From the Heliosphere into the Sun

Size: px
Start display at page:

Download "From the Heliosphere into the Sun"

Transcription

1 511 th WE-Heraeus-Seminar From the Heliosphere into the Sun SailingagainsttheWind Collection of presentations Edited by Hardi Peter Physikzentrum Bad Honnef, Germany January 31 February 3,

2 On the Origin of the 1/f Spectrum in the Heliosphere A. Verdini 1 R. Grappin 2,3 M. Velli 4,5 1. Royal Observatory of Belgium 2. LUTH, Meudon 3. LPP, Polytechnique 4. Università di Firenze 5. Jet Propulsion Laboratory

3 Helios [Bruno & Carbone 2005] Nature of the 1/f part: WKB evolution, freezed spectrum [Bavassano et al. 1982, Marsch & Tu 1990] Evolution with distance: turbulence vs expansion [Tu et al. 1984, Tu 1988, Tu & Marsch 1995] ORIGIN? From phot. or corona B [Matthaeus & Goldstein 1986, Close et al Matthaeus et al. 2007] From MHD turbulence [Dmitruk et al. 2007, 2011] From SW Turbulence + expansion [Velli et al 1993] Corona ringing in Sub-Alfvénic SW [Hollweg & Isenberg 2007]

4 RMHD model for AW RMHD: NL only among k to B 0 2D shell model for perp NL (Re~10 5 ) Propagation in fixed U(r),V a (r),a(r) (not self consistent, but it is a SW model) k 1/A 1/2 : follows flux tube expansion Open boundaries (Input z 0 + at the phot.) Free parameters: z 0+, k 0, T f (t NL0 =1/ k 0 z 0+ ) z + =u-b/ρ 1/2 (outward) z - =u+b/ρ 1/2 (inward) z 0+ =10 km/s k 0 = 2π/16Mm, T f =600 s => T f /t NL0 2

5 Snapshot of z +,z - (run A) INPUT [Grappin SW model] km/s V a U X A n (10 8 cm -3 ) R/R -1 R/R -1 A X A A(r) OUTPUT km/s z + z + z - z - X A X A R/R -1 R/R

6 Perp. and Parallel spectra R>X A E b, E u Perp E u,parallel E b, Parallel k -5/3 1/f 1/f forcing k increases k increases t NL (k )=1/k u k RMHD parallel spectra <=> freq.spectra (k )=1/ ν=1/k V A Better use z ± to compute t NL Test the Critical Balance condition (k )? = t NL (k )

7 STRONG or WEAK cascade? [Verdini & Grappin submitted] A) Homogeneous RMHD forced in the weak regime =T f => becomes Strong t NL time WEAK <t NL STRONG t NL t NL critical balance Plenty of energy beyond CB limit

8 STRONG or WEAK cascade? [Verdini & Grappin submitted] A) Homogeneous RMHD forced in the weak regime =T f => becomes Strong t NL time WEAK <t NL STRONG t NL t NL B) In the solar wind t NL± (r) A 1/2 /z t NL+ > t - NL k 0 =1/T f V A (the forcing) +

9 t NL (r) vs (r) for z + & z - + ~ CONST => Same as forcing - t NL - => critical balance T f STRONG t NL < z - z + critical balance 2k 0 16k 0 64k 0 z + => WEAK z - => STRONG r increases 1R =>19R WEAK t NL > t NL

10 1/f generation REFLECTION T.R. LOW CORONA V A >>U HIGH CORONA U V A V + ~V - V + >>V - ~0 X A SOLAR WIND WEAK z + WEAK z+ WEAK z - STRONG z - z + z - z +

11 The resulting 1/f spectrum E b f -1 1/f =>Large-scale eddies E u z + WEAK cascade z - STRONG cascade f -2 Recycling=> in E z + -z - => z - goes in b E + input HOW MUCH SOLID?

