9 May 2015

11 Unit 6: Exponential Functions and Sequences Suggested number of days: 17 B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. C. Analyze functions using different representations 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Building Functions F-BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Linear, Quadratic, and Exponential Models F-LE A. Construct and compare linear, quadratic, and exponential models and solve problems 1. Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). F-IF.B.4 Include problem-solving opportunities utilizing a real-world context. Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewisedefined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F- IF.9. F-IF.C.9 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-BF.A.1a Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-BF.B.3 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. F-LE.A.2 Tasks are limited to constructing linear and exponential functions in simple context (not multistep). Mesa Public Schools 10 May 2015

12 Unit 7: Polynomial Equations and Factoring Suggested number of days: 19 This unit is about polynomial equations and factoring. It is positioned here in the sequence in preparation for upcoming work with quadratics. To begin the unit, the vocabulary and representation of polynomials is introduced, along with operations with polynomials. Operations of addition, subtraction, and multiplication are then presented. The unit focuses on solving polynomial equations, which can be done when the polynomial is written in factored form. Students will use the Zero-Product Property to solve polynomial equations in factored form. Students will learn a series of techniques for factoring polynomials, aided by visual explorations using algebra tiles. Seeing Structure in Expressions A-SSE A. Interpret the structure of expressions 1. Interpret expressions that represent a quantity in terms of its content. 2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x2) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). B. Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. Arithmetic with Polynomial and Rational Expressions A-APR A. Perform arithmetic operations on polynomials 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. B. Understand the relationship between zeros and factors of polynomials 3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Reasoning with Equations and Inequalities A-REI B. Solve equations and inequalities in one variable 4. Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for x 2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. A-SSE.A.2 Focus on numerical expressions and polynomial expressions in one variable. Examples: Recognize as a difference of squares and see an opportunity to rewrite it in the easier-to-evaluate form (53 47)(53 47). See an opportunity to rewrite a 2 9a 14 as (a 7) (a 2). A-APR.B.3 Focus on quadratic and cubic polynomials in which linear and quadratic factors are available. For example, find the zeros of (x - 2) (x 2-9). A-REI.B.4b Excluding solutions for quadratic equations that have roots with nonzero imaginary parts. However, include cases that recognize when a quadratic equation has no real solutions. Note, solving a quadratic equation by factoring relies on the connection between zeros and factors of polynomials (cluster A-APR.B). Mesa Public Schools 11 May 2015

13 Unit 8: Graphing Quadratic Functions Suggested number of days: 16 This unit continues with general work about polynomials and more specifically about quadratics. In the last unit, students factored quadratics and used the Zero-Product Property to solve quadratics. The unit begins with graphing quadratic functions. Connections to transformations of functions are made, just as students had seen with linear functions earlier. In addition to graphing, the concept of zeros of functions is introduced and connected to the x-intercept of a graph. There are three forms of quadratic equations: standard, vertex, and intercept. Students should become familiar with what the parameters of each equation tell about the graph of the function. Students compare the behavior of linear, exponential, and quadratic functions. This is done by looking at the data numerically and graphically, a theme emphasized throughout the unit. Seeing Structure in Expressions A-SSE B. Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. Arithmetic with Polynomial and Rational Expressions A-APR B. Understand the relationship between zeros and factors of polynomials 3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Creating Equations A-CED A. Create equations that describe numbers or relationships 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Interpreting Functions F-IF B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. A-APR.B.3 Focus on quadratic and cubic polynomials in which linear and quadratic factors are available. For example, find the zeros of (x - 2)(x 2-9). F-IF.B.4 Include problem-solving opportunities root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.B.6 Include problem-solving opportunities root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.C.7 Include problem-solving opportunities root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F-IF.9. Mesa Public Schools 12 May 2015

14 Unit 8: Graphing Quadratic Functions Suggested number of days: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Building Functions F-BF A. Build a function that models a relationship between two quantities 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. B. Build new functions from existing functions 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Linear, Quadratic, and Exponential Models F-LE A. Construct and compare linear, quadratic, and exponential models and solve problems 3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. F-IF.C.9 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-BF.A.1a Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-BF.B.3 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 13 May 2015

15 Unit 9: Solving Quadratic Equations Suggested number of days: 16 In previous units, students factored quadratics and graphed quadratic equations in different forms: standard, vertex, and intercept. This unit is about solving quadratic equations, and depending upon the form in which the equations are written, different techniques are used. Students review square roots and how to simplify them. These skills are needed for work later in the unit. Students are presented different ways in which a quadratic can be solved: graphing, using square roots, completing the square, and using the Quadratic Formula. Students learn to distinguish between finding the zero of a function and finding the x-intercept of a graph. Students solve systems of nonlinear equations by applying the techniques they used in Unit 5. The Real Number System N-RN B. Use properties of rational and irrational numbers. 3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. Seeing Structure in Expressions A-SSE B. Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. Creating Equations A-CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm s law V = IR to highlight resistance R. Reasoning with Equations and Inequalities A-REI B. Solve equations and inequalities in one variable 4. Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p) 2 = q that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for x 2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. A-CED.A.1 Focus on linear, quadratic, or exponential equations with integer exponents. A-REI.B.4b Excluding solutions for quadratic equations that have roots with nonzero imaginary parts. However, include cases that recognize when a quadratic equation has no real solutions. Note, solving a quadratic equation by factoring relies on the connection between zeros and factors of polynomials (cluster A-APR.B). Mesa Public Schools 14 May 2015

