Translator. Productivity. Functional Correctness. Performance. Efficiency/ Compiler. Correctness. BIP Engine/Linux. Correctness. Multicore Platform

Size: px
Start display at page:

Download "Translator. Productivity. Functional Correctness. Performance. Efficiency/ Compiler. Correctness. BIP Engine/Linux. Correctness. Multicore Platform"

Transcription

1

2 Programming Model Application SW Translator Productivity SW model in BIP Functional Correctness D-Finder System model in BIP DOL Performance Efficiency/ Correctness Correctness Source2Source Distributed BIP Code Generator Deployed SW Multicore Platform Compiler C++ Code BIP Engine/Linux Simulation/ Model Checking

3

4 BIP Global state model Distributed centralized implementation Decentralized implementations O V E R V I E W Architecture transformations Discussion 4

5 BIP Basic Concepts Layered component model Priorities (conflict resolution) Interactions (collaboration) B E H A V I O R Composition operation parameterized by glue IN12, PR12 PR1 IN1 PR12 IN12 PR2 IN2 PR1 PR2 PR12 IN1 IN2 IN12

6 BIP Basic Concepts Priorities: Interactions: sr1r2r3 s r1 r2 r3 s r1 r2 r3 Sender Receiver1 Receiver2 Receiver3 Rendezvous

7 BIP Basic Concepts Priorities: xπxy for x,xy Interactions Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3 s r1 r2 r3 s r1 r2 r3 Sender Receiver1 Receiver2 Receiver3 Broadcast

8 BIP Basic Concepts Priorities: xπxy for x,xy Interactions Interactions: s + sr1r2r3 s r1 r2 r3 s r1 r2 r3 Sender Receiver1 Receiver2 Receiver3 Atomic Broadcast

9 BIP Basic Concepts Priorities: xπxy for x,xy Interactions Interactions: s + sr1 + sr1r2 + sr1r2r3 s r1 r2 r3 s r1 r2 r3 Sender Receiver1 Receiver2 Receiver3 Causal Chain

10 BIP Basic Concepts: Semantics a set of atomic components {B i } i=1..n where B i =(Q i, 2 Pi, i ) a set of interactions γ priorities π γ ( Q i ) γ π γ (B 1,., B n ) Interactions a γ i [1,n] q i - a P i i q i (q 1,., q n ) - a γ (q 1,., q n ) where q I =q I if a P i = Priorities q- a γ q ( q- b γ a π q b ) q- a π q

11 BIP The execution Engine busy execute init stable choose ready filter

12 BIP Global state model Distributed centralized implementation Decentralized implementations O V E R V I E W Architecture transformations Discussion 12

13 Distributed Implementation BIP is based on: Global state semantics, defined by operational semantics rules, implemented by the Engine Atomic multiparty interactions, e.g. by rendezvous or broadcast Translate BIP models into distributed models Collection of independent components intrinsically concurrent - No global state Separate interaction from internal computation of components Point to point communication by asynchronous message passing Correctness by construction that is, the initial BIP model is observationally equivalent to the implementation Approach: BIP Partial state BIP Distributed BIP

14 Centralized Distributed Implementation The Principle Priorities: π Interactions: γ B 1 B 2 B n Priorities: π Interactions: γ B 1 B 2 B n Engine Oracle B 1 B 2 B n

15 Distributed Implementation Global vs. Partial State Models a Priorities: π Interactions: γ b c d Priorities: π Interactions: γ a b c d a,f a b,f b c,f c d,f d a β β β β f a b f b c f c d f d (a) Global State Model (b) Partial State Model Broadcast γ = a+ab+ac+ad+abc+abd+acd+abcd, with maximal progress. (a): only abcd is possible. (b): arbitrary desynchronization may occur. Rendezvous γ = ab+bc+cd and priority abπbc, cdπbc. (a): only (bc) is ω is possible (b): it is possible to reach a state from which bc never occurs e.g. ab(f a cd f b f d ab f c ) ω.

16 Distributed Implementation Partial state semantics q 1 q 2 p, f q 1 p q 2 β,f States are global or partial β-transitions interleave From any state q a unique global state is reached by application of β-transitions a? ab? abd? abcd β q A q B q C q D β q A β q A q B q A q B q D β Objective: Safe and efficient execution from partial states a γ i [1,n] q i - a P i i q i O(q 1,., q n ;a) (q 1,., q n ) - a γ (q 1,., q n ) where q I =q I if a P i =

17 Distributed Implementation Oracles x 2 y 1 b (a π b) Ideal Oracle Knowledgebased Oracle a more precise global state x 2 y 1 x 1 y 1 b (a π b) Dynamic Oracle O( y 1 ;a) x 2 y 1 x 1 y 1 x 2 y 2 x 1 y 2 ParallelismOverhead Static Oracle b (a π b) O( y 1 ;a) = false Lazy Oracle