12 Increasing Turb. Strength Increasing T f /t NL0, f -1 is partially or totally lost E + spectrum changes in its way out (z + strong cascade) 2 x z x T f E b ~OK E b ~OK? E u E u f -1 f -1 E + input E + input

13 Conclusion The 1/f spectrum can be generated by turbulence in the sub-alfvénic solar wind if turbulence is weak enough Weak means T f /t NL0 1 (small wave amplitude and wide frequency spectra at the photosphere): not far from the expected conditions at the surface Reflection at the photosphere may change the spectrum entering the corona (the effective T f ) Considering self consistent model may change 1/f In the heliosphere: the E ± spectra evolve self-similarly because of expansion B 0 turns, a geometric model can explain the observed break as a superposition of parallel and perpendicular spectra (work in progress)

14 STRONG or WEAK cascade? A) Homogeneous RMHD 3 timescales =1/k V A, t NL, t cor 0 =T f forced in the weak regime => becomes Strong (k) t NL (k) t cor everywhere time WEAK <t NL STRONG t NL t NL B) In the solar wind t NL± (r) A 1/2 /z t NL+ > t - NL k 0 =1/T f V A (the forcing) + We start with 0 /t NL0 >1

arxiv: v1 [astro-ph.sr] 15 May 2009

arxiv: v1 [astro-ph.sr] 15 May 2009 Draft version November 17, 2018 Preprint typeset using L A TEX style emulateapj v. 08/22/09 TURBULENCE IN THE SUB-ALFVÉNIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVÉN WAVES A. Verdini 1, M.

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Steven R. Cranmer University of Colorado Boulder, LASP A. Schiff, S. Van Kooten, C. Gilbert, L. N. Woolsey, A. A. van Ballegooijen,

More information

arxiv: v1 [physics.space-ph] 13 Dec 2018

arxiv: v1 [physics.space-ph] 13 Dec 2018 Draft version December 17, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 ON THE 1/F SPECTRUM IN THE SOLAR WIND AND ITS CONNECTION WITH MAGNETIC COMPRESSIBILITY L. Matteini 1,2, D. Stansby

More information

THEORETICAL RESEARCH ON SOLAR WIND TURBULENCE

THEORETICAL RESEARCH ON SOLAR WIND TURBULENCE THEORETICAL RESEARCH ON SOLAR WIND TURBULENCE A White Paper Submitted to the NRC Decadal Survey of Solar and Space Physics Benjamin D. G. Chandran, Eliot Quataert, Jean Perez, Aveek Sarkar, Steve Cranmer,

More information

Turbulent dissipation in the solar wind and corona

Turbulent dissipation in the solar wind and corona Turbulent dissipation in the solar wind and corona W. H. Matthaeus, P. Dmitruk, S. Oughton and D. Mullan Bartol Research Institute, University of Delaware, Newark, DE 19716 USA Department of Mathematics,

More information

Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave

Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave, A. A. van Ballegooijen, and the UVCS/SOHO Team Harvard-Smithsonian Center for Astrophysics Alfvénic Turbulence in the Fast Solar Wind:

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

arxiv: v1 [physics.space-ph] 5 Dec 2018

arxiv: v1 [physics.space-ph] 5 Dec 2018 Preprint 6 December 2018 Compiled using MNRAS LATEX style file v3.0 arxiv:1812.01899v1 [physics.space-ph] 5 Dec 2018 On slow solar wind with high Alfvénicity: from composition and microphysics to spectral

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model Available online at www.sciencedirect.com Advances in Space Research 49 (2012) 1327 1332 www.elsevier.com/locate/asr Effect of current sheets on the power spectrum of the solar wind magnetic field using

More information

Multifractal Models for Solar Wind Turbulence

Multifractal Models for Solar Wind Turbulence Multifractal Models for Solar Wind Turbulence Wiesław M. Macek Faculty of Mathematics and Natural Sciences. College of Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;

More information

Detection and analysis of turbulent structures using the Partial Variance of Increments method

