EE120 Fall 2016 HOMEWORK 3 Solutions. Problem 1 Solution. 1.a. GSI: Phillip Sandborn

Size: px
Start display at page:

Download "EE120 Fall 2016 HOMEWORK 3 Solutions. Problem 1 Solution. 1.a. GSI: Phillip Sandborn"

Transcription

1 EE Fall 6 HOMEWORK 3 Solutions GSI: Phillip Sandborn Problem Solution For each solution, draw xx(ττ) and flip around ττ =, then slide the result across h(ττ)..a.

2 .b Use the same x as part a.

3 .c

4 .d Analytical convolution gives: yy(tt) = xx(tt ττ)h(ττ)dddd = exp (tt ττ) uu(tt ττ) exp( ττ) uu(ττ )dddd The integrand is zero unless tt ττ > ; and ττ > ; which require the integration variable, ττ, to be ττ < tt and ττ >. tt yy(tt) = exp (tt ττ) exp( ττ) dddd uu(tt ) = exp( tt) exp( ττ) dddd uu(tt ) yy(tt) = [exp( tt) exp( tt)] uu(tt ) This gives the sketch above. We include the u(t-) to account for the zero overlap of x and h before t =. tt

5 Problem Solution Π(tt) = uu tt + uu tt cccccccc(tt) = δδ(tt nn) nn= Part a) Π tt = uu tt + uu tt : This is a box of height with width, centered at zero cccccccc tt = 4 nn= δδ( (tt 4nn)) = 4 δδ(tt 4nn) 4 nn= : This is a delta train with spacing 4, and delta height = 4. xx (t) = Π tt cccccccc tt 4 = Π ττ cccccccc tt ττ dddd 4 Using flip and drag method for convolution, xx (t) will be a periodic function with a repeating box of width, height 4, fundamental period TT = 4, and fundamental frequency ωω = : To find aa kk, we use the analysis equation. aa kk = 4 aa kk = 4 aa kk = aa kk = 4 sin kkkk xx (tt) exp jjjj tt dddd 4 exp jjjj tt dddd exp jjjj tt dddd = 4 exp jjjj exp jjjj kkkk jj For kk =, we solve the integral: aa = 4 aa = dddd = 4dddd

6 Part b) Π tt = uu 6 tt + uu 6 tt : This is a box of height with width 6, centered at zero 6 cccccccc tt = 4 nn= δδ( (tt 4nn)) = 4 δδ(tt 4nn) 4 nn= : This is a delta train with spacing 4, and delta height = 4. xx (t) = Π tt 6 cccccccc tt 4 = Π ττ 6 cccccccc tt ττ dddd 4 Using flip and drag method for convolution, xx (t) will be a square wave with a low level of 4 and high level of 8, fundamental period TT = 4, and fundamental frequency ωω = : From this flip-and-slide result, we can see that the function xx (tt) can be written: xx (tt) = 8 4Π tt To find aa kk, we use the analysis equation. aa kk = 4 xx (tt) exp jjjj tt dddd aa kk = 4 aa kk = aa kk = 4 sin(kkkk) kk 8 4Π tt exp jjjj tt dddd exp jjjj tt dddd 4 sin kkkk kkkk aa kk = 4 sin kkkk ; for kk. kkkk For kk =, we can solve the integral: aa = 4 aa = 6 8 4Π tt dddd Π tt exp jjjj tt dddd = Π tt dddd = 8 Π tt dddd = 8 dddd = 6 Using L Hopital s rule on the final expression for aa kk = 4 sin kkkk have to use the previous expression to use L Hopital properly: aa kk = 4 sin(kkkk) kkkk does not give the correct answer. We kk 4 sin kkkk kkkk. This result should also give aa = 6. Even though the boxed answer is correct for non-zero k, it is evident that evaluating at k = will give: / /. This should be a cue that we will need to apply L Hopital s rule on both terms!!