18 Distributed Implementation Asynchronous MP Model a b?a!{a,b}?b!{a,b}!{a,b} a b?a?b β, f a β, f b β, f a β, f b Partial State Model Message Passing Model Before reaching a ready state, the set of the enabled ports is sent to the Engine From a ready state, await notification from the Engine indicating the selected port

19 Distributed Implementation Example (Forte 08)

20 BIP Global state model Distributed centralized implementation Decentralized implementations O V E R V I E W Architecture transformations Discussion 20

21 Decentralized Distributed Implementation The principle B b A a c C B!b?b A!a?a Engine!c?c C

22 Distributed Implementation Implementing Connectors!b?b!a?a Engine!c?c!b?b!b?b!a?a!c?c!a?a!c?c

23 Centralized solution Conflict Resolution I1 I2 I3 A B C D I4 I5 I6 I1 I2 I3 A B C D I4 I5 I6

24 Centralized solution Conflict Resolution I1 I2 I3 A B C D I4 I5 I6 A B C D I2 I6

25 Centralized solution Conflict Resolution I1 I2 I3 A B C D I4 I5 I6 alpha core I1 alpha core I2 alpha core I3 A alpha B C D core alpha alpha core core alpha core alpha core alpha core alpha core I4 I5 I6

26 Centralized solution Conflict Resolution I1 I2 I3 A B C D I4 I5 I6 Distributed Independent Set of Conflicting Interactions I1 I2 I3 A B C D I4 I5 I6 Distributed Independent Set of Conflicting Interactions

27 Centralized solution Conflict Resolution I1 I2 I3 A B C D I4 I5 I6 Distributed Clique of non Conflicting Interactions I1 I2 I3 A B C D I4 I5 I6 Distributed Clique of non Conflicting Interactions

28 Decentralized Solution I1 I2 I3 A B C D I4 I5 I6 Distributed Graph Matching (edges not sharing a common vertex) Protocol Protocol Protocol A B C D Protocol

29 BIP Global state model Distributed centralized implementation Decentralized implementations O V E R V I E W Architecture transformations Discussion 29

30 Architecture Transformations Partitioning Monolithic Code Generation

31 Architecture Transformations Composite to Monolithic Component Flattening Connector Flattening

32 Architecture Transformations Composite to Monolithic G, F p 1 p 2 p 1 p 2 p 1 p 2 g 1 p 1 p g 2 2 f 1 f 2 g 1 p 1 p g 2 1 p 2 p 2 f 1 f 2 g f g= g 1 g 2 G f = F;(f 1 f 2 )

33 Example MPEG4 Video Encoder Transform the monolithic sequential program (12000 lines of C code) into a componentized one: ++ reusability, schedulability analysis, reconfigurability overhead in memory and execution time Decomposition: GrabFrame: gets a frame and produces macroblocks OutputFrame: produces an encoded frame Encode: encodes macroblocks GrabFrame Encode OutputFrame f_in f_in f_out f_out f_in f_out f_in f_in f_out f_out grabframe() outputframe()

34 Example MPEG4 Video Encoder f_in GrabMacroBlock out in MotionEstimation out in DCT out in Quant out in Intraprediction out in Coding out f_in in 1 in 2 IQuant out in IDCT out in Reconstruction f_out f_out GrabMacroBlock: splits a frame in (W*H)/256 macro blocks, outputs one at a time Reconstruction: regenerates the encoded frame from the encoded macro blocks. : buffered connections

35 Example MPEG4 Video Encoder f_in exit c=max c:=0 f_in out in in c<max c:=c+1 f_out out c<max grabmacroblock(), c:=c+1 GrabMacroBlock f_out c=max c:=0 reconstruction() Reconstruction in in fn() out out MAX=(W*H)/256 W=width of frame H=height of frame Generic Functional component

36 Axample MPEG4 Video Encoder: Results ~ 500 lines of BIP code Consists of 20 atomic components and 34 connectors Components call routines from the encoder library The generated C++ code from BIP is ~ 2,000 lines BIP binary is 288 KB compared to 172 KB of monolithic binary 100% overhead in execution time wrt monolithic code ~66% due to computation of interactions (can be reduced by composing components) ~34% due to evaluation of priorities (can be reduced by applying priorities to atomic components)

37 Source-to-Source MPEG4 Video Encoder: Results

38 BIP Global state model Distributed centralized implementation Decentralized implementations O V E R V I E W Architecture transformations Discussion 38