16 Unit 9: Solving Quadratic Equations Suggested number of days: 16 D. Represent and solve equations and inequalities graphically 11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Interpreting Functions F-IF C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. A-REI.D.11 Focus on the following function types: linear, quadratic, square root, cube root, exponential, and piece-wise. Focus on exponential functions with domains in the integers. F-IF.C.7 Include problem-solving opportunities root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F- IF.7, and F-IF.9. Arizona s College and Career Ready Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Mesa Public Schools 15 May 2015

17 Unit 10: Radical Functions and Equations Suggested number of days: 11 This unit introduces radical functions, both square root and cubic functions. The transformations of the parent functions give students another opportunity to examine horizontal and vertical translations, horizontal reflections in the x-axis, and vertical stretches and shrinks. Solving radical equations is a nice connection to solving equations in general. Students have used the Properties of Equalities and have taken the square root of each side of an equation, now they learn that squaring both sides of an equation is another technique for solving equations, although extraneous roots may be introduced. This unit presents inverse relations and inverse functions. It connects the functions studied in this unit with functions studied in earlier units. Creating Equations A-CED A. Create equations that describe numbers or relationships 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Interpreting Functions F-IF B. Interpret functions that arise in applications in terms of the context 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. C. Analyze functions using different representations 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. A-CED.A.1 Focus on linear, quadratic, or exponential equations with integer exponents. F-IF.B.4 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.B.6 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on F-IF.C.7 Include problem-solving opportunities root, exponential, and piecewise-defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. The function types listed here are the same as those listed in the Algebra I column for standards F-IF.6, F-IF.7, and F-IF.9. F-IF.C.9 Include problem-solving opportunities root, exponential, and piecewise- defined (including step functions and absolute value functions. Focus on exponential functions with domains in the integers. Mesa Public Schools 16 May 2015

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra I

Sequenced Units for the Common Core State Standards in Mathematics High School Algebra I In the three years prior to Algebra I, students have already begun their study of algebraic concepts. They have investigated variables and expressions, solved equations, constructed and analyzed tables,

More information

Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II

Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II Sequenced Units for Arizona s College and Career Ready Standards MA40 Algebra II Year at a Glance Semester 1 Semester 2 Unit 1: Linear Functions (10 days) Unit 2: Quadratic Functions (10 days) Unit 3:

More information

Throughout Algebra I, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice:

Throughout Algebra I, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice: In the three years prior to Algebra I, students have already begun their study of algebraic concepts. They have investigated variables and expressions, solved equations, constructed and analyzed tables,

More information

Mathematics Standards for High School Algebra I

Mathematics Standards for High School Algebra I Mathematics Standards for High School Algebra I Algebra I is a course required for graduation and course is aligned with the College and Career Ready Standards for Mathematics in High School. Throughout

More information

Tennessee s State Mathematics Standards - Algebra I

Tennessee s State Mathematics Standards - Algebra I Domain Cluster Standards Scope and Clarifications Number and Quantity Quantities The Real (N Q) Number System (N-RN) Use properties of rational and irrational numbers Reason quantitatively and use units

More information

A Story of Functions Curriculum Overview

A Story of Functions Curriculum Overview Rationale for Module Sequence in Algebra I Module 1: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze

More information

Algebra I Number and Quantity The Real Number System (N-RN)

Algebra I Number and Quantity The Real Number System (N-RN) Number and Quantity The Real Number System (N-RN) Use properties of rational and irrational numbers N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational

More information

Sequence of Algebra 1 Units Aligned with the California Standards

Sequence of Algebra 1 Units Aligned with the California Standards Sequence of Algebra 1 Units Aligned with the California Standards Year at a Glance Unit Big Ideas Math Algebra 1 Textbook Chapters Dates 1. Equations and Inequalities Ch. 1 Solving Linear Equations MS

More information

California Common Core State Standards for Mathematics Standards Map Algebra I

California Common Core State Standards for Mathematics Standards Map Algebra I A Correlation of Pearson CME Project Algebra 1 Common Core 2013 to the California Common Core State s for Mathematics s Map Algebra I California Common Core State s for Mathematics s Map Algebra I Indicates

More information

Common Core State Standards: Algebra 1

Common Core State Standards: Algebra 1 Common Core State Standards: Number and Quantity Standards The Real Number System Extend the properties of exponents to rational exponents. N-RN.1 Explain how the definition of the meaning of rational

More information

Algebra I. 60 Higher Mathematics Courses Algebra I

Algebra I. 60 Higher Mathematics Courses Algebra I The fundamental purpose of the course is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and

More information

ALGEBRA I. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. (N-RN2)

ALGEBRA I. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. (N-RN2) ALGEBRA I The Algebra I course builds on foundational mathematical content learned by students in Grades K-8 by expanding mathematics understanding to provide students with a strong mathematics education.