Detection and analysis of turbulent structures using the Partial Variance of Increments method Detection and analysis of turbulent structures using the Partial Variance of Increments method Collaborations: Antonella Greco W. H. Matthaeus, Bartol Research Institute, Delaware, USA K. T. Osman, University

More information

arxiv:astro-ph/ v2 15 Jul 2007

arxiv:astro-ph/ v2 15 Jul 2007 Draft version September 27, 2018 Preprint typeset using L TEX style emulateapj v. 10/09/06 CORONL HETING, WEK MHD TURBULENCE ND SCLING LWS. F. Rappazzo 1,2, M. Velli 2,3, G. Einaudi 1 and R. B. Dahlburg

More information

Kinetic Alfvén waves in space plasmas

Kinetic Alfvén waves in space plasmas Kinetic Alfvén waves in space plasmas Yuriy Voitenko Belgian Institute for Space Aeronomy, Brussels, Belgium Solar-Terrestrial Center of Excellence, Space Pole, Belgium Recent results obtained in collaboration

More information

Solar Wind Turbulence

Solar Wind Turbulence Solar Wind Turbulence Presentation to the Solar and Heliospheric Survey Panel W H Matthaeus Bartol Research Institute, University of Delaware 2 June 2001 Overview Context and SH Themes Scientific status

More information

TRANSPORT OF SOLAR WIND FLUCTUATIONS: A TURBULENCE APPROACH. by Sean Oughton

TRANSPORT OF SOLAR WIND FLUCTUATIONS: A TURBULENCE APPROACH. by Sean Oughton TRANSPORT OF SOLAR WIND FLUCTUATIONS: A TURBULENCE APPROACH by Sean Oughton A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree

More information

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Philip A. Isenberg a, Sean Oughton b, Charles W. Smith a and William H. Matthaeus c a Inst. for Study of Earth, Oceans and

More information

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind C. S. Ng Geophysical Institute, University of Alaska Fairbanks A. Bhattacharjee, P. A. Isenberg, D. Munsi,

More information

Models for magnetic heating of the solar atmosphere

Models for magnetic heating of the solar atmosphere Mem. S.A.It. Vol. 74, 675 c SAIt 2003 Memorie della Models for magnetic heating of the solar atmosphere L. Del Zanna Dipartimento di Astronomia e Scienza dello Spazio, Università degli Studi di Firenze,

More information

Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations

Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations Petr Hellinger, 1 Marco Velli, 2,4 Pavel Trávníček, 1 S.

More information

arxiv: v1 [astro-ph.sr] 11 Feb 2016

arxiv: v1 [astro-ph.sr] 11 Feb 2016 Nonlinear reflection process of linearly polarized, broadband Alfvén waves in the fast solar wind arxiv:1602.03628v1 [astro-ph.sr] 11 Feb 2016 M. Shoda and T. Yokoyama Department of Earth and Planetary

More information

arxiv: v1 [physics.space-ph] 20 May 2015

arxiv: v1 [physics.space-ph] 20 May 2015 Inertial range turbulence of fast and slow solar wind at 0.72 AU and solar minimum arxiv:1505.05413v1 [physics.space-ph] 20 May 2015 Eliza Teodorescu Institute for Space Sciences, Măgurele, Romania eliteo@spacescience.ro

More information

Protons and alpha particles in the expanding solar wind: Hybrid simulations

Protons and alpha particles in the expanding solar wind: Hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 5421 5430, doi:10.1002/jgra.50540, 2013 Protons and alpha particles in the expanding solar wind: Hybrid simulations Petr Hellinger 1,2 and Pavel

More information

Spacecraft observations of solar wind turbulence: an overview

Spacecraft observations of solar wind turbulence: an overview INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (2005) B703 B717 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/47/12b/s52 Spacecraft observations of solar wind turbulence:

More information

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR JUSTIN C. KASPER HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS GYPW01, Isaac Newton Institute, July 2010

More information

Observations of counter-propagating Alfvénic and compressive fluctuations in the chromosphere