39 Papers Results A. Basu, Ph. Bidinger, M. Bozga and J. Sifakis. Distributed Semantics and Implementation for Systems with Interaction and Priority FORTE, 2008, pp Marius Bozga, Mohamad Jaber, Joseph Sifakis: Source-to-source architecture transformation for performance optimization in BIP. IEEE Fourth International Symposium on Industrial Embedded Systems 2009, pp Ananda Basu, Saddek Bensalem, Doron Peled, Joseph Sifakis: Priority Scheduling of Distributed Systems Based on Model Checking. CAV 2009: Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Joseph Sifakis. Incremental Component-based Modeling, Verification, and Performnce Evaluation of Distributed Reset, DISC 09. Distributed Implementations Centralized BIP Engine (FORTE08) Weakly decentralized (one Engine per set of conflicting interactions ) over Linux using TCP sockets Weakly decentralized (one Engine per interaction + Conflict resolution with alphacore) over Linux using TCP sockets

40 Discussion Study different distributed implementations from fully decentralized to fully centralized ones Use existing distributed algorithms for multiparty interaction and conflict resolution e.g. maximal matching algorithm Prove correctness by using composability techniques - non interference of features of the composed algorithms Performance evaluation tradeoffs wrt two criteria: degree of parallelism overhead for coordination Implementation tools and case studies.

41

Distributed Semantics and Implementation for Systems with Interaction and Priority

Distributed Semantics and Implementation for Systems with Interaction and Priority Distributed Semantics and Implementation for Systems with Interaction and Priority Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis Université Grenoble 1 - CNRS - VERIMAG Centre Équation,

More information

From High-Level Component-Based Models to Distributed Implementations

From High-Level Component-Based Models to Distributed Implementations From High-Level Component-Based Models to Distributed Implementations Borzoo Bonakdarpour Marius Bozga Mohamad Jaber Jean Quilbeuf Joseph Sifakis VERIMAG, Centre Équation, 2 avenue de Vignate, 38610, Gières,

More information

Automated Distributed Implementation of Component-based Models with Priorities

Automated Distributed Implementation of Component-based Models with Priorities Automated Distributed Implementation of Component-based Models with Priorities Borzoo Bonakdarpour School of Computer Science University of Waterloo 200 University Avenue West Waterloo, Canada, N2L3G1

More information

Fine Grain Quality Management

Fine Grain Quality Management Fine Grain Quality Management Jacques Combaz Jean-Claude Fernandez Mohamad Jaber Joseph Sifakis Loïc Strus Verimag Lab. Université Joseph Fourier Grenoble, France DCS seminar, 10 June 2008, Col de Porte

More information

The Algebra of Connectors Structuring Interaction in BIP

The Algebra of Connectors Structuring Interaction in BIP 1 The Algebra of Connectors Structuring Interaction in BIP Simon Bliudze, Joseph Sifakis Abstract We provide an algebraic formalization of connectors in the BIP component framework. A connector relates

More information

Symbolic Implementation of Connectors in BIP

Symbolic Implementation of Connectors in BIP Symbolic Implementation of Connectors in BIP Mohamad Jaber Ananda Basu VERIMAG, Centre Équation, 2 av de Vignate, 38610, Gières, France {Mohamad.Jaber,Ananda.Basu}@imag.fr Simon Bluidze CEA, LIST, Boîte

More information

ONE of the key ideas in system engineering

ONE of the key ideas in system engineering EDIC RESEARCH PROPOSAL 1 Expressiveness and Composability of Glue Operators in BIP Eduard Baranov RISD, I&C, EPFL Abstract We study communication in componentbased design, where basic components are glued

More information

A General Framework for Architecture Composability

A General Framework for Architecture Composability A General Framework for Architecture Composability SEFM, 3 rd of September, 2014 Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber and Joseph Sifakis Reusable design patterns Systems are not built

More information

Priority Scheduling of Distributed Systems Based on Model Checking

Priority Scheduling of Distributed Systems Based on Model Checking Priority Scheduling of Distributed Systems Based on Model Checking Ananda Basu 1, Saddek Bensalem 1, Doron Peled 2, and Joseph Sifakis 1 1 Centre Equation - VERIMAG, 2 Avenue de Vignate, Gieres, France

More information

Modeling Synchronous Systems in BIP

Modeling Synchronous Systems in BIP Modeling Synchronous Systems in BIP Marius Bozga Vassiliki Sfyrla Joseph Sifakis VERIMAG Centre Equation, 2 Avenue de Vignate, 38610 Gières, France FirstName.LastName@imag.fr ABSTRACT We present a general

More information

Model-Based Implementation of Parallel Real-Time Systems

Model-Based Implementation of Parallel Real-Time Systems Model-Based Implementation of Parallel Real-Time Systems Ahlem Triki, Jacques Combaz Verimag Research Report n o TR-013-11 Reports are downloadable at the following address http://www-verimag.imag.fr Unité

More information

Modeling Synchronous Systems in BIP

Modeling Synchronous Systems in BIP Unité Mixte de Recherche 5104 CNRS - INPG - UJF Centre Equation 2, avenue de VIGNATE F-38610 GIERES tel : +33 456 52 03 40 fax : +33 456 52 03 50 http://www-verimag.imag.fr Modeling Synchronous Systems

