Primary Cosmic Rays : what are we learning from AMS

Size: px
Start display at page:

Download "Primary Cosmic Rays : what are we learning from AMS"

Transcription

1 Primary Cosmic Rays : what are we learning from AMS Roberto Battiston University and INFN-TIFPA of Trento HERD Workshop IHEP-Beijing December

2 Agile Fermi PAMELA AMS Direct study of the HESS MAGIC ARGO cosmic Borexino ICARUS LVD AUGER TA radiation ICECube ANTARES KM3net

3 Space experiments reach outstanding accuracy using primary radiation 3

4 AMS today

5 AMS: A TeV precision, multipurpose spectrometer TRD Identify e +, e - Particles and nuclei are defined by their charge (Z) and energy (E ~ P) TOF Z, E Silicon Tracker Z, P 1 Magnet ±Z Tracker ECAL E of e +, e -, γ 9 RICH Z, E Z, P are measured independently by the Tracker, RICH, TOF and ECAL

6 AMS-02 (6.8 million e +, e events) The positron fraction is steadily increasing from 10 to ~250 GeV From 20 to 250 GeV, the slope decreases by an order of magnitude No structure in the spectrum Positron fraction

7 Data from ISS Nuclei in the TeV range Z = 7 (N) P = TeV/c Z = 10 (Ne) P = TeV/c Z = 13 (Al) P = TeV/c Z = 14 (Si) P = TeV/c Z = 15 (P) P = TeV/c Z = 16 (S) P = TeV/c Z = 19 (K) P = TeV/c Z = 20 (Ca) P = TeV/c Z = 21 (Sc) P = TeV/c Z = 22 (Ti) P = TeV/c Z = 23 (V) P = TeV/c Z = 26 (Fe) P = TeV/c

8 front view Boron Rigidity=3.7 GV Z TRK_L1 =5.3 Rigidity 3 GV Carbon Rigidity=3.3 GV Run/Event / Run/Event / side view front view Z TRK_L1 =6.4 side view Z TRD =5.1 Z TOF_UP =5.1 Z TRD =5.9 Z TOF_UP =6.1 Z TRK_L2-L8 =4.9 Z TRK_L2-L8 =6.1 Z TOF_LOW =4.9 Z TOF_LOW =6.1 Z RICH =5.1 Z RICH =5.9 Z TRK_L9 =5.0 Z TRK_L9 =6.5

9 Boron Rigidity=24 GV Rigidity 20 GV Carbon Rigidity=24 GV Run/Event / Run/Event / front view Z TRK_L1 =4.7 side view front view Z TRK_L1 =6.0 side view Z TRD =4.9 Z TRD =5.9 Z TOF_UP =5.1 Z TOF_UP =6.0 Z TRK_L2-L8 =4.9 Z TRK_L2-L8 =5.9 Z TOF_LOW =5.0 Z TOF_LOW =6.0 Z RICH =4.8 Z RICH =6.2

10 Boron Rigidity=187 GV Rigidity 200 GV Carbon Rigidity=215 GV front view Run/Event / Run/Event / Z TRK_L1 =4.9 Z TRD =4.5 side view front view Z TRK_L1 =6.1 Z TRD =5.9 side view Z TOF_UP =5.0 Z TOF_UP =5.9 Z TRK_L2-L8 =4.9 Z TRK_L2-L8 =5.8 Z TOF_LOW =5.1 Z TOF_LOW =5.8 Z RICH =5.2 Z RICH =6.1

11 Boron Rigidity=680 GV Rigidity 700 GV Carbon Rigidity=666 GV Run/Event / Run/Event / front view Z TRK_L1 =5. 2 side view front view Z TRK_L1 =5.8 side view Z TRD =5.2 Z TRD =6.0 Z TOF_UP =5.5 Z TOF_UP =6.1 Z TRK_L2-L8 =5.0 Z TRK_L2-L8 =6.0 Z TOF_LOW =5.4 Z TOF_LOW =6.5 Z RICH =4.8 Z RICH =6.1 Z TRK_L9 =5.1 Z TRK_L9 =6.1

12 Carbon Fragmentation to Boron in Upper TOF Rigidity 10.6 GV Z TRK_L1 =6.1 Z TRD =6.0 Z 0 =9.9 Z 1 =5.3 Z TRK_IN =4.8 Z TOF_LOW =5.2 Z RICH =5.1