Observations of counter-propagating Alfvénic and compressive fluctuations in the chromosphere RAA 2014 Vol. 14 No. 3, 299 310 doi: 10.1088/1674 4527/14/3/004 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Observations of counter-propagating Alfvénic

More information

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011528, 2006 Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind J. J. Podesta 1 Received 10 November

More information

Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations

Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, NO. A12, A12109, DOI:129/2005JA011244, 2005 Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations Petr Hellinger, 1 Marco Velli, 2,4

More information

fluctuations in the solar wind' A comparison between equatorial and polar observations

fluctuations in the solar wind' A comparison between equatorial and polar observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. A6, PAGES 10,659-10,668, JUNE 1, 2001 Radial evolution of outward and inward Alfv6nic fluctuations in the solar wind' A comparison between equatorial and

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011030, 2005 Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions Xing Li Institute

More information

Solar Flares and Particle Acceleration

Solar Flares and Particle Acceleration Solar Flares and Particle Acceleration Loukas Vlahos In this project many colleagues have been involved P. Cargill, H. Isliker, F. Lepreti, M. Onofri, R. Turkmani, G. Zimbardo,, M. Gkioulidou (TOSTISP

More information

Proton thermal energetics in the solar wind: Helios reloaded

Proton thermal energetics in the solar wind: Helios reloaded JOURNAL OF GOPHYSICAL RSARCH: SPAC PHYSICS, VOL. 118, 1351 1365, doi:10.1002/jgra.50107, 2013 Proton thermal energetics in the solar wind: Helios reloaded Petr Hellinger, 1,2 Pavel M. Trávnícek, 3,1 Štepán

More information

Kinetic Effects in Coronal Holes & High-Speed Streams: A Roundup of Observational Constraints

Kinetic Effects in Coronal Holes & High-Speed Streams: A Roundup of Observational Constraints Kinetic Effects in Coronal Holes & High-Speed Streams: A Roundup of Observational Constraints Steven R. Cranmer steven.cranmer@colorado.edu University of Colorado Boulder http://lasp.colorado.edu/~cranmer/

More information

Can observed waves tell us anything at all about spicules?

Can observed waves tell us anything at all about spicules? Ionization diagnostics of solar magnetic structures Can observed waves tell us anything at all about spicules? Dr Gary Verth g.verth@sheffield.ac.uk Acknowledgements Prof. Marcel Goossens, Dr. Roberto

More information

Magnetohydrodynamic Turbulence: solar wind and numerical simulations

Magnetohydrodynamic Turbulence: solar wind and numerical simulations Magnetohydrodynamic Turbulence: solar wind and numerical simulations Stanislav Boldyrev (UW-Madison) Jean Carlos Perez (U. New Hampshire) Fausto Cattaneo (U. Chicago) Joanne Mason (U. Exeter, UK) Vladimir

More information

Surface Alfvén Wave Damping in a 3D Simulation of the Solar Wind

Surface Alfvén Wave Damping in a 3D Simulation of the Solar Wind Surface Alfvén Wave Damping in a 3D Simulation of the Solar Wind R. M. Evans 1 and M. Opher 1 George Mason University, 4400 University Drive, MSN 3F3, Fairfax, VA 22030 arxiv:0908.3146v1 [astro-ph.sr]

More information

Observations and Modeling of Turbulence in the Solar Wind

Observations and Modeling of Turbulence in the Solar Wind Observations and Modeling of Turbulence in the Solar Wind Melvyn L. Goldstein NASA Goddard Space Flight Center, USA E-mail: melvyn.l.goldstein@nasa.gov Summary. Alfvénic fluctuations are a ubiquitous component

More information

The new Heliospheric Magnetic Field: Observational Implications

The new Heliospheric Magnetic Field: Observational Implications The new Heliospheric Magnetic Field: Observational Implications T. H. Zurbuchen, L. A. Fisk, S. Hefti and N. A. Schwa&on Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann

More information

On the probability distribution function of small-scale interplanetary magnetic field fluctuations