7 Part c) xx 3 (t) = Π tt Π(tt ) cccccccc tt 4 = Π(tt ) xx (tt) xx (tt) is the same as in part a. Π(tt ) is a box function of width =, height =, centered at t =. We know from Part a) that the Fourier coefficients of xx (tt) are:aa kk = 4 sin kkkk If we treat Π(tt ) as an impulse response of an LTI system, h(tt) = Π(tt ), the output of this system for an arbitrary input xx(t) can be written as: yy(t) = xx(tt ττ)h(ττ)dddd For xx(tt) = exp(jjjjjj), yy(t) = yy(t) = exp(jjjjjj) yy(t) = sin(ωω/) ωω/ 3/ / eeeeee( jjjjjj) dddd exp(jjjj) exp(jjjjjj) So, {exp(jjjjtt)} = sin(ωω/) ωω/ xx (tt) = kk= aa kk exp jjjj tt Write output y using xx (tt) eeeeee jjjj(tt ττ) Π(ττ )dddd = exp(jjjjjj) eeeeee jjjj 3 eeeeee jjjj jjjj exp(jjjj). Now, we use our synthesis equation for xx (tt): yy(t) = HH{xx (tt)} = HH aa kk exp jjjj kk= tt = aa kk HH exp jjjj kk= tt Plug in kk for ωω in the transfer function: HH exp jjjj tt = sin kk / kk / exp jjkk exp jjkk tt yy(t) = exp jjkk kk= tt = aa exp jjkk kk= kk exp jjkk tt sin kk aa / kk kk / So, the new aa kk = aa kk sin kk / kk / exp jjkk aa = aa eeeeeeee = 6 sin kk = sin kk 4 kk exp jjkk

8 Problem 3 Solution Part A: Fourier coefficients xx (tt) = cos(ωω tt) xx (tt) = cos(ωω tt) Find Fourier coefficients of x : xx (tt) is periodic with fundamental period, TT = ωω = ωω aa kk = ωω aa kk = ωω aa kk = ωω ωω cos(ωω tt) exp( jjjjωω tt) dddd ωω exp(jjωω tt)+exp( jjωω tt) ωω Solve for k = + and -, aa = ωω ωω exp( jjjjωω tt) dddd [exp(jjωω ( kk)tt) + exp( jjωω ( + kk)tt)]dddd [ + exp( jjωω 4tt)]dddd aa = ωω tt + exp( jjωω 4tt) ωω jjωω 4 aa = ωω ωω = Substituting k = - leads to the same result, aa = Solve for other k, aa kk = ωω aa kk = exp(jjωω ( kk)tt) jjωω ( kk) 4 exp(jj( kk)) ( kk) aa kk = for kk ±. + exp( jjωω (+kk)tt) ωω jjωω (+kk) + exp( jj(+kk)) (+kk) Since the phase of the complex exponentials is always a positive or negative integer multiple of, the sums always evaluate to for all k except k = + or -.

9 Next, find Fourier coefficients for x : xx (tt) is periodic with fundamental period, TT = ωω aa kk = ωω aa kk = ωω aa kk = ωω aa kk = ωω aa kk = ωω ωω cos(ωω tt) exp( jjjjωω tt) dddd ωω exp(jjωω tt)+exp( jjωω tt) ωω ωω ωω exp( jjjjωω tt) dddd [exp(jjωω ( kk)tt) + exp( jjωω ( + kk)tt)]dddd exp(jjωω ( kk)tt) jjωω ( kk) + exp( jjωω (+kk)tt) jjωω (+kk) jj exp jj( kk) exp jj( kk) ( kk) aa kk = sin ( kk) ( kk) aa kk = ( ) kk 4kk + sin (+kk) (+kk) ωω ωω + exp jj(+kk) exp jj(+kk) (+kk) aa =

10 Part B: Time averaged power We will use PP aaaaaa,xx = TT <TT> xx(tt) dddd Find time averaged power for x (t) xx (tt) = cos(ωω tt) ; TT = ωω PP aaaaaa,xx = TT PP aaaaaa,xx = ωω PP aaaaaa,xx = ωω <TT> ωω xx (tt) dddd cos(ωω tt) dddd ωω +cos( ωω tt) PP aaaaaa,xx = ωω tt + sin(4ωω tt) ωω 8ωω PP aaaaaa,xx = ωω = ωω dddd Find time averaged power for x (t) xx (tt) = cos(ωω tt) ; TT = ωω PP aaaaaa,xx = TT PP aaaaaa,xx = ωω PP aaaaaa,xx = ωω <TT> ωω xx (tt) dddd cos(ωω tt) dddd ωω +cos( ωω tt) dddd PP aaaaaa,xx = ωω tt + sin(ωω tt) ωω 4ωω PP aaaaaa,xx = ωω = ωω = ωω ωω = ωω ωω cos (ωω tt) dddd cos (ωω tt) dddd