13 Electron E=1.1 GeV Positron E=1.1 GeV Run/Event / Run/Event / front view side view front view side view

14 Electron E=10.1 GeV Positron E=9.5 GeV Run/Event / Run/Event / front view side view front view side view

15 front view Electron E=99 GeV Positron E=100 GeV Run/Event / Run/Event / side view front view side view

16 Electron E=982 GeV Positron E=636 GeV Run/Event / Run/Event / front view side view front view side view

17 8% of total Data to 2028 Positron fraction A new phenomena has occurred e ± energy [GeV]

18 Interpretation of the AMS e+ fraction: - DM - Pulsars - Something else 18

19 Physics Example: Comparing data with a minimal model. Positron fraction Φ e + = C e + Ε γ e+ + C s Ε γ s e -E/E s Φ e - = C e - Ε γ e- + C s Ε γ s e -E/E s Data Fit to Data with Model χ 2 /d.f. = 28.5/57 e ± energy [GeV] The agreement between the data and the model shows that the positron fraction spectrum is consistent with e ± fluxes each of which is the sum of its diffuse spectrum and a single common power law source.

20 A fit to the data in the energy range 1 to 350 GeV yields: γ e- γ e+ = 0.63 ± 0.03, i.e., the diffuse positron spectrum is less energetic than the diffuse electron spectrum; γ e- γ S = 0.66±0.05, i.e., the source spectrum is more energetic than the diffuse electron spectrum; C e+ /C e- = ± 0.001, i.e., the weight of the diffuse positron flux amounts to 10% of that of the diffuse electron flux; C S /C e- = ± , i.e., the weight of the common source constitutes only 1% of that of the diffuse electron flux; 1/Ε s = ± GeV 1, corresponding to a cutoff energy of GeV.

21 Bergstrom,Bringmann,Cholis,Hooper,Weniger 2013 Also : Ibarra,Lamperstorfer,Silk 2013

22

23 Sensitivity of minimal model to cutoff E s E s (GeV)

24 Positron fraction Cutoff energy = DM Mass 700 GeV DM model Pulsar model Background in 10 years from now e ± energy [GeV] What will the Positron Fraction look like at high energy? 24

25 25 Comparison of p/p with Models in 10 more years Ref: Donato et al., PRL 102, (2009)

26 26

27 Selected events are grouped into 5 cumulative energy bins: , , , and GeV. Their arrival directions are used to build sky maps in galactic coordinates, (b,l), containing the number of observed positrons and electrons North Galactic Pole (90 lat.) Solar System South Galactic Pole (-90 lat.) North-South direction East-West direction Forward-Backward direction Galactic C

28 The relative fluctuations of the positron ratio, e + /e -, across the observed sky map show no evident pattern Significance ( )

29 The amplitudes of spherical harmonic contributions at fixed angular scale,, are fit to data for dipole ( =1), quadrupole ( =2) and octopole ( =3) The fit amplitudes,, are found to be consistent with the hypothesis of isotropy at all energies and angular scales

30 AMS upper limits on at the 95% CL <0.030 for 16<E<350GeV No seasonal excess is observed and same results are obtained using solar ecliptic coordinates

31 AMS Electron Spectrum

32 AMS Positron Spectrum

33 16% E pulsar E e+e- conversion efficiency Cholis,Hooper 2013

34 The Vela supernova remnant The Vela pulsar The Crab pulsar Sources of very high energy cosmic-ray electrons? 38

35 39

36 40

37 41

38 42

39 43

40 AMS Electron plus Positron Spectrum

41 (Electron plus Positron) Spectrum comparison with recent measurements

42

43

44 Open issues: the electron + positron spectrum above 100 GeV AMS O(1 TeV ) AMS (2013)

45

46 Cholis,Hooper 2013

47 Cholis,Hooper 2013

48

49 54

50 Beware changing energy scale AND detector technique?

51 Anti-matter & Exotic sources (DM?) The electron bump? No bump in Fermi, AMS, PAMELA No fresh source of anti-p up to 100 GeV Positron excess reaching maximum 56

52 A structure around 135 GeV? Fermi data on a possible gamma line 57

53 15 years of space astroparticle physics, leave us with a number of hot issues : Electron/positrons ratio vs spectra Gamma rays line? CR spectral change? B/C spectral change? Pbar at higher energy 58