On the probability distribution function of small-scale interplanetary magnetic field fluctuations On the probability distribution function of small-scale interplanetary magnetic field fluctuations R. Bruno, V. Carbone, L. Primavera, F. Malara, L. Sorriso-Valvo, B. Bavassano, P. Veltri To cite this

More information

Radial evolution of solar wind intermittency in the inner heliosphere

Radial evolution of solar wind intermittency in the inner heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A3, 1130, doi:10.1029/2002ja009615, 2003 Radial evolution of solar wind intermittency in the inner heliosphere R. Bruno Istituto di Fisica dello Spazio Interplanetario,

More information

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle S. R. Cranmer, J. L. Kohl, M. P. Miralles, & A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics Extended Coronal

More information

arxiv: v1 [astro-ph.sr] 14 Jul 2013

arxiv: v1 [astro-ph.sr] 14 Jul 2013 DRAFT VERSION JULY 10, 2013 Preprint typeset using L A TEX style emulateapj v. 08/22/09 OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-β FAST SOLAR WIND STREAMS SOFIANE BOUROUAINE 1 & BENJAMIN D. G. CHANDRAN

More information

Heating of ions by low-frequency Alfven waves

Heating of ions by low-frequency Alfven waves PHYSICS OF PLASMAS 14, 433 7 Heating of ions by low-frequency Alfven waves Quanming Lu School of Earth and Space Sciences, University of Science and Technology of China, Hefei 36, People s Republic of

More information

Particle acceleration in stressed coronal magnetic fields

Particle acceleration in stressed coronal magnetic fields To be submitted to ApJ Letters Particle acceleration in stressed coronal magnetic fields R. Turkmani 1,L.Vlahos 2, K. Galsgaard 3,P.J.Cargill 1 and H. Isliker 2 ABSTRACT This letter presents an analysis

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Turbulence, magnetic reconnection, particle acceleration Understand the mechanisms

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. A7, PAGES 14,437-14,451, JULY 1, 1999

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. A7, PAGES 14,437-14,451, JULY 1, 1999 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. A7, PAGES 14,437-14,451, JULY 1, 1999 Numerical simulation of Alfvnic turbulence in the solar wind M. L. Goldstein, 1 D. A. Roberts, 1 A. E. Deane, 2 S. Ghosh,

More information

A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind

A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012665, 2008 A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind G. G. Howes, 1 S. C. Cowley,

More information

Coronal Heating versus Solar Wind Acceleration

Coronal Heating versus Solar Wind Acceleration SOHO 15: Coronal Heating, 6 9 September 2004, University of St. Andrews, Scotland Coronal Heating versus Solar Wind Acceleration Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY ULYSSES

THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY ULYSSES The Astrophysical Journal, 679:862Y870, 2008 May 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE SIGNATURE OF EVOLVING TURBULENCE IN QUIET SOLAR WIND AS SEEN BY

More information

Petschek-type magnetic reconnection exhausts in the solar wind well

Petschek-type magnetic reconnection exhausts in the solar wind well Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011863, 2006 Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios J. T. Gosling,

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

Turbulence and Reconnection

Turbulence and Reconnection Turbulence and Reconnection Jeff Tessein July 10, 2011 NASA turbulence study at Wallops Island, Virginia Outline Turbulence (length scales, Reynolds decomposition) Navier-Stokes Equation Turbulence Spectrum

More information

Theory and Modelling of Coronal Wave Heating

Theory and Modelling of Coronal Wave Heating Theory and Modelling of Coronal Wave Heating Ineke De Moortel School of Mathematics & Statistics University of St Andrews Overview Some recent observations of [Alfvén(ic)] waves in the chromosphere and

More information

Ion Cyclotron Damping in the Solar Corona and Solar Wind

Ion Cyclotron Damping in the Solar Corona and Solar Wind To be published in the proceedings of the 14th Topical Conference on Radio Frequency Power in Plasmas, May 7 9, 2001, Oxnard, California, AIP Press. Ion Cyclotron Damping in the Solar Corona and Solar