11 Part C: Power at Desired Frequency The desired frequency is ωω. The k th Fourier coefficient for xx corresponds to a frequency of TT. T is the fundamental period of xx, TT = ωω. TT = ωω kk = TT ωω = Sum of square of Fourier coefficients k = + and k = -: aa = 3 = 3 aa = 3 + = 3 aa + aa = By Parseval s Theorem for continuous time periodic signals (OW section 3.5.7, p.5), we know the sum of squares of the fourier coefficients must be equal to the average power in the periodic signal. The average power is shown in Part b: PP aaaaaa,xx = Neglecting aa = means subtracting aa from PP aaaaaa,xx PP aaaaaa,xx aa = Therefore, the fraction of time averaged power at ωω (neglecting the DC term) is approximately aa + aa.947 =.9 =.95 = 95%.947

12 Part D: LTI Filter with x(t) If we have a low pass filter, HH(jjjj) = +jj ωω ωω And we know that xx (tt) is expressed by its Fourier coefficients in the form, xx (tt) = kk= aa kk exp(jjjjωω tt) Then the output of the system, yy(tt), is given by yy(tt) = kk= aa kk HH(jjjjωω ) exp(jjjjωω tt) The Fourier series coefficients of yy(tt) are bb kk : bb kk = aa kk HH(jjjjωω ) = aa kk = ( ) kk +jjjj 4kk +jjjj bb kk = 4 (+kk ) ( 4kk ) The DC term is bb =. The Fourier coefficients of yy(tt) for k = + and - are: bb = 3 +jj bb = 3 jj bb = 9 bb = 9 The fraction of power in the k = + and k = - components is given (where the total power minus DC is given by summing all b k s by computer calculation, no simple closed form solution): bb + bb = 98% Truncating the series at k = +6 and -6 gives a good estimate, since the magnitude of b k is proportional to /k 4. By using a filter, we get a signal where more of the total power is concentrated at the desired frequency.

13 Problem 4 Solution Part A: xx[nn] = δδ[nn + ] + δδ[nn] + δδ[nn ], N = 6 Using the analysis equation for discrete time signals: aa kk NN <NN> xx[nn] exp jjjj NN nn Select a period from n = -7 to n = +8 aa kk = 6 8 nn= 7 δδ[nn + ] + δδ[nn] + δδ[nn ] exp jjjj nn 6 Since x is non-zero only when n = -,, or +, the sum can be written: aa kk = 6 aa kk = 6 + exp jjjj ( ) + exp jjjj () + exp jjjj () aa kk = 6 + cos kk 6 exp jjjj + exp jjjj 6 6

14 Part B: xx[nn] = [,,,,,,,], N = 8 Using the analysis equation for discrete time signals: aa kk NN <NN> xx[nn] exp jjjj NN nn Select a period from n = to n = +7 aa kk = 8 7 nn= 3 (δδ[nn] + δδ[nn ] + δδ[nn ] + δδ[nn 3]) exp jjjj 8 nn aa kk = exp jjjj 8 nn= nn = 4 8 WWnn aa kk = 8 exp( jjjjjj) exp jjjjjj 4 = 8 aa kk = 8 sin kkkk sin kkkk 8 exp jjjj nn= = 8 WW4 WW kkkk sin sin kkkk 8 Since x is non-zero only when n =,,, or 3, the sum could also be written: aa kk = 8 exp jjjj 8 () + exp jjjj 8 () + exp jjjj 8 () + exp jjjj 8 (3) For k =, the sum simplifies: aa = 8 [ ] =