More information

ALGEBRA I CCR MATH STANDARDS

ALGEBRA I CCR MATH STANDARDS RELATIONSHIPS BETWEEN QUANTITIES AND REASONING WITH EQUATIONS M.A1HS.1 M.A1HS.2 M.A1HS.3 M.A1HS.4 M.A1HS.5 M.A1HS.6 M.A1HS.7 M.A1HS.8 M.A1HS.9 M.A1HS.10 Reason quantitatively and use units to solve problems.

More information

Sequence of Algebra AB SDC Units Aligned with the California Standards

Sequence of Algebra AB SDC Units Aligned with the California Standards Sequence of Algebra AB SDC Units Aligned with the California Standards Year at a Glance Unit Big Ideas Math Algebra 1 Textbook Chapters Dates 1. Equations and Inequalities Ch. 1 Solving Linear Equations

More information

Algebra I, Common Core Correlation Document

Algebra I, Common Core Correlation Document Resource Title: Publisher: 1 st Year Algebra (MTHH031060 and MTHH032060) University of Nebraska High School Algebra I, Common Core Correlation Document Indicates a modeling standard linking mathematics

More information

High School Algebra I Scope and Sequence by Timothy D. Kanold

High School Algebra I Scope and Sequence by Timothy D. Kanold High School Algebra I Scope and Sequence by Timothy D. Kanold First Semester 77 Instructional days Unit 1: Understanding Quantities and Expressions (10 Instructional days) N-Q Quantities Reason quantitatively

More information

N-Q2. Define appropriate quantities for the purpose of descriptive modeling.

N-Q2. Define appropriate quantities for the purpose of descriptive modeling. Unit 1 Expressions Use properties of rational and irrational numbers. N-RN3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number

More information

Standard Description Agile Mind Lesson / Activity Page / Link to Resource

Standard Description Agile Mind Lesson / Activity Page / Link to Resource Publisher: Agile Mind, Inc Date: 19-May-14 Course and/or Algebra I Grade Level: TN Core Standard Standard Description Agile Mind Lesson / Activity Page / Link to Resource Create equations that describe

More information

Mathematics High School Algebra I

Mathematics High School Algebra I Mathematics High School Algebra I All West Virginia teachers are responsible for classroom instruction that integrates content standards and mathematical habits of mind. Students in this course will focus

More information

ALGEBRA 1 - SJPS Curriculum

ALGEBRA 1 - SJPS Curriculum ALGEBRA 1 - SJPS Curriculum Year at a Glance (2013-2014) Name of Unit Learning Goals Knowledge & Skills UNIT 1: Relationships Between Quantities and Reasoning with Equations (35 days?) UNIT 2: Linear and

More information

Algebra I. 60 Higher Mathematics Courses Algebra I

Algebra I. 60 Higher Mathematics Courses Algebra I The fundamental purpose of the course is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and

More information

Dublin City Schools Mathematics Graded Course of Study Algebra I Philosophy

Dublin City Schools Mathematics Graded Course of Study Algebra I Philosophy Philosophy The Dublin City Schools Mathematics Program is designed to set clear and consistent expectations in order to help support children with the development of mathematical understanding. We believe

More information

Common Core State Standards with California Additions 1 Standards Map. Algebra I

Common Core State Standards with California Additions 1 Standards Map. Algebra I Common Core State s with California Additions 1 s Map Algebra I *Indicates a modeling standard linking mathematics to everyday life, work, and decision-making N-RN 1. N-RN 2. Publisher Language 2 Primary

More information

School District of Marshfield Course Syllabus

School District of Marshfield Course Syllabus School District of Marshfield Course Syllabus Course Name: Algebra I Length of Course: 1 Year Credit: 1 Program Goal(s): The School District of Marshfield Mathematics Program will prepare students for

More information

Observations Homework Checkpoint quizzes Chapter assessments (Possibly Projects) Blocks of Algebra

Observations Homework Checkpoint quizzes Chapter assessments (Possibly Projects) Blocks of Algebra September The Building Blocks of Algebra Rates, Patterns and Problem Solving Variables and Expressions The Commutative and Associative Properties The Distributive Property Equivalent Expressions Seeing

More information

Mathematics. Number and Quantity The Real Number System

Mathematics. Number and Quantity The Real Number System Number and Quantity The Real Number System Extend the properties of exponents to rational exponents. 1. Explain how the definition of the meaning of rational exponents follows from extending the properties