More information

Using Speed Diagrams for Symbolic Quality Management

Using Speed Diagrams for Symbolic Quality Management Using Speed Diagrams for Symbolic Quality Management Jacques Combaz, Jean-Claude Fernandez, Joseph Sifakis, Loic Strus Verimag, Centre Equation -2avenue de Vignate F38610 Gières, France Abstract We present

More information

Monitoring Multi-Threaded Component-Based Systems

Monitoring Multi-Threaded Component-Based Systems Monitoring Multi-Threaded Component-Based Systems Hosein Nazarpour, Yliès Falcone, Saddek Bensalem, Marius Bozga, Jacques Combaz Verimag Research Report n o TR-2015-5 January 13, 2016 Reports are downloadable

More information

Shared Memory vs Message Passing

Shared Memory vs Message Passing Shared Memory vs Message Passing Carole Delporte-Gallet Hugues Fauconnier Rachid Guerraoui Revised: 15 February 2004 Abstract This paper determines the computational strength of the shared memory abstraction

More information

Multicore Semantics and Programming

Multicore Semantics and Programming Multicore Semantics and Programming Peter Sewell Tim Harris University of Cambridge Oracle October November, 2015 p. 1 These Lectures Part 1: Multicore Semantics: the concurrency of multiprocessors and

More information

Extended Connectors: Structuring Glue Operators in BIP

Extended Connectors: Structuring Glue Operators in BIP Extended Connectors: Structuring Glue Operators in BIP Eduard Baranov and Simon Bliudze École Polytechnique Fédérale de Lausanne Rigorous System Design Laboratory INJ Building, Station 14, 1015 Lausanne,

More information

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2 Embedded Systems 5-1 - Synchronous Composition Lee/Seshia Section 6.2 Important semantic model for concurrent composition Here: composition of actors Foundation of Statecharts, Simulink, synchronous programming

More information

Statistical model checking QoS properties of systems with SBIP

Statistical model checking QoS properties of systems with SBIP Statistical model checking QoS properties of systems with SBIP Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, Axel Legay To cite this version: Ayoub Nouri, Saddek Bensalem,

More information

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations Mohammed El-Shambakey Dissertation Submitted to the Faculty of the Virginia Polytechnic Institute and State

More information

HYPENS Manual. Fausto Sessego, Alessandro Giua, Carla Seatzu. February 7, 2008

HYPENS Manual. Fausto Sessego, Alessandro Giua, Carla Seatzu. February 7, 2008 HYPENS Manual Fausto Sessego, Alessandro Giua, Carla Seatzu February 7, 28 HYPENS is an open source tool to simulate timed discrete, continuous and hybrid Petri nets. It has been developed in Matlab to

More information

Special Nodes for Interface

Special Nodes for Interface fi fi Special Nodes for Interface SW on processors Chip-level HW Board-level HW fi fi C code VHDL VHDL code retargetable compilation high-level synthesis SW costs HW costs partitioning (solve ILP) cluster

More information

TESTING is one of the most important parts of the

TESTING is one of the most important parts of the IEEE TRANSACTIONS 1 Generating Complete Controllable Test Suites for Distributed Testing Robert M. Hierons, Senior Member, IEEE Abstract A test suite is m-complete for finite state machine (FSM) M if it

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University } 2017/11/15 Midterm } 2017/11/22 Final Project Announcement 2 1. Introduction 2.

More information

Early stopping: the idea. TRB for benign failures. Early Stopping: The Protocol. Termination

Early stopping: the idea. TRB for benign failures. Early Stopping: The Protocol. Termination TRB for benign failures Early stopping: the idea Sender in round : :! send m to all Process p in round! k, # k # f+!! :! if delivered m in round k- and p " sender then 2:!! send m to all 3:!! halt 4:!

More information

Automatic Fault Localization for BIP

Automatic Fault Localization for BIP Automatic Fault Localization for BIP Wang Qiang 1, Lei Yan 2, Simon Bliudze 1, and Mao Xiaoguang 3,4 1 École Polytechnique Fédérale de Lausanne, Switzerland 2 Logistical Engineering University of PLA,

More information

Multiprocessor Scheduling of Age Constraint Processes

Multiprocessor Scheduling of Age Constraint Processes Multiprocessor Scheduling of Age Constraint Processes Lars Lundberg Department of Computer Science, University of Karlskrona/Ronneby, Soft Center, S-372 25 Ronneby, Sweden, email: Lars.Lundberg@ide.hk-r.se

More information

Static Program Analysis using Abstract Interpretation

Static Program Analysis using Abstract Interpretation Static Program Analysis using Abstract Interpretation Introduction Static Program Analysis Static program analysis consists of automatically discovering properties of a program that hold for all possible

More information

A Brief Introduction to Model Checking

A Brief Introduction to Model Checking A Brief Introduction to Model Checking Jan. 18, LIX Page 1 Model Checking A technique for verifying finite state concurrent systems; a benefit on this restriction: largely automatic; a problem to fight:

More information

Probability Propagation

Probability Propagation Graphical Models, Lectures 9 and 10, Michaelmas Term 2009 November 13, 2009 Characterizing chordal graphs The following are equivalent for any undirected graph G. (i) G is chordal; (ii) G is decomposable;

More information

The Weakest Failure Detector to Solve Mutual Exclusion

The Weakest Failure Detector to Solve Mutual Exclusion The Weakest Failure Detector to Solve Mutual Exclusion Vibhor Bhatt Nicholas Christman Prasad Jayanti Dartmouth College, Hanover, NH Dartmouth Computer Science Technical Report TR2008-618 April 17, 2008

More information

EECS 579: SOC Testing

EECS 579: SOC Testing EECS 579: SOC Testing Core-Based Systems-On-A-Chip (SOCs) Cores or IP circuits are predesigned and verified functional units of three main types Soft core: synthesizable RTL Firm core: gate-level netlist

More information

Computer Science Introductory Course MSc - Introduction to Java

Computer Science Introductory Course MSc - Introduction to Java Computer Science Introductory Course MSc - Introduction to Java Lecture 1: Diving into java Pablo Oliveira ENST Outline 1 Introduction 2 Primitive types 3 Operators 4 5 Control Flow

More information

Hybrid static/dynamic scheduling for already optimized dense matrix factorization. Joint Laboratory for Petascale Computing, INRIA-UIUC

Hybrid static/dynamic scheduling for already optimized dense matrix factorization. Joint Laboratory for Petascale Computing, INRIA-UIUC Hybrid static/dynamic scheduling for already optimized dense matrix factorization Simplice Donfack, Laura Grigori, INRIA, France Bill Gropp, Vivek Kale UIUC, USA Joint Laboratory for Petascale Computing,

More information

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour Distributed Algorithms (CAS 769) Week 1: Introduction, Logical clocks, Snapshots Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Distributed Algorithms

More information

Bounded LTL Model Checking with Stable Models

Bounded LTL Model Checking with Stable Models Bounded LTL Model Checking with Stable Models Keijo Heljanko and Ilkka Niemelä Helsinki University of Technology Dept. of Computer Science and Engineering Laboratory for Theoretical Computer Science P.O.

More information

INF 4140: Models of Concurrency Series 3

INF 4140: Models of Concurrency Series 3 Universitetet i Oslo Institutt for Informatikk PMA Olaf Owe, Martin Steffen, Toktam Ramezani INF 4140: Models of Concurrency Høst 2016 Series 3 14. 9. 2016 Topic: Semaphores (Exercises with hints for solution)

More information

Composition for Component-Based Modeling

Composition for Component-Based Modeling Composition for Component-Based Modeling Gregor Gössler a, Joseph Sifakis b a INRIA Rhône-Alpes, France b VERIMAG, France Abstract We propose a framework for component-based modeling using an abstract

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

Logic BIST. Sungho Kang Yonsei University

Logic BIST. Sungho Kang Yonsei University Logic BIST Sungho Kang Yonsei University Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2 Built In Self Test Test/ Normal Input Pattern

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

1 Reed Solomon Decoder Final Project. Group 3 Abhinav Agarwal S Branavan Grant Elliott. 14 th May 2007

1 Reed Solomon Decoder Final Project. Group 3 Abhinav Agarwal S Branavan Grant Elliott. 14 th May 2007 1 Reed Solomon Decoder 6.375 Final Project Group 3 Abhinav Agarwal S Branavan Grant Elliott 14 th May 2007 2 Outline Error Correcting Codes Mathematical Foundation of Reed Solomon Codes Decoder Architecture

More information

Time and Schedulability Analysis of Stateflow Models

Time and Schedulability Analysis of Stateflow Models Time and Schedulability Analysis of Stateflow Models Marco Di Natale Scuola Superiore S. Anna Haibo Zeng Mc Gill University Outline Context: MBD of Embedded Systems Relationship with PBD An Introduction

More information

Lecture 4 Event Systems

Lecture 4 Event Systems Lecture 4 Event Systems This lecture is based on work done with Mark Bickford. Marktoberdorf Summer School, 2003 Formal Methods One of the major research challenges faced by computer science is providing

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST0.2017.2.1 COMPUTER SCIENCE TRIPOS Part IA Thursday 8 June 2017 1.30 to 4.30 COMPUTER SCIENCE Paper 2 Answer one question from each of Sections A, B and C, and two questions from Section D. Submit the

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundamental Algorithms for System Modeling, Analysis, and Optimization Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia UC Berkeley EECS 144/244 Fall 2010 Copyright 2010, E. A. Lee, J. Roydhowdhury,

More information

Petri nets with causal time for system verification

Petri nets with causal time for system verification Electronic Notes in Theoretical Computer Science 68 No 5 (2003) URL: http://wwwelseviernl/locate/entcs/volume68html 16 pages Petri nets with causal time for system verification C Bui Thanh 1, H Klaudel