54 Scientific Objectives of future e/γ missions in space High energy particle detection in space Search for Dark Matter signatures Study of cosmic ray spectrum and composition High energy gamma astronomy Follow-up mission to both Agile Fermi/LAT and Pamela AMS-02 Extend the energy reach to the TeV region, providing better resolution Overlap with CTA on gamma ray astronomy Run in parallel for some time 59

55 What Nature gives us What From L. Baldini, SpacePart 2012

56 Expected rates detection tools/limitations ELECTRON AND POSITRON 5 sqm sr yr 5 m2 sr 3,14E+07 s/y ACCESSIBLE EXCLUDED EXCLUDED ev 10^8 10^9 10^10 10^11 10^12 10^13 10^14 10^15 scale 100MeV GV TV PV Integral. 1/y.@ 0,1-1.@ 1-10.@ @ @ >.@ >.@ >.@ > e- 4,99E+10 3,11E+09 1,56E+08 9,33E+05 7,78E+03 7,78E+01 7,78E-01 7,78E-03 e+ 2,50E+09 1,56E+08 1,56E+07 1,40E+05 1,17E+03 1,17E+01 1,17E-01 1,17E-03 Detectors tracker, TOF, TRD, ECAL tracker, TOF, TRD, ECAL Tracker, TRD, ECAL Tracker, TRD, ECAL Tracker,SRD,ECAL Tracker,SRD,ECAL Variables R, beta, gamma, energy R, beta, gamma, energy R, gamma, energy R, gamma, energy R,Energy, Syncrotron Radiation R, Energy, Synchroton Radiation Physics Van Allen, solar, subcutoff solar, geomagnetic, galactic DM, galactic, asymmetries DM, galactic, asymmetries DM, galactic DM, galactic, moon shadow, sun shadow DM, galactic DM, extragalactic, knee acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, TRD acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, TRD acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, TRD acceptance vs R, live time, efficiency, MC, inner/outer tracker, TRD, alignement, acceptance vs R, live time, efficiency, MC, outer tracker, alignement, SRD calibration, ECAL acceptance vs R, live time, efficiency, MC, tracker, alignement, SRD calibration, ECAL calibration, backtracing calibration, backtracing calibration, backtracing backtracing (Earth- calibration, backtracing calibration, backtracing Tools (near Earth) (near Earth) (near Earth) Moon, Earth- Sun) Earth-Moon, Earth-Sun Earth-Moon, Earth-Sun Background e p p p p p Background e+ p p p p p p p p Limitations multiple, scattering, acceptance,ams02 magnetic field - SRD Acceptance, MDR Tracker, ECAL must be in accceptance 61 SRD acceptance, MDR Tracker, ECAL must be in accceptance no statistics no statistics

57 Expected rates and detection tools/limitations PROTON and HELIUM 5 sqm sr yr 5 m2 sr 3,14E+07 s/y ACCESSIBLE ACCESSIBLE ACCESSIBLE 10^8 10^9 10^10 10^11 10^12 10^13 10^14 10^15 100MeV GV TV PV Integral. 1/y.@ 0,1-1.@ 1-10.@ @ @ >.@ >.@ >.@ > p 4,99E+10 9,96E+10 1,99E+10 3,97E+08 7,19E+06 1,44E+05 2,86E+03 5,71E+01 He 1,80E+09 1,79E+10 3,58E+09 7,14E+07 1,29E+06 2,58E+04 5,15E+02 1,03E+01 Detectors tracker, TOF, RICH Tracker, (RICH) Tracker Tracker Tracker Tracker+ HCAL Tracker+ HCAL Tracker+ HCAL Variables R, beta R R R R R, Energy Energy Energy Physics Van Allen, solar, subcutoff solar, geomagnetic, galactic galactic galactic galactic, moon shadow, sun shadow galactic, moon shadow, sun shadow galactic extragalactic, knee acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, RICH acceptance vs R, live time, efficiency, MC, inner tracker, alignement,, RICH acceptance vs R, live time, efficiency, MC, inner tracker, alignement, TOF calibration, RICH acceptance vs R, live time, efficiency, MC, inner/outer tracker, acceptance vs R, live time, efficiency, MC, outer tracker, alignement,, ECAL acceptance vs R, live time, efficiency, MC, tracker, alignement, HCAL calibration, calibration, calibration, backtracing calibration, backtracing alignement, backtracing calibration, backtracing backtracing Earth- Tools backtracing(near Earth) (near Earth) near Earth) Earth-Moon, Earth- Sun) Earth-Moon, Earth-Sun Moon, Earth- Sun Background p Background He He3/He4 He3/He4 He3/He4 He3/He acceptance vs R, live time, efficiency, MC, tracker, alignement, HCAL calibration, backtracing Earth-Moon, Earth- Sun HCAL calibration, backtracing Earth-Moon, Earth- Sun Limitations multiple, scattering, acceptance,ams02 magnetic field - - different tracker acceptances, alignement MDR MDR+ HCAL HCAL HCAL 62