More information

Guide Assessment Structure Algebra I

Guide Assessment Structure Algebra I Guide Assessment Structure Algebra I The Common Core State Standards for Mathematics are organized into Content Standards which define what students should understand and be able to do. Related standards

More information

Algebra I. Time Frame Standard Resources Notes. Page 1 of 22

Algebra I. Time Frame Standard Resources Notes. Page 1 of 22 Page 1 of 22 Module 1 4. Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and

More information

Model Traditional Pathway: Model Algebra I Content Standards [AI]

Model Traditional Pathway: Model Algebra I Content Standards [AI] Model Traditional Pathway: Model Algebra I Content Standards [AI] Number and Quantity The Real Number System AI.N-RN A. Extend the properties of exponents to rational exponents. 1. Explain how the definition

More information

Honors Algebra I

Honors Algebra I emath Instruction Unit 3 emath Instruction emath Instruction Unit 1 Term 1 The Building Blocks of Algebra A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x4

More information

Algebra I. Algebra I Guide to Rigor

Algebra I. Algebra I Guide to Rigor Code A1: N-RN.B.3 A1: N-Q.A.1 Standard LSSM Algebra I Algebra I Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational;

More information

Mississippi ALGEBRA I (Traditional) Pacing Guide

Mississippi ALGEBRA I (Traditional) Pacing Guide Mississippi ALGEBRA I (Traditional) 2018-2019 Pacing Guide Note: The Mississippi College- and Career-Readiness Standards describe the varieties of expertise that mathematics educators should seek to develop

More information

Algebra 1 Mathematics: to Hoover City Schools

Algebra 1 Mathematics: to Hoover City Schools Jump to Scope and Sequence Map Units of Study Correlation of Standards Special Notes Scope and Sequence Map Conceptual Categories, Domains, Content Clusters, & Standard Numbers NUMBER AND QUANTITY (N)

More information

ALGEBRA 1 PACING GUIDE

ALGEBRA 1 PACING GUIDE Unit 8 Graphing Quadratic Functions F-BF.3 F-IF.2 F-IF.4 F-IF.7a F-BF.1 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive

More information

Curriculum Mapping 3/28/2013

Curriculum Mapping 3/28/2013 Curriculum Mapping Curriculum Map: 2012 2013 Mathematics State Standards Algebra 1 Q1 (8/14/2012-10/12/2012) Chapter 1: Expressions, Equations, and Functions N-Q - Quantities Reason quantitatively and

More information

Algebra 1 Yearlong Curriculum Plan. Last modified: June 2014

Algebra 1 Yearlong Curriculum Plan. Last modified: June 2014 Algebra 1 Yearlong Curriculum Plan Last modified: June 2014 SUMMARY This curriculum plan is divided into four academic quarters. In Quarter 1, students first dive deeper into the real number system before

More information

HONORS ALGEBRA PACING GUIDE: 1 st Nine Weeks UNIT ONE: Quantities and Modeling Week Lesson Standards Learning Target. Other Materials/Projects

HONORS ALGEBRA PACING GUIDE: 1 st Nine Weeks UNIT ONE: Quantities and Modeling Week Lesson Standards Learning Target. Other Materials/Projects HONORS ALGEBRA PACING GUIDE: 1 st Nine Weeks UNIT ONE: Quantities and Modeling ONE TWO THREE 1.1-1.3: Quantitative Reasoning 2.1-2.2: Algebraic Models Goals Expectations Pre-Assessment A-REI.A.1 : Explain

More information

FLORIDA STANDARDS TO BOOK CORRELATION

FLORIDA STANDARDS TO BOOK CORRELATION FLORIDA STANDARDS TO BOOK CORRELATION Florida Standards (MAFS.912) Conceptual Category: Number and Quantity Domain: The Real Number System After a standard is introduced, it is revisited many times in

More information

Algebra 1 Syllabus

Algebra 1 Syllabus Algebra 1 Syllabus 2017-18 dennis_jenkins@crpusd.org Welcome to algebra, a course designed to prepare students for geometry and any other courses taken after it. Students are required by the state of California

More information

Algebra I Curriculum Crosswalk

Algebra I Curriculum Crosswalk Algebra I Curriculum Crosswalk The following document is to be used to compare the 2003 North Carolina Mathematics Course of Study for Algebra I and the State s for Mathematics Algebra I course. As noted

More information

STANDARDS FOR HIGH SCHOOL MATHEMATICS

STANDARDS FOR HIGH SCHOOL MATHEMATICS STANDARDS FOR HIGH SCHOOL MATHEMATICS Categories of Standards for High School Mathematics The high school mathematics standards are grouped according to six conceptual categories. These categories provide

More information

Sequenced Units for Arizona s College and Career Ready Standards MA35 Personal Finance Year at a Glance