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

arxiv: v2 [astro-ph.sr] 3 Aug 2010

arxiv: v2 [astro-ph.sr] 3 Aug 2010 Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind Sofiane Bourouaine 1, Eckart Marsch 1 and Fritz M. Neubauer 2 arxiv:1003.2299v2 [astro-ph.sr]

More information

Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations

Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations Kaijun Liu 1,2, Eberhard Möbius 2,3, S. P. Gary 2,4, Dan Winske 2 1 Auburn University,

More information

3D hybrid-kinetic turbulence and phase-space cascades

3D hybrid-kinetic turbulence and phase-space cascades 3D hybrid-kinetic turbulence and phase-space cascades ( in a β = 1 plasma ) Silvio Sergio Cerri Department of Astrophysical Sciences, Princeton University, USA 11th Plasma Kinetics Working Meeting WPI

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations 1 2 Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster Observations 3 4 5 S. Y. Huang 1, F. Sahraoui 2, X. H. Deng 1,3, J. S. He 4, Z. G. Yuan 1, M. Zhou 3, Y. Pang 3, H. S. Fu 5 6 1 School of

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101498 Number of pages (not including this page): 7 Author queries: Typesetter queries: Non-printed material: The Physics of Sun and Star

More information

FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD)

FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD) FUNDAMENTALS OF MAGNETOHYDRODYNAMICS (MHD) Dana-Camelia Talpeanu KU Leuven, Royal Observatory of Belgium Basic SIDC seminar ROB, 7 March 2018 CONTENTS 1. Ideal MHD 2. Ideal MHD equations (nooooooo.) 2.1

More information

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes The ECHO code: from classical MHD to GRMHD in dynamical spacetimes Luca Del Zanna Dipartimento di Fisica e Astronomia Università di Firenze Main collaborators: N. Bucciantini, O. Zanotti, S. Landi 09/09/2011

More information

Coronal Modeling and Synchronic Maps*

Coronal Modeling and Synchronic Maps* Coronal Modeling and Synchronic Maps* Jon A. Linker, Roberto Lionello, Zoran Mikic, Pete Riley, and Cooper Downs Predictive Science, Inc. (PSI), San Diego, CA 92121 http://www.predsci.com Carl Henney and

More information

Comparison of the effects of wave-particle interactions and the kinetic suprathermal electron population on the acceleration of the solar wind

Comparison of the effects of wave-particle interactions and the kinetic suprathermal electron population on the acceleration of the solar wind A&A 395, 1001 1012 (2002) DOI: 10.1051/0004-6361:20021348 c ESO 2002 Astronomy & Astrophysics Comparison of the effects of wave-particle interactions and the kinetic suprathermal electron population on

More information

arxiv: v1 [astro-ph.sr] 27 Mar 2011

arxiv: v1 [astro-ph.sr] 27 Mar 2011 stronomy & strophysics manuscript no. ver2.2 c ESO 2018 January 30, 2018 Solar winds along curved magnetic field lines B. Li 1,2, L. D. Xia 1, and Y. Chen 1 1 Shandong Provincial Key Laboratory of Optical

More information

Heating the magnetically open ambient background corona of the Sun by Alfvén waves

Heating the magnetically open ambient background corona of the Sun by Alfvén waves A&A 411, L481 L485 (23) DOI: 1.151/4-6361:231587 c ESO 23 Astronomy & Astrophysics Heating the magnetically open ambient background corona of the Sun by Alfvén waves H. Peter 1 and C. Vocks 2 1 Kiepenheuer-Institut

More information

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Intermittency & turbulence Intermittency is the nonuniform distribution of eddy formations in a stream. The

More information

Coronal Heating Problem

Coronal Heating Problem PHY 690C Project Report Coronal Heating Problem by Mani Chandra, Arnab Dhabal and Raziman T V (Y6233) (Y7081) (Y7355) Mentor: Dr. M.K. Verma 1 Contents 1 Introduction 3 2 The Coronal Heating Problem 4