More information

arxiv: v2 [cs.dc] 21 Apr 2017

arxiv: v2 [cs.dc] 21 Apr 2017 AllConcur: Leaderless Concurrent Atomic Broadcast (Extended Version) arxiv:1608.05866v2 [cs.dc] 21 Apr 2017 Marius Poke HLRS University of Stuttgart marius.poke@hlrs.de Abstract Many distributed systems

More information

Communication-avoiding LU and QR factorizations for multicore architectures

Communication-avoiding LU and QR factorizations for multicore architectures Communication-avoiding LU and QR factorizations for multicore architectures DONFACK Simplice INRIA Saclay Joint work with Laura Grigori INRIA Saclay Alok Kumar Gupta BCCS,Norway-5075 16th April 2010 Communication-avoiding

More information

Causality Interfaces and Compositional Causality Analysis

Causality Interfaces and Compositional Causality Analysis Causality Interfaces and Compositional Causality Analysis Edward A. Lee Haiyang Zheng Ye Zhou {eal,hyzheng,zhouye}@eecs.berkeley.edu Center for Hybrid and Embedded Software Systems (CHESS) Department of

More information

N-Synchronous Kahn Networks A Relaxed Model of Synchrony for Real-Time Systems

N-Synchronous Kahn Networks A Relaxed Model of Synchrony for Real-Time Systems N-Synchronous Kahn Networks A Relaxed Model of Synchrony for Real-Time Systems Albert Cohen 1, Marc Duranton 2, Christine Eisenbeis 1, Claire Pagetti 1,4, Florence Plateau 3 and Marc Pouzet 3 POPL, Charleston

More information

Parallel Performance Theory - 1

Parallel Performance Theory - 1 Parallel Performance Theory - 1 Parallel Computing CIS 410/510 Department of Computer and Information Science Outline q Performance scalability q Analytical performance measures q Amdahl s law and Gustafson-Barsis

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Regression-based Statistical Bounds on Software Execution Time

Regression-based Statistical Bounds on Software Execution Time ecos 17, Montreal Regression-based Statistical Bounds on Software Execution Time Ayoub Nouri P. Poplavko, L. Angelis, A. Zerzelidis, S. Bensalem, P. Katsaros University of Grenoble-Alpes - France August

More information

4th year Project demo presentation

4th year Project demo presentation 4th year Project demo presentation Colm Ó héigeartaigh CASE4-99387212 coheig-case4@computing.dcu.ie 4th year Project demo presentation p. 1/23 Table of Contents An Introduction to Quantum Computing The

More information

Expressing Dynamics of Mobile Programs by Typing

Expressing Dynamics of Mobile Programs by Typing 5 th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics January 25-26, 2007 Poprad, Slovakia Expressing Dynamics of Mobile Programs by Typing Martin Tomášek Department

More information

Local and global deadlock-detection in component-based systems are NP-hard

Local and global deadlock-detection in component-based systems are NP-hard Information Processing Letters 103 (2007) 105 111 www.elsevier.com/locate/ipl Local and global deadlock-detection in component-based systems are NP-hard Christoph Minnameier Institut für Informatik, Universität

More information

The Discrete EVent System specification (DEVS) formalism

The Discrete EVent System specification (DEVS) formalism The Discrete EVent System specification (DEVS) formalism Hans Vangheluwe The DEVS formalism was conceived by Zeigler [Zei84a, Zei84b] to provide a rigourous common basis for discrete-event modelling and

More information

Eventual Consistency for CRDTs

Eventual Consistency for CRDTs Eventual Consistency for CRDTs Radha Jagadeesan DePaul University Chicago, USA ESOP 2018 James Riely 1/22 CRDTs? 2/22 CRDTs? C = blah blah R = mumble DT = Data Type 2/22 Data Type An abstract data type

More information

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol.

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol. Bounding the End-to-End Response imes of asks in a Distributed Real-ime System Using the Direct Synchronization Protocol Jun Sun Jane Liu Abstract In a distributed real-time system, a task may consist

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Parallel Performance Evaluation through Critical Path Analysis

Parallel Performance Evaluation through Critical Path Analysis Parallel Performance Evaluation through Critical Path Analysis Benno J. Overeinder and Peter M. A. Sloot University of Amsterdam, Parallel Scientific Computing & Simulation Group Kruislaan 403, NL-1098

More information

Trace Refinement of π-calculus Processes

Trace Refinement of π-calculus Processes Trace Refinement of pi-calculus Processes Trace Refinement of π-calculus Processes Manuel Gieseking manuel.gieseking@informatik.uni-oldenburg.de) Correct System Design, Carl von Ossietzky University of