Sequenced Units for Arizona s College and Career Ready Standards MA35 Personal Finance Year at a Glance Unit 1: Prepare a Budget (20 days) Unit 2: Employment Basics (15 days) Unit 3: Modeling a Business (20 days) Unit 4: Banking Services (15 days) Unit 5: Consumer Credit (15 days) Unit 6: Automobile Ownership

More information

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I. Version 3.0 November 2012

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I. Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS ALGEBRA I Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR ALGEBRA I Algebra I Overview Numerals in parentheses designate individual

More information

Eighth Grade Algebra I Mathematics

Eighth Grade Algebra I Mathematics Description The Appleton Area School District middle school mathematics program provides students opportunities to develop mathematical skills in thinking and applying problem-solving strategies. The framework

More information

Pacing (based on a 45- minute class period) Days: 17 days

Pacing (based on a 45- minute class period) Days: 17 days Days: 17 days Math Algebra 1 SpringBoard Unit 1: Equations and Inequalities Essential Question: How can you represent patterns from everyday life by using tables, expressions, and graphs? How can you write

More information

Semester 1: Units 1 4 Semester 2 Units 5-9

Semester 1: Units 1 4 Semester 2 Units 5-9 Semester 1: Units 1 4 Semester 2 Units 5-9 Unit 1: Quadratic relations and equations This unit extends students previous work with quadratic relations and equations. In the context of quadratics, students

More information

Algebra I Sample Unit Outline

Algebra I Sample Unit Outline Algebra I Sample Unit Outline Organizing Theme Topic Unit 1: Intro. to Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Build functions that model situations Unit 1: Intro. to Data- Summarize,

More information

Solving Quadratic Equations Using Multiple Methods and Solving Systems of Linear and Quadratic Equations

Solving Quadratic Equations Using Multiple Methods and Solving Systems of Linear and Quadratic Equations Algebra 1, Quarter 4, Unit 4.1 Solving Quadratic Equations Using Multiple Methods and Solving Systems of Linear and Quadratic Equations Overview Number of instructional days: 13 (1 day = 45 minutes) Content

More information

The School District of Palm Beach County Algebra 1 Honors Unit A: Data Analysis

The School District of Palm Beach County Algebra 1 Honors Unit A: Data Analysis Unit A: Data Analysis MAFS.912.S ID.1.1 MAFS.912.S ID.1.2 MAFS.912.S ID.1.3 MAFS.912.S ID.2.5 Calculator: Yes Mathematics Florida Represent data with plots on the real number line (dot plots, histograms,

More information

Algebra 1 3 rd Trimester Expectations Chapter (McGraw-Hill Algebra 1) Chapter 9: Quadratic Functions and Equations. Key Vocabulary Suggested Pacing

Algebra 1 3 rd Trimester Expectations Chapter (McGraw-Hill Algebra 1) Chapter 9: Quadratic Functions and Equations. Key Vocabulary Suggested Pacing Algebra 1 3 rd Trimester Expectations Chapter (McGraw-Hill Algebra 1) Chapter 9: Quadratic Functions and Equations Lesson 9-1: Graphing Quadratic Functions Lesson 9-2: Solving Quadratic Equations by Graphing

More information

Beal City High School Algebra 2A Curriculum and Alignment

Beal City High School Algebra 2A Curriculum and Alignment Beal City High School Algebra 2A Curriculum and Alignment UNIT 1 Linear Functions (Chapters 1-3) 1. Combine like terms, solve equations, solve inequalities, evaluate expressions(1-2,3,4) 2. Solve an equation

More information

Correlation of Common Core Content Standards to CMP3 Content As Identified by PARCC. Number Standard for Mathematical Content CMP3 Unit: Investigation

Correlation of Common Core Content Standards to CMP3 Content As Identified by PARCC. Number Standard for Mathematical Content CMP3 Unit: Investigation Correlation of Common Core Content Standards to CMP3 Content As Identified by PARCC 8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1 Understand

More information

MATHEMATICS Math I. Number and Quantity The Real Number System

MATHEMATICS Math I. Number and Quantity The Real Number System MATHEMATICS Math I The high school mathematics curriculum is designed to develop deep understanding of foundational math ideas. In order to allow time for such understanding, each level focuses on concepts

More information

New York Tutorials are designed specifically for the New York State Learning Standards to prepare your students for the Regents and state exams.

New York Tutorials are designed specifically for the New York State Learning Standards to prepare your students for the Regents and state exams. Tutorial Outline New York Tutorials are designed specifically for the New York State Learning Standards to prepare your students for the Regents and state exams. Math Tutorials offer targeted instruction,

More information

How can you solve a multistep. How can you solve an absolute value equation? How can you solve and absolute value. inequality?