15

EE 341 A Few Review Problems Fall 2018

EE 341 A Few Review Problems Fall 2018 EE 341 A Few Review Problems Fall 2018 1. A linear, time-invariant system with input, xx(tt), and output, yy(tt), has the unit-step response, cc(tt), shown below. a. Find, and accurately sketch, the system

More information

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr Time Domain Analysis of Linear Systems Ch2 University of Central Oklahoma Dr. Mohamed Bingabr Outline Zero-input Response Impulse Response h(t) Convolution Zero-State Response System Stability System Response

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers 10. Digital 10.1 Basic principle of digital control 10.2 Digital PID controllers 10.2.1 A 2DOF continuous-time PID controller 10.2.2 Discretisation of PID controllers 10.2.3 Implementation and tuning 10.3

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

5.6 Multistep Methods

5.6 Multistep Methods 5.6 Multistep Methods 1 Motivation: Consider IVP: yy = ff(tt, yy), aa tt bb, yy(aa) = αα. To compute solution at tt ii+1, approximate solutions at mesh points tt 0, tt 1, tt 2, tt ii are already obtained.

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is

More information

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering Stochastic Processes and Linear Algebra Recap Slides Stochastic processes and variables XX tt 0 = XX xx nn (tt) xx 2 (tt) XX tt XX

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Haar Basis Wavelets and Morlet Wavelets

Haar Basis Wavelets and Morlet Wavelets Haar Basis Wavelets and Morlet Wavelets September 9 th, 05 Professor Davi Geiger. The Haar transform, which is one of the earliest transform functions proposed, was proposed in 90 by a Hungarian mathematician

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Describe and motivate linear system models: Summarize properties, examples, and tools Joel Burdick (substituting for Richard Murray) jwb@robotics.caltech.edu,

More information

Coarse-Graining via the Mori-Zwanzig Formalism

Coarse-Graining via the Mori-Zwanzig Formalism Coarse-Graining via the Mori-Zwanzig Formalism George Em Karniadakis & Zhen Li http://www.pnnl.gov/computing/cm4/ Supported by DOE ASCR Mori-Zwanzig can be used to: 1. Derive coarse-grained equations 2.

More information

ECE 421 Introduction to Signal Processing

ECE 421 Introduction to Signal Processing ECE 421 Introduction to Signal Processing Dror Baron Assistant Professor Dept. of Electrical and Computer Engr. North Carolina State University, NC, USA Denoising and Project 4 Where does denoising appear?

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 1, 018 G.Tech:

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Revist and motivate linear time-invariant system models: Summarize properties, examples, and tools Convolution equation describing solution in response

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 9. Switched Capacitor Filters Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Motivation Transmission of voice signals requires an active RC low-pass filter with very low ff cutoff

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Kalman Filters for Mapping and Localization

Kalman Filters for Mapping and Localization Kalman Filters for Mapping and Localization Sensors If you can t model the world, then sensors are the robot s link to the external world (obsession with depth) Laser Kinect IR rangefinder sonar rangefinder

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab 4: Introduction to Probability and Random Data BIOE 98MI Biomedical Data Analysis. Spring Semester 209. Lab 4: Introduction to Probability and Random Data A. Random Variables Randomness is a component of all measurement data, either from acquisition

More information

Storing energy or Storing Consumption?

Storing energy or Storing Consumption? Storing energy or Storing Consumption? It is not the same! Joachim Geske, Richard Green, Qixin Chen, Yi Wang 40th IAEE International Conference 18-21 June 2017, Singapore Motivation Electricity systems

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

2. Similarly, 8 following generalization: The denominator of the rational exponent is the index of the radical.

2. Similarly, 8 following generalization: The denominator of the rational exponent is the index of the radical. RD. Rational Exponents Rational Exponents In sections P and RT, we reviewed properties of powers with natural and integral exponents. All of these properties hold for real exponents as well. In this section,

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Materials & Advanced Manufacturing (M&AM)

Materials & Advanced Manufacturing (M&AM) Modeling of Shear Thickening Fluids for Analysis of Energy Absorption Under Impulse Loading Alyssa Bennett (University of Michigan) Nick Vlahopoulos, PhD (University of Michigan) Weiran Jiang, PhD (Research