58 Interesting spectra fall with E -3 Increasing one decade (e.g constant statistics would require O(100) time more collection power Cp = S * Ω * t O(100) times this explain AMS-02/Pamela 400 Fermi/ (Agile or EGRET) 20

59 while maintaining Particle Identification and Charge sign and Energy resolution

60 How to reach O(100) higher Cp? S from O(1) m 2 to O(10)m 2 10 Ω from 1 sr to 10 sr 10 t from 5 to 20 years 4 Cp = S * Ω * t 400 times all the parameters should be increased at the same time

61 Need for redundant, accurate measurement in space

62

63

64 Future e/hadron/γ experiments CALET ISS-CREAM DAMPE (INFN participation) GAMMA-400 (INFN participation) HERD (INFN interest and preliminary discussions) + JEM-EUSO (INFN participation to prepartory phase) + possible next generation large acceptance, precision magnetic spectrometer

65 Conclusions Direct measurements of Cosmic Radiation in the 100 GeVmulti TeV scale could reveal fundamental phenomena which cannot be accessed by ground based accelerator physics It is a challenging but rewarding field, requiring large, accurate, experiments, operating for long period in space Accurate measurement of charge and energy are needed INFN will continue to work in this field, exploiting the large investments which have been made, with the goal of maximizing the science return followoing a strategy which, in the medium to long term, could lead to second generation experiments which would be able to fully address CR physics at the multi TeV scale

Measurement of CR anisotropies with the AMS detector on the ISS

Measurement of CR anisotropies with the AMS detector on the ISS Measurement of CR anisotropies with the AMS detector on the ISS J. Casaus ( CIEMAT Spain ) on behalf of the AMS Collaboration Origin of excess of positrons Positron fraction shows an excess above 10 GeV

More information

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen New results from the AMS experiment on the International Space Station Henning Gast RWTH Aachen 1 Questions to AMS-02: Are there galaxies made of anti-matter in the Universe? What is the nature of Dark

More information

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Cosmic Ray Physics with the Alpha Magnetic Spectrometer Cosmic Ray Physics with the Alpha Magnetic Spectrometer Università di Roma La Sapienza, INFN on behalf of AMS Collaboration Outline Introduction AMS02 Spectrometer Cosmic Rays: origin & propagations: Dominant

More information

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009 Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009 L. Derome, Tango, May 4-6th 2009 1 Plan I will focus on: Future experiments which are going to measure

More information

Indirect Search for Dark Matter with AMS-02

Indirect Search for Dark Matter with AMS-02 Indirect Search for Dark Matter with AMS-02 A. Malinin, UMD For the AMS Collaboration SUSY06, UC Irvine, June 14, 2006 Alpha Magnetic Spectrometer science The AMS is a particle physics experiment in space.

More information

Measurement of the CR e+/e- ratio with ground-based instruments

Measurement of the CR e+/e- ratio with ground-based instruments Measurement of the CR e+/e- ratio with ground-based instruments Pierre Colin Max-Planck-Institut für Physik CR Moon shadow MPP retreat - 21 January 2014 Cosmic ray electrons Observation: Above the atmosphere:

More information

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Cosmic Ray panorama.  Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 1912 1932 Cosmic Ray panorama http::// Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 Pamela : < 0.1 evt year/gev Flux E α α 2.7 / 3.3 Statistical precision

More information

Highlights from the ARGO-YBJ Experiment

Highlights from the ARGO-YBJ Experiment Highlights from the ARGO-YBJ Experiment Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration 12th International Conference

More information

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration Solar modulation with AMS Monthly Proton Flux Veronica Bindi, AMS Collaboration Physics and Astronomy Department University of Hawaii at Manoa Honolulu, Hawaii, US 1 AMS on the ISS May 19, 2011 and for

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment Journal of Physics: Conference Series PAPER OPEN ACCESS Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment To cite this article: E Fiandrini 2016 J. Phys.: Conf.