How can you solve a multistep. How can you solve an absolute value equation? How can you solve and absolute value. inequality? WDHS Curriculum Map Course: Algebra 1 June 2015 Time Interval/ Content Standards/ Strands Essential Questions Skills Assessment Unit 1 Transfer Goal: Recognize and solve practical or theoretical problems

More information

Algebra 1 Standards Curriculum Map Bourbon County Schools. Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) 1-19 Unit 1

Algebra 1 Standards Curriculum Map Bourbon County Schools. Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) 1-19 Unit 1 Algebra 1 Standards Curriculum Map Bourbon County Schools Level: Grade and/or Course: Updated: e.g. = Example only Days Unit/Topic Standards Activities Learning Targets ( I 1-19 Unit 1 A.SSE.1 Interpret

More information

Integrated CME Project Mathematics I-III 2013

Integrated CME Project Mathematics I-III 2013 A Correlation of -III To the North Carolina High School Mathematics Math I A Correlation of, -III, Introduction This document demonstrates how, -III meets the standards of the Math I. Correlation references

More information

Algebra , Martin-Gay

Algebra , Martin-Gay A Correlation of Algebra 1 2016, to the Common Core State Standards for Mathematics - Algebra I Introduction This document demonstrates how Pearson s High School Series by Elayn, 2016, meets the standards

More information

PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS. Algebra I Overview FOR ALGEBRA I

PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS. Algebra I Overview FOR ALGEBRA I PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR ALGEBRA I Algebra I Overview Numerals in parentheses designate individual content standards that are eligible for assessment in whole or in part. Underlined

More information

River Dell Regional School District. Algebra I Curriculum

River Dell Regional School District. Algebra I Curriculum Algebra I Curriculum 2015 Mr. Patrick Fletcher Superintendent River Dell Regional Schools Ms. Lorraine Brooks Principal River Dell High School Mr. Richard Freedman Principal River Dell Middle School Mr.

More information

ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I

ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I Revised March 25, 2013 Extend the properties of exponents to rational exponents. 1. [N-RN1] Explain how the definition of the meaning of rational exponents

More information

ALGEBRA I Number and Quantity The Real Number System (N-RN)

ALGEBRA I Number and Quantity The Real Number System (N-RN) Number and Quantity The Real Number System (N-RN) Use properties of rational and irrational numbers Additional N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of

More information

Subject Algebra 1 Unit 1 Relationships between Quantities and Reasoning with Equations

Subject Algebra 1 Unit 1 Relationships between Quantities and Reasoning with Equations Subject Algebra 1 Unit 1 Relationships between Quantities and Reasoning with Equations Time Frame: Description: Work with expressions and equations through understanding quantities and the relationships

More information

Milford Public Schools Curriculum. Department: Mathematics Course Name: Algebra 1 Level 2

Milford Public Schools Curriculum. Department: Mathematics Course Name: Algebra 1 Level 2 Milford Public Schools Curriculum Department: Mathematics Course Name: Algebra 1 Level 2 UNIT 1 Unit Title: Intro to Functions and Exponential Expressions Unit Description: Students explore the main functions

More information

School District of Marshfield Course Syllabus

School District of Marshfield Course Syllabus School District of Marshfield Course Syllabus Course Name: Algebra II Length of Course: 1 Year Credit: 1 Program Goal: The School District of Marshfield Mathematics Program will prepare students for college

More information

MAISA CCSS Mathematics Curriculum

MAISA CCSS Mathematics Curriculum A Correlation of Pearson Mathematics Common Core 2015 To the MAISA CCSS Mathematics Curriculum Algebra I Introduction Pearson, Geometry, Algebra 2 Common Core Edition 2015 is a rigorous, flexible, and

More information

Algebra I Florida 1. REAL NUMBER SYSTEM. Tutorial Outline

Algebra I Florida 1. REAL NUMBER SYSTEM. Tutorial Outline Tutorial Outline Florida Tutorials are designed specifically for the New Florida Standards for Math and English Language Arts and the Next Generation Sunshine State Standards (NGSSS) for science and social

More information

Mathematics Standards for High School Financial Algebra A and Financial Algebra B

Mathematics Standards for High School Financial Algebra A and Financial Algebra B Mathematics Standards for High School Financial Algebra A and Financial Algebra B Financial Algebra A and B are two semester courses that may be taken in either order or one taken without the other; both

More information

Curriculum Map Algebra I Quarter 1

Curriculum Map Algebra I Quarter 1 Quarter 1 How can algebra describe the relationship between sets of numbers? Algebra Creating Equations AI.A.CED.1 * Create equations and inequalities in one variable and use them to solve problems. Include

More information

Tri-District Mathematics Curriculum 2010 Algebra I

Tri-District Mathematics Curriculum 2010 Algebra I Tri-District Mathematics Curriculum 2010 Algebra I Mr. Patrick Fletcher Superintendent River Dell Regional Schools Ms. Lorraine Brooks Principal River Dell High School Mr. Richard Freedman Principal River

More information

Huntington Beach City School District Grade 8 Mathematics Accelerated Standards Schedule

Huntington Beach City School District Grade 8 Mathematics Accelerated Standards Schedule Huntington Beach City School District Grade 8 Mathematics Accelerated Standards Schedule 2016-2017 Interim Assessment Schedule Orange Interim Assessment: November 1-18, 2016 Green Interim Assessment: January