More information

Introduction to Video Compression H.261

Introduction to Video Compression H.261 Introduction to Video Compression H.6 Dirk Farin, Contact address: Dirk Farin University of Mannheim Dept. Computer Science IV L 5,6, 683 Mannheim, Germany farin@uni-mannheim.de D.F. YUV-Colorspace Computer

More information

Direct mapping of low-latency asynchronous

Direct mapping of low-latency asynchronous School of Electrical, Electronic & Computer Engineering Direct mapping of low-latency asynchronous controllers from STGs D.Sokolov, A.Bystrov, A.Yakovlev Technical Report Series NCL-EECE-MSD-TR-2006-110

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

Model checking the basic modalities of CTL with Description Logic

Model checking the basic modalities of CTL with Description Logic Model checking the basic modalities of CTL with Description Logic Shoham Ben-David Richard Trefler Grant Weddell David R. Cheriton School of Computer Science University of Waterloo Abstract. Model checking

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems Luca Abeni luca.abeni@unitn.it Interacting Tasks Until now, only independent tasks... A job never blocks or suspends A task only blocks on job termination In real world, jobs

More information

The STATEMATE Semantics of Statecharts. Presentation by: John Finn October 5, by David Harel

The STATEMATE Semantics of Statecharts. Presentation by: John Finn October 5, by David Harel The STATEMATE Semantics of Statecharts Presentation by: John Finn October 5, 2010 by David Harel Outline Introduction The Basics System Reactions Compound Transitions History Scope of Transitions Conflicting

More information

Ensuring Properties of Interaction Systems

Ensuring Properties of Interaction Systems Ensuring Properties of Interaction Systems G. Gössler (1), S. Graf (2), M. Majster-Cederbaum (3), M. Martens (3), J. Sifakis (2) (1) INRIA Rhône-Alpes (2) VERIMAG (3) University of Mannheim Montbonnot,

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

Marwan Burelle. Parallel and Concurrent Programming. Introduction and Foundation

Marwan Burelle.  Parallel and Concurrent Programming. Introduction and Foundation and and marwan.burelle@lse.epita.fr http://wiki-prog.kh405.net Outline 1 2 and 3 and Evolutions and Next evolutions in processor tends more on more on growing of cores number GPU and similar extensions

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden Outline! Embedded systems " Example area: automotive electronics " Embedded systems

More information

Integrating an physical layer simulator in NS-3

Integrating an physical layer simulator in NS-3 Integrating an 802.11 physical layer simulator in NS-3 Stylianos Papanastasiou Signals and Systems stypap@chalmers.se Outline Motivation Planned activity The implementation Validation, tradeoffs Future

More information

Causality in Concurrent Systems

Causality in Concurrent Systems Causality in Concurrent Systems F. Russo Vrije Universiteit Brussel Belgium S.Crafa Università di Padova Italy HaPoC 31 October 2013, Paris Causality in Concurrent Systems software, hardware or even physical

More information

On the Verification of Timed Ad Hoc Networks

On the Verification of Timed Ad Hoc Networks On the Verification of Timed Ad Hoc Networks Parosh Aziz Abdulla 1, Giorgio Delzanno 2, Othmane Rezine 1, Arnaud Sangnier 3, and Riccardo Traverso 2 1 Uppsala University 2 University of Genova 3 Liafa-University

More information

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Dave Parker University of Birmingham (joint work with Bruno Lacerda, Nick Hawes) AIMS CDT, Oxford, May 2015 Overview Probabilistic

More information

AURORA: A Cryptographic Hash Algorithm Family

AURORA: A Cryptographic Hash Algorithm Family AURORA: A Cryptographic Hash Algorithm Family Submitters: Sony Corporation 1 and Nagoya University 2 Algorithm Designers: Tetsu Iwata 2, Kyoji Shibutani 1, Taizo Shirai 1, Shiho Moriai 1, Toru Akishita

More information

Leveraging Transactional Memory for a Predictable Execution of Applications Composed of Hard Real-Time and Best-Effort Tasks

Leveraging Transactional Memory for a Predictable Execution of Applications Composed of Hard Real-Time and Best-Effort Tasks Leveraging Transactional Memory for a Predictable Execution of Applications Composed of Hard Real-Time and Best-Effort Tasks Stefan Metzlaff, Sebastian Weis, and Theo Ungerer Department of Computer Science,

More information

CSE 126 Multimedia Systems Midterm Exam (Form A)

CSE 126 Multimedia Systems Midterm Exam (Form A) University of California, San Diego Inst: Prof P. V. Rangan CSE 126 Multimedia Systems Midterm Exam (Form A) Spring 2003 Solution Assume the following input (before encoding) frame sequence (note that

More information

Towards a Property Preserving Transformation from IEC to BIP

Towards a Property Preserving Transformation from IEC to BIP Towards a Property Preserving Transformation from IEC 61131 3 to BIP Jan Olaf Blech, Anton Hattendorf, Jia Huang fortiss GmbH, Guerickestraße 25, 80805 München, Germany September 7, 2010 arxiv:1009.0817v1