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan Properties of Elementary Particle Fluxes in Cosmic Rays TeVPA Aug. 7, 2017 Yuan-Hann Chang National Central University, Taiwan Elementary Particles in Space There are hundreds of different kinds of charged

More information

Experimental review of high-energy e e + and p p spectra

Experimental review of high-energy e e + and p p spectra Experimental review of high-energy e e + and p p spectra Luca Baldini INFN Pisa luca.baldini@pi.infn.it TeV Particle Astrophysics, July 15 2009 Outline Measurement of the singly charged component of the

More information

Search for exotic process with space experiments

Search for exotic process with space experiments Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, 20-27

More information

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Etat actuel et Perspectives de la Physique d'astro-particule Daniel Haas DPNC Geneva Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Selected Experiments & Results

More information

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400 Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400 July 12-20, 2017, ICRC2017, Busan, Korea High-energy gamma-ray studying Distribution of 3033 discrete sources

More information

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Y.Asaoka for the CALET Collaboration RISE, Waseda University 2016/12/15 CTA-Japan Workshop The extreme

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

High Energy cosmic-radiation Detection (HERD) Facility onboard China s Space Station

High Energy cosmic-radiation Detection (HERD) Facility onboard China s Space Station High Energy cosmic-radiation Detection (HERD) Facility onboard China s Space Station Ming Xu mingxu@ihep.ac.cn Institute of High Energy Physics, Chinese Academy of Sciences INTEGRAL Science Data Center,

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT A.Malinin a, For AMS Collaboration IPST, University of Maryland, MD-20742, College Park, USA Abstract. The Alpha Magnetic Spectrometer (AMS), to be installed

More information

From the Knee to the toes: The challenge of cosmic-ray composition

From the Knee to the toes: The challenge of cosmic-ray composition New Views of the Universe December 8 th 13 th, 2005, Chicago From the Knee to the toes: The challenge of cosmic-ray composition Jörg R. Hörandel University of Karlsruhe www-ik.fzk.de/~joerg New Views of

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Cosmic Rays in the Galaxy

Cosmic Rays in the Galaxy 1, Over View Cosmic Rays in the Galaxy Discovery : Legendary baloon flight of Victor Hess Observation of Cosmic Rays : Satellite, Balloon (Direct), Air shower (Indirect) Energy Spectrum of Cosmic Rays

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle astronomy coming of age How it is done The sources The signals What we have learned

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Piergiorgio Picozza INFN and University of Rome Tor Vergata From e + /e - Colliders to High Energy Astrophysics Trieste, September

More information

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010 Antimatter in Space Mirko Boezio INFN Trieste, Italy PPC 2010 - Torino July 14 th 2010 Astrophysics and Cosmology compelling Issues Apparent absence of cosmological Antimatter Nature of the Dark Matter

More information

Lessons 19 and 20. Detection of C.R. with energy > TeV Study of the C.R. isotropy/anisotropy Ground based detectors:

Lessons 19 and 20. Detection of C.R. with energy > TeV Study of the C.R. isotropy/anisotropy Ground based detectors: Lessons 19 and 20 Detection of C.R. with energy > TeV Study of the C.R. isotropy/anisotropy Ground based detectors: Detection at ground of extensive Air Showers: nature, direction and energy of the primary

More information

Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Space Station

Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Space Station Antiroton Flux and Antiroton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Sace Station Andreas Bachlechner on behalf of the AMS collaboration 3 07.08.017 von TeVPA 017, Columbus

More information

The High Energy cosmic-radiation Detection (HERD) Facility onboard China s Future Space Station

The High Energy cosmic-radiation Detection (HERD) Facility onboard China s Future Space Station The High Energy cosmic-radiation Detection (HERD) Facility onboard China s Future Space Station Yongwei DONG, on behalf of HERD collaboration Institute of High Energy Physics, CAS PoS(ICRC2017)1077, 253