More information

Correlation of Discovering Algebra 3rd Edition to Florida State Standards

Correlation of Discovering Algebra 3rd Edition to Florida State Standards Correlation of Discovering Algebra 3rd Edition to Florida State Standards MAFS content is listed under three headings: Introduced (I), Developed (D), and Applied (A). Developed standards are the focus

More information

DRAFT EAST POINSETT CO. SCHOOL DIST. - ALGEBRA I MATH

DRAFT EAST POINSETT CO. SCHOOL DIST. - ALGEBRA I MATH Module 1 - Math Test: 10/15/2015 Interpret the structure of expressions. AI.A.SSE.1 * Interpret expressions that represent a quantity in terms of its context. [Focus on linear, exponential, and quadratic

More information

Algebra I New Jersey 1. REAL NUMBER SYSTEM 2. EQUATIONS AND INEQUALITIES. Tutorial Outline

Algebra I New Jersey 1. REAL NUMBER SYSTEM 2. EQUATIONS AND INEQUALITIES. Tutorial Outline Tutorial Outline New Jersey Tutorials are designed specifically for the New Jersey Core Curriculum Content Standards to prepare students for the PARCC assessments, the New Jersey Biology Competency Test

More information

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics Comparison of Virginia s College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics February 17, 2010 1 Number and Quantity The Real Number System

More information

MATHEMATICS COURSE SYLLABUS

MATHEMATICS COURSE SYLLABUS Course Title: Algebra 1 Honors Department: Mathematics MATHEMATICS COURSE SYLLABUS Primary Course Materials: Big Ideas Math Algebra I Book Authors: Ron Larson & Laurie Boswell Algebra I Student Workbooks

More information

Houston County School System

Houston County School System NUMBER AND QUANTITY The Real Number System Extend the properties of exponents to rational exponents. 1. Explain how the definition of the meaning of rational exponents follows from extending the properties

More information

Cumberland County Schools

Cumberland County Schools Cumberland County Schools MATHEMATICS Algebra II The high school mathematics curriculum is designed to develop deep understanding of foundational math ideas. In order to allow time for such understanding,

More information

Curriculum Scope and Sequence

Curriculum Scope and Sequence Curriculum Scope and Sequence Subject/Grade Level: 9th Grade Course: Algebra I Unit Duration Transfer Goal(s) Enduring Understandings Essential Questions 1 - Solving Equations & Inequalities 32-35 days

More information

1. REAL NUMBER SYSTEM

1. REAL NUMBER SYSTEM Tutorial Outline California Tutorials are designed specifically for the California Common Core State Standards and the California Next Generation Science Standards to prepare students for the Smarter Balanced

More information

Algebra I Remediation Guide

Algebra I Remediation Guide Algebra I Remediation Guide Focused remediation helps target the skills students need to more quickly access and practice on-grade level content. This chart is a reference guide for teachers to help them

More information

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice:

Throughout Algebra II, students should continue to develop proficiency with the Common Core's eight Standards for Mathematical Practice: In Algebra I, students have already begun their study of algebraic concepts. They have used equations, tables, and graphs to describe relationships between quantities, with a particular focus on linear,

More information

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA I 2003 ACOS 2010 ACOS

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA I 2003 ACOS 2010 ACOS 2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA I AI.1 AI.1.B.1 CURRENT ALABAMA CONTENT PLACEMENT Simplify numerical expressions using properties of real numbers and order of operations, including

More information

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY. Version 3.0 November 2012

PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY. Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORKS MATHEMATICS GEOMETRY Version 3.0 November 2012 PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR GEOMETRY Geometry Overview Numerals in parentheses designate individual content

More information

Foundations of Algebra/Algebra/Math I Curriculum Map

Foundations of Algebra/Algebra/Math I Curriculum Map *Standards N-Q.1, N-Q.2, N-Q.3 are not listed. These standards represent number sense and should be integrated throughout the units. *For each specific unit, learning targets are coded as F for Foundations

More information

Transitional Algebra. Semester 1 & 2. Length of Unit. Standards: Functions

Transitional Algebra. Semester 1 & 2. Length of Unit. Standards: Functions Semester 1 & 2 MP.1 MP.2 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Length of Unit Progress Monitoring Short cycle Weekly or bi-weekly formative assessment

More information

MATH NATION Algebra Scope and Sequence TABLE OF CONTENTS

MATH NATION Algebra Scope and Sequence TABLE OF CONTENTS TABLE OF CONTENTS SECTION 1: EXPRESSIONS... 2 SECTION 2: EQUATIONS AND INEQUALITIES... 4 SECTION 3: INTRODUCTION TO FUNCTIONS... 7 SECTION 4: LINEAR EQUATIONS, FUNCTIONS, AND INEQUALITIES... 10 SECTION