More information

Turbulent heating and acceleration of He ++ ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations

Turbulent heating and acceleration of He ++ ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 2842 2853, doi:10.1002/jgra.50363, 2013 Turbulent heating and acceleration of He ++ ions by spectra of Alfvén-cyclotron waves in the expanding

More information

The evolution of solar wind turbulence at kinetic scales

The evolution of solar wind turbulence at kinetic scales International Association of Geomagnetism and Aeronomy (IAGA) 2 nd Symposium: Solar Wind Space Environment Interaction c 2010 Cairo University Press December 4 th 8 th, 2009, Cairo, Egypt L.Damé & A.Hady

More information

Scaling relations in MHD and EMHD Turbulence

Scaling relations in MHD and EMHD Turbulence Scaling relations in MHD and EMHD Turbulence Jungyeon Cho Chungnam National University, Korea Outline MHD Non-MHD E(k) MHD turb. small-scale turb. ~1/r i k Topic 1. Strong MHD Turbulence Alfven wave Suppose

More information

Magnetohydrodynamic Turbulence

Magnetohydrodynamic Turbulence Magnetohydrodynamic Turbulence Stanislav Boldyrev (UW-Madison) Jean Carlos Perez (U. New Hampshire), Fausto Cattaneo (U. Chicago), Joanne Mason (U. Exeter, UK) Vladimir Zhdankin (UW-Madison) Konstantinos

More information

arxiv: v1 [astro-ph.sr] 2 May 2011

arxiv: v1 [astro-ph.sr] 2 May 2011 THE ASTROPHYSICAL JOURNAL, 211, IN PRESS Preprint typeset using LATEX style emulateapj v. 3/7/7 HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVÉN WAVE TURBULENCE A. A. VAN BALLEGOOIJEN 1, M. ASGARI-TARGHI

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

What do we see on the face of the Sun? Lecture 3: The solar atmosphere

What do we see on the face of the Sun? Lecture 3: The solar atmosphere What do we see on the face of the Sun? Lecture 3: The solar atmosphere The Sun s atmosphere Solar atmosphere is generally subdivided into multiple layers. From bottom to top: photosphere, chromosphere,

More information

SHEAR PHOTOSPHERIC FORCING AND THE ORIGIN OF TURBULENCE IN CORONAL LOOPS

SHEAR PHOTOSPHERIC FORCING AND THE ORIGIN OF TURBULENCE IN CORONAL LOOPS The Astrophysical Journal, 722:65-78, 2010 October 10 Preprint typeset using L A TEX style emulateapj v. 2/16/10 doi:10.1088/0004-637x/722/1/65 SHEAR PHOTOSPHERIC FORCING AND THE ORIGIN OF TURBULENCE IN

More information

Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind

Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind Ian Parrish UC Berkeley Collaborators: Rémi Lehe (ENS), Eliot Quataert (UCB) Einstein Fellows Symposium October 27,

More information

MHD Waves in the Solar Atmosphere

MHD Waves in the Solar Atmosphere MHD Waves in the Solar Atmosphere Ineke De Moortel School of Mathematics & Statistics University of St Andrews Overview 1. Some Observational Examples 2. Propagating Transverse Waves 3. Global Standing

More information

Solar Sector Structure: Fact or Fiction?

Solar Sector Structure: Fact or Fiction? Solar Sector Structure: Fact or Fiction? Leif Svalgaard Stanford University LMSAL, August 18, 2011 1 Discovery of Sector Structure Quasi-Stationary Corotating Structure in the Interplanetary Medium John

More information

MHD simulation of solar wind using solar photospheric magnetic field data

MHD simulation of solar wind using solar photospheric magnetic field data 6-16P, LWS workshop 2004 March, Boulder MHD simulation of solar wind using solar photospheric magnetic field data Keiji Hayashi (Stanford University) keiji@quake.stanford.edu Introduction Time-dependent