More information

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker 46 1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker From Aharonian et al. 2011 From Letessier-Sevon & Stanev 2011 Fermi 2-year sky map Outline 1. 2. 3. 4. knee ankle (b)

More information

Hadronic Interaction Studies with ARGO-YBJ

Hadronic Interaction Studies with ARGO-YBJ Hadronic Interaction Studies with ARGO-YBJ Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Hadron-Hadron & Cosmic Ray

More information

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA Astropartical Physics İssue To inform. What Powered the Big Bang? Inflation

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) MPA Seminar, September

More information

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ Ivan DE MITRI Dipartimento di Fisica Università di Lecce and Istituto Nazionale di Fisica Nucleare Lecce,, ITALY On behalf of the

More information

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter F. Pilo for the

More information

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects Aldo Morselli INFN Roma Tor Vergata CTA in the quest for Dark Matter and exotic phenomena

More information

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Dottorato di Ricerca in Fisica - XXVIII ciclo Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Chiara Perrina Supervisor: Prof. Antonio Capone 25 th February 2014

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 Review of direct measurements of cosmic rays Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 CR astrophуsics main problems Sources? - Accelerators? The basic paradigm of CR acceleration

More information

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays Antimatter and DM search in space with AMS-02 Francesca R. Spada Istituto Nazionale di Fisica Nucleare Piazzale Aldo Moro, 5 I-00185, Rome, ITALY 1 Introduction AMS-02 is a space-borne magnetic spectrometer

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope Abstract The Fermi Gamma-ray Space Telescope Tova Yoast-Hull May 2011 The primary instrument on the Fermi Gamma-ray Space Telescope is the Large Area Telescope (LAT) which detects gamma-rays in the energy

More information

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects : AMS-02 Status and Future Prospects DPNC and Center for Astroparticle Physics (CAP Genève) Université de Genève E-mail: martin.pohl@cern.ch Due to recent observations, there is a renewed interest in GeV

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope Walter Hopkins Physics Department, Cornell University. The Fermi Large Area Telescope is a particle detector in space with an effective collecting

More information

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics Gamma-ray emission at the base of the Fermi bubbles Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics On behalf of the Fermi-LAT collaboration TeVPA 2018, Berlin Fermi bubbles surprise

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

AMS-02 measurement of cosmic ray positrons and electrons

AMS-02 measurement of cosmic ray positrons and electrons Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 7 75 (16) 466 47 www.elsevier.com/locate/nppp AMS- measurement of cosmic ray positrons and electrons Z.L. Weng a, V. Vagelli

More information

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Cosmic Rays Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Nobel Prize in 1936 Origin of high energy cosmic rays is still not completely understood

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT First results on the high energy cosmic ray electron spectrum with the Fermi-LAT Johan Bregeon INFN Pisa johan.bregeon@pi.infn.it on behalf of the Fermi LAT collaboration TANGO in Paris - May 4 th, 009

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Cosmic Ray Physics with ARGO-YBJ

Cosmic Ray Physics with ARGO-YBJ Cosmic Ray Physics with ARGO-YBJ Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration RICAP-13 Roma International Conference

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 SEARCHES FOR ANTIMATTER DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 OUTLINE Early History Baryon Asymmetry of the Universe? Current Limits on Antimatter Nuclei from Distant Galaxies

More information

The Latest Results from AMS on the International Space Station

The Latest Results from AMS on the International Space Station The on the International Space Station Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, US E-mail: Samuel.Ting@cern.ch In four years on the International Space Station,

More information

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari Indirect Dark Matter search in cosmic rays F.S. Cafagna, INFN Bari Indirect Dark Matter search in cosmic rays With PAMELA experiment An experimentalist point of view F.S. Cafagna, INFN Bari Why Anti(particle)matter

More information

Calibration of the AGILE Gamma Ray Imaging Detector

Calibration of the AGILE Gamma Ray Imaging Detector Calibration of the AGILE Gamma Ray Imaging Detector Andrew Chen on behalf of the AGILE Team April 11, 2011 AGILE Astrorivelatore Gamma ad Immagini LEggero Italian Space Agency (ASI) small mission Participation