More information

Algebra 1. Mathematics Course Syllabus

Algebra 1. Mathematics Course Syllabus Mathematics Algebra 1 2017 2018 Course Syllabus Prerequisites: Successful completion of Math 8 or Foundations for Algebra Credits: 1.0 Math, Merit The fundamental purpose of this course is to formalize

More information

Curriculum Scope & Sequence. Subject/Grade Level: MATHEMATICS/HIGH SCHOOL (GRADE 7, GRADE 8, COLLEGE PREP)

Curriculum Scope & Sequence. Subject/Grade Level: MATHEMATICS/HIGH SCHOOL (GRADE 7, GRADE 8, COLLEGE PREP) BOE APPROVED 9/27/11 Curriculum Scope & Sequence Subject/Grade Level: MATHEMATICS/HIGH SCHOOL Course: ALGEBRA I (GRADE 7, GRADE 8, COLLEGE PREP) Unit Duration Common Core Standards / Unit Goals Transfer

More information

, Algebra I, Quarter 1

, Algebra I, Quarter 1 2017.18, Algebra I, Quarter 1 The following Practice Standards and Literacy Skills will be used throughout the course: Standards for Mathematical Practice Literacy Skills for Mathematical Proficiency 1.

More information

FIRST NINE WEEKS. Revised 9/25/17 GREENWOOD PUBLIC SCHOOL DISTRICT ALGEBRA 1 Pacing Guide MS Framework/MCCR Objective Statement

FIRST NINE WEEKS. Revised 9/25/17 GREENWOOD PUBLIC SCHOOL DISTRICT ALGEBRA 1 Pacing Guide MS Framework/MCCR Objective Statement GREENWOOD PUBLIC SCHOOL DISTRICT ALGEBRA 1 Pacing Guide 2017 2018 FIRST NINE WEEKS Week 1 Instructional Period Date Days MS Comp. MCCR Obj. Academic Focus Aug. 4 1 Introduction to Course N-RN.3 Aug. 7

More information

Math Algebra I. PLD Standard Minimally Proficient Partially Proficient Proficient Highly Proficient. student

Math Algebra I. PLD Standard Minimally Proficient Partially Proficient Proficient Highly Proficient. student PLD Standard Minimally Proficient Partially Proficient Proficient Highly Proficient The Minimally Proficient student The Partially Proficient student The Proficient student The Highly Proficient student

More information

Continuing Quadratic/Polynomial Real-World Problems

Continuing Quadratic/Polynomial Real-World Problems Algebra 1, Quarter 3, Unit 3.1 Continuing Quadratic/Polynomial Real-World Problems Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Understand closed operations.

More information

Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II

Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II Houghton Mifflin Harcourt Algebra II 2015 correlated to the New York State Common Core Learning Standards for Mathematics Algebra II Standards for Mathematical Practice SMP.1 Make sense of problems and

More information

AMSCO Algebra 2. Number and Quantity. The Real Number System

AMSCO Algebra 2. Number and Quantity. The Real Number System AMSCO Algebra 2 Number and Quantity The Real Number System Extend the properties of exponents to rational exponents. N-RN.1 Explain how the definition of the meaning of rational exponents follows from

More information

California Common Core State Standards for Mathematics Standards Map Mathematics I

California Common Core State Standards for Mathematics Standards Map Mathematics I A Correlation of Pearson Integrated High School Mathematics Mathematics I Common Core, 2014 to the California Common Core State s for Mathematics s Map Mathematics I Copyright 2017 Pearson Education, Inc.

More information

Week of March 5 th to March 9 th, rd 9 weeks Algebra 1 (Periods 1, 2, 3, 4)

Week of March 5 th to March 9 th, rd 9 weeks Algebra 1 (Periods 1, 2, 3, 4) Week of March 5 th to March 9 th, 2018 3 rd 9 weeks 3/05 Chapter 9 Quadratic Functions and Equations 9-7 Linear Quadratic, and Exponential Models 3/06 Chapter 9 Quadratic Functions and Equations 9-8 Systems

More information

Algebra I High School Math Solution West Virginia Correlation

Algebra I High School Math Solution West Virginia Correlation M.A1HS.1 M.A1HS.2 M.A1HS.4a M.A1HS.4b Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret

More information

COLLEGE-PREP ALGEBRA I Course #042

COLLEGE-PREP ALGEBRA I Course #042 COLLEGE-PREP ALGEBRA I Course #042 Course of Study Findlay City Schools 2013 TABLE OF CONTENTS 1. Findlay City Schools Mission Statement and Beliefs 2. College-Prep Algebra I Course of Study 3. College-Prep

More information

Curriculum Summary 8 th Grade Algebra I

Curriculum Summary 8 th Grade Algebra I Curriculum Summary 8 th Grade Algebra I Students should know and be able to demonstrate mastery in the following skills by the end of Eighth Grade: The Number System Extend the properties of exponents

More information