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

BHASVIC MαTHS. Skills 1

BHASVIC MαTHS. Skills 1 PART A: Integrate the following functions with respect to x: (a) cos 2 2xx (b) tan 2 xx (c) (d) 2 PART B: Find: (a) (b) (c) xx 1 2 cosec 2 2xx 2 cot 2xx (d) 2cccccccccc2 2xx 2 ccccccccc 5 dddd Skills 1

More information

Integrated Attitude Determination and Control System via Magnetic Measurements and Actuation

Integrated Attitude Determination and Control System via Magnetic Measurements and Actuation Proceedings of the th WSEAS International Conference on Automatic Control, Modelling and Simulation Integrated Attitude Determination and Control System via Magnetic Measurements and Actuation MOHAMMAD

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

A linear operator of a new class of multivalent harmonic functions

A linear operator of a new class of multivalent harmonic functions International Journal of Scientific Research Publications, Volume 7, Issue 8, August 2017 278 A linear operator of a new class of multivalent harmonic functions * WaggasGalibAtshan, ** Ali Hussein Battor,

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Chemical Process Control

Chemical Process Control ETH Zürich Department for Chemistry and Applied Biosciences Institute for Chemical and Bioengineering Lecture notes for the course of Chemical Process Control (Regelungstechnik) Frühlingssemester 2018

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space. Problem 3. (Verdeyen 5.3) First, I calculate the ABCD matrix for beam traveling through the lens and space. T = dd 0 0 dd 2 ff 0 = dd 2 dd ff 2 + dd ( dd 2 ff ) dd ff ff Aording to ABCD law, we can have

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Magnetism of materials

Magnetism of materials Magnetism of materials 1. Introduction Magnetism and quantum mechanics In the previous experiment, you witnessed a very special case of a diamagnetic material with magnetic susceptibility χχ = 1 (usually

More information

Worksheets for GCSE Mathematics. Solving Equations. Mr Black's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Solving Equations. Mr Black's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Solving Equations Mr Black's Maths Resources for Teachers GCSE 1-9 Algebra Equations Worksheets Contents Differentiated Independent Learning Worksheets Solving Equations

More information

ENGIN 211, Engineering Math. Fourier Series and Transform

ENGIN 211, Engineering Math. Fourier Series and Transform ENGIN 11, Engineering Math Fourier Series and ransform 1 Periodic Functions and Harmonics f(t) Period: a a+ t Frequency: f = 1 Angular velocity (or angular frequency): ω = ππ = π Such a periodic function

More information

Predicting Winners of Competitive Events with Topological Data Analysis

Predicting Winners of Competitive Events with Topological Data Analysis Predicting Winners of Competitive Events with Topological Data Analysis Conrad D Souza Ruben Sanchez-Garcia R.Sanchez-Garcia@soton.ac.uk Tiejun Ma tiejun.ma@soton.ac.uk Johnnie Johnson J.E.Johnson@soton.ac.uk

More information

Gradient expansion formalism for generic spin torques

Gradient expansion formalism for generic spin torques Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424. Outline 1. Spintronics a. Magnetoresistance and spin torques

More information

3. Mathematical Modelling

3. Mathematical Modelling 3. Mathematical Modelling 3.1 Modelling principles 3.1.1 Model types 3.1.2 Model construction 3.1.3 Modelling from first principles 3.2 Models for technical systems 3.2.1 Electrical systems 3.2.2 Mechanical

More information

Lecture 3. Linear Regression

Lecture 3. Linear Regression Lecture 3. Linear Regression COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne Weeks 2 to 8 inclusive Lecturer: Andrey Kan MS: Moscow, PhD:

More information

CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Lecture given by Daniel Khashabi Slides were created

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Journal of Mechanics Engineering and Automation 8 (2018) 205-213 doi: 10.17265/2159-5275/2018.05.003 D DAVID PUBLISHING Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Bukhar

More information

Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) Networks CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks 1 Function approximation We have been using MLPs as pattern classifiers But in general, they are function approximators Depending

More information

OSIsoft Data Compression Analysis

OSIsoft Data Compression Analysis OSIsoft Data Compression Analysis Raymond de Callafon Charles H. Wells University of California, San Diego (UCSD) OSIsoft email: callafon@ucsd.edu NASPI Work Group Meeting, Knoxville, TN, March 11-12,