More information

Undergraduate work. Symbolic Model Checking Using Additive Decomposition by. Himanshu Jain. Joint work with Supratik Chakraborty

Undergraduate work. Symbolic Model Checking Using Additive Decomposition by. Himanshu Jain. Joint work with Supratik Chakraborty Undergraduate work Symbolic Model Checking Using Additive Decomposition by Himanshu Jain Joint work with Supratik Chakraborty Organization of the Talk Basics Motivation Related work Decomposition scheme

More information

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1 1 Deparment of Computer

More information

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France As Soon As Probable O. Maler, J.-F. Kempf, M. Bozga VERIMAG Grenoble, France March 15, 2013 O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France) As Soon As Probable March 15, 2013 1 / 42 Executive

More information

AS computer hardware technology advances, both

AS computer hardware technology advances, both 1 Best-Harmonically-Fit Periodic Task Assignment Algorithm on Multiple Periodic Resources Chunhui Guo, Student Member, IEEE, Xiayu Hua, Student Member, IEEE, Hao Wu, Student Member, IEEE, Douglas Lautner,

More information

A Framework for. Security Analysis. with Team Automata

A Framework for. Security Analysis. with Team Automata A Framework for Security Analysis with Team Automata Marinella Petrocchi Istituto di Informatica e Telematica National Research Council IIT-CNR Pisa, Italy Tuesday 8 June 2004 DIMACS with Maurice ter Beek

More information

TECHNICAL REPORT YL DISSECTING ZAB

TECHNICAL REPORT YL DISSECTING ZAB TECHNICAL REPORT YL-2010-0007 DISSECTING ZAB Flavio Junqueira, Benjamin Reed, and Marco Serafini Yahoo! Labs 701 First Ave Sunnyvale, CA 94089 {fpj,breed,serafini@yahoo-inc.com} Bangalore Barcelona Haifa

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Mapping to Parallel Hardware

Mapping to Parallel Hardware - Mapping to Parallel Hardware Bruno Bodin University of Edinburgh, United Kingdom 1 / 27 Context - Hardware Samsung Exynos ARM big-little (Heterogenenous), 4 ARM A15, 4 ARM A7, 2-16 cores GPU, 5 Watt.

More information

How to deal with uncertainties and dynamicity?

How to deal with uncertainties and dynamicity? How to deal with uncertainties and dynamicity? http://graal.ens-lyon.fr/ lmarchal/scheduling/ 19 novembre 2012 1/ 37 Outline 1 Sensitivity and Robustness 2 Analyzing the sensitivity : the case of Backfilling

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Synchronous Reactive Systems

Synchronous Reactive Systems Synchronous Reactive Systems Stephen Edwards sedwards@synopsys.com Synopsys, Inc. Outline Synchronous Reactive Systems Heterogeneity and Ptolemy Semantics of the SR Domain Scheduling the SR Domain 2 Reactive

More information

Execution Strategies for PTIDES, a Programming Model for Distributed Embedded Systems

Execution Strategies for PTIDES, a Programming Model for Distributed Embedded Systems Execution Strategies for PTIDES, a Programming Model for Distributed Embedded Systems Jia Zou, Slobodan Matic, Edward A. Lee, Thomas Huining Feng Electrical Engineering and Computer Science University

More information

A Canonical Contraction for Safe Petri Nets

A Canonical Contraction for Safe Petri Nets A Canonical Contraction for Safe Petri Nets Thomas Chatain and Stefan Haar INRIA & LSV (CNRS & ENS Cachan) 6, avenue du Président Wilson 935 CACHAN Cedex, France {chatain, haar}@lsvens-cachanfr Abstract

More information

Towards Co-Engineering Communicating Autonomous Cyber-physical Systems. Bujorianu, M.C. and Bujorianu, M.L. MIMS EPrint:

Towards Co-Engineering Communicating Autonomous Cyber-physical Systems. Bujorianu, M.C. and Bujorianu, M.L. MIMS EPrint: Towards Co-Engineering Communicating Autonomous Cyber-physical Systems Bujorianu M.C. and Bujorianu M.L. 009 MIMS EPrint: 00.53 Manchester Institute for Mathematical Sciences School of Mathematics The

More information

Checking Behavioral Conformance of Artifacts

Checking Behavioral Conformance of Artifacts Checking Behavioral Conformance of Artifacts Dirk Fahland Massimiliano de Leoni Boudewijn F. van Dongen Wil M.P. van der Aalst, Eindhoven University of Technology, The Netherlands (d.fahland m.d.leoni

More information

Formal Verification of Mobile Network Protocols

Formal Verification of Mobile Network Protocols Dipartimento di Informatica, Università di Pisa, Italy milazzo@di.unipi.it Pisa April 26, 2005 Introduction Modelling Systems Specifications Examples Algorithms Introduction Design validation ensuring

More information