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

arxiv: v1 [physics.space-ph] 13 Dec 2018

arxiv: v1 [physics.space-ph] 13 Dec 2018 On the generation mechanism of electromagnetic cyclotron waves in the solar wind: statistical results from Wind observations arxiv:1812.05323v1 [physics.space-ph] 13 Dec 2018 G. Q. Zhao 1,2, H. Q. Feng

More information

Kinetic and Small Scale Solar Wind Physics

Kinetic and Small Scale Solar Wind Physics Chapter 11 Kinetic and Small Scale Solar Wind Physics Thus far the origin, evolution, and large scale characteristics of the solar wind have been addressed using MHD theory and observations. In this lecture

More information

Fractals and Multifractals

Fractals and Multifractals Fractals and Multifractals Wiesław M. Macek (1,2) (1) Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland; (2) Space Research Centre,

More information

A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales

A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales Journal of Physics: Conference Series PAPER OPEN ACCESS A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales To cite this article: G Consolini et al 2017 J. Phys.: Conf. Ser.

More information

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Iver H. Cairns 1, Daniel B. Graham 1,2, Bo Li 1, A. Layden 1, B. Layden (1 = U. Sydney, 2 = Swed. Int. Sp.

More information

Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012248, 2007 Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind K.

More information

A MAGNETOMETER FOR THE SOLAR ORBITER MISSION

A MAGNETOMETER FOR THE SOLAR ORBITER MISSION A MAGNETOMETER FOR THE SOLAR ORBITER MISSION C.M. Carr (1), T.S. Horbury (1), A. Balogh (1), S.D. Bale (2), W. Baumjohann (3), B. Bavassano (4), A. Breen (5), D. Burgess (6), P.J. Cargill (1), N. Crooker

More information

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves MHD Waves Robertus vfs Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) What are MHD waves? How do we communicate in MHD? MHD is kind! MHD waves are propagating perturbations

More information

Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes

Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes Does the magnetic kink instability trigger solar energetic events? Peter Ashton & Rachel MacDonald Mentors: K.D. Leka & Graham Barnes Overview What is the kink instability? Determining twist from observables

More information

JournalofGeophysicalResearch: SpacePhysics

JournalofGeophysicalResearch: SpacePhysics JournalofGeophysicalResearch: SpacePhysics RESEARCH ARTICLE Key Points: Solar wind proton radial component temperature change slope is flatter than 4/3 Proton heating inconclusive for high normalized cross-helicity

More information

A new mechanism to account for acceleration of the solar wind

A new mechanism to account for acceleration of the solar wind A new mechanism to account for acceleration of the solar wind Henry D. May Email: hankmay@earthlink.net Abstract An enormous amount of effort has been expended over the past sixty years in attempts to

More information

O 5+ at a heliocentric distance of about 2.5 R.

O 5+ at a heliocentric distance of about 2.5 R. EFFECT OF THE LINE-OF-SIGHT INTEGRATION ON THE PROFILES OF CORONAL LINES N.-E. Raouafi and S. K. Solanki Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany E-mail: Raouafi@linmpi.mpg.de;

More information

Alfvén wave turbulence: new results with applications to astrophysics. Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France

Alfvén wave turbulence: new results with applications to astrophysics. Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France Alfvén wave turbulence: new results with applications to astrophysics Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France 1 Recent co-workers : - Barbara Bigot (France/USA) - Ben

More information

Stars and Galaxies. Content Outline for Teaching

Stars and Galaxies. Content Outline for Teaching Section 1 Stars A. Patterns of stars - constellations 1. Ancient cultures used mythology or everyday items to name constellations 2. Modern astronomy studies 88 constellations 3. Some constellations are

More information

Physical modeling of coronal magnetic fields and currents

Physical modeling of coronal magnetic fields and currents Physical modeling of coronal magnetic fields and currents Participants: E. Elkina,, B. Nikutowski,, A. Otto, J. Santos (Moscow,Lindau,, Fairbanks, São José dos Campos) Goal: Forward modeling to understand

More information