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

VERITAS Performance Gernot Maier

VERITAS Performance Gernot Maier VERITAS Performance Gernot Maier Alliance for Astroparticle Physics What scientific impact will VERITAS have in the next 3-5 years? Galactic long-term plan Performance Operations LTP & Performance May

More information

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016 Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background Mattia Di Mauro On behalf of the Fermi- LAT Collaboration 1 Trieste, May, 3, 2016 THE ISOTROPIC GAMMA RAY BACKGROUND

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Greg Madejski Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Outline:

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Status of the G A M M A Project. A. M. Galper Trieste, Italy, May 2013

Status of the G A M M A Project. A. M. Galper Trieste, Italy, May 2013 Status of the G A M M A - 400 Project A. M. Galper Trieste, Italy, May 2013 The main scientific objective of the GAMMA-400 Project, that was defined by Nobel laureate V. L. Ginzburg, is to search for peculiarity

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

High energy resolution GeV gamma ray detector Satoko Osone Funabashi, Chiba, , JAPAN

High energy resolution GeV gamma ray detector Satoko Osone Funabashi, Chiba, , JAPAN High energy resolution GeV gamma ray detector Satoko Osone Funabashi, Chiba, 273-0865, JAPAN osone@icrr.u-tokyo.ac.jp Abstract We design a GeV gamma ray detector based on an electron-positron pair measurement

More information

Cosmic Ray Physics with the ARGO-YBJ experiment

Cosmic Ray Physics with the ARGO-YBJ experiment Cosmic Ray Physics with the ARGO-YBJ experiment Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Second Roma International

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon Presented by: Yupeng Xu ( ETH Zürich / L3+C collaboration) PhD Students Seminar, PSI, October 1-2, 2003 The L3+C Experiment

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata Introduction to Cosmic Rays Data Analysis Issues Nicola De Simone INFN and University of Rome Tor Vergata SciNeGHE 2010 - Data Analysis Tutorial Trieste, September 8-9, 2010 The physics of PAMELA PRL 102,

More information

Precision Cosmic Ray physics with space-born experiment

Precision Cosmic Ray physics with space-born experiment Precision Cosmic Ray physics with space-born experiment Marco Incagli a Istituto Nazionale di Fisica Nucleare (INFN), Pisa, Italy Abstract. More than 100 years after their discoveries, cosmic rays have

More information

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN Gamma Ray Physics in the Fermi era F.Longo University of Trieste and INFN Vulcano, May 22, 2018 F.Longo et al. -- 1 Gamma-ray astrophysics above 100 MeV AGILE Fermi 2 Picture of the day, Feb. 28, 2011,

More information

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII COSMIC RAYS DAY WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII INTRODUCTION TO COSMIC RAYS MAJOR QUESTIONS: Are there forms of matter in the Universe that do not

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search Nicolò Masi Bologna University and INFN - 31 May 2016 Topics 1. Towards a unified picture of CRs production and propagation: Astrophysical uncertainties with GALPROP Local Interstellar Spectra: AMS-02

More information

Charged Cosmic Rays and Neutrinos

Charged Cosmic Rays and Neutrinos Charged Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies

More information

Towards Direction Dependent Fluxes With AMS-02

Towards Direction Dependent Fluxes With AMS-02 Towards Direction Dependent Fluxes With AMS-02 Stefan Zeissler, Karen Andeen, Wim de Boer, Iris Gebauer, Carmen Merx, Nikolay Nikonov, Valerio Vagelli DPG Conference 2015, Wuppertal Institut für Experimentelle

More information

The multimessenger approach to astroparticle physics

The multimessenger approach to astroparticle physics The multimessenger approach to astroparticle physics Célio A. Moura Universidade Federal do ABC UFABC Seminario Facultad de Ciencias Físico Matemáticas BUAP October 27, 2010 Energy Spectrum Via Láctea:

More information

Measurement of a Cosmic-ray Electron Spectrum with VERITAS

Measurement of a Cosmic-ray Electron Spectrum with VERITAS Measurement of a Cosmic-ray Electron Spectrum with VERITAS David Staszak, for the VERITAS Collaboration 1 Cosmic-Ray Electrons and Positrons at TeV Energies HESS Electrons are a unique probe of our local

More information

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope, Justin Vandenbroucke on behalf of the Fermi-LAT Collaboration Department of Physics and Wisconsin IceCube Particle Astrophysics

More information