More information

Linear Filters and Convolution. Ahmed Ashraf

Linear Filters and Convolution. Ahmed Ashraf Linear Filters and Convolution Ahmed Ashraf Linear Time(Shift) Invariant (LTI) Systems The Linear Filters that we are studying in the course belong to a class of systems known as Linear Time Invariant

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Charged-Particle Interactions in Matter

Charged-Particle Interactions in Matter Radiation Dosimetry Attix 8 Charged-Particle Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4890 Electron-crystallography for determining the handedness of a chiral zeolite nano-crystal Yanhang Ma 1,2, Peter Oleynikov 1,2,*

More information

Non-Parametric Weighted Tests for Change in Distribution Function

Non-Parametric Weighted Tests for Change in Distribution Function American Journal of Mathematics Statistics 03, 3(3: 57-65 DOI: 0.593/j.ajms.030303.09 Non-Parametric Weighted Tests for Change in Distribution Function Abd-Elnaser S. Abd-Rabou *, Ahmed M. Gad Statistics

More information

TEXT AND OTHER MATERIALS:

TEXT AND OTHER MATERIALS: 1. TEXT AND OTHER MATERIALS: Check Learning Resources in shared class files Calculus Wiki-book: https://en.wikibooks.org/wiki/calculus (Main Reference e-book) Paul s Online Math Notes: http://tutorial.math.lamar.edu

More information

CDS 101/110: Lecture 6.2 Transfer Functions

CDS 101/110: Lecture 6.2 Transfer Functions CDS 11/11: Lecture 6.2 Transfer Functions November 2, 216 Goals: Continued study of Transfer functions Review Laplace Transform Block Diagram Algebra Bode Plot Intro Reading: Åström and Murray, Feedback

More information

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015 Jasmin Smajic, Christian Hafner 2, Jürg Leuthold 2, March 23, 205 Time Domain Finite Element Method (TD FEM): Continuous and Discontinuous Galerkin (DG-FEM) HSR - University of Applied Sciences of Eastern

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name.

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. Solution Key Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. CIRCLE YOUR LECTURE BELOW: MWF 10:30 am MWF 3:30 pm TR 8:30 am

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays Journal of Mathematics and System Science 6 (216) 194-199 doi: 1.17265/2159-5291/216.5.3 D DAVID PUBLISHING On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time

More information

FINAL EXAM. Problem Value Score

FINAL EXAM. Problem Value Score GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 27-Apr-09 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi 1 Wikipedia Small-angle X-ray scattering (SAXS) is a small-angle scattering (SAS) technique where the elastic scattering of X-rays (wavelength

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Transformation of Differential Algebraic Array Equations to Index One Form

Transformation of Differential Algebraic Array Equations to Index One Form Transformation of Differential Algebraic Array Equations to Index One Form Martin Otter 1 Hilding Elmqvist 2 1 Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de 2 Mogram AB, Sweden,

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

HISTORY. In the 70 s vs today variants. (Multi-layer) Feed-forward (perceptron) Hebbian Recurrent

HISTORY. In the 70 s vs today variants. (Multi-layer) Feed-forward (perceptron) Hebbian Recurrent NEURAL NETWORKS REFERENCES: ARTIFICIAL INTELLIGENCE FOR GAMES "ARTIFICIAL INTELLIGENCE: A NEW SYNTHESIS HTTPS://MATTMAZUR.COM/2015/03/17/A- STEP- BY- STEP- BACKPROPAGATION- EXAMPLE/ " HISTORY In the 70

More information

Statistical Learning with the Lasso, spring The Lasso

Statistical Learning with the Lasso, spring The Lasso Statistical Learning with the Lasso, spring 2017 1 Yeast: understanding basic life functions p=11,904 gene values n number of experiments ~ 10 Blomberg et al. 2003, 2010 The Lasso fmri brain scans function

More information

QUIZ 1 September 4, NAME: ACETONE Score: /10

QUIZ 1 September 4, NAME: ACETONE Score: /10 QUIZ 1 September 4, 2015 NAME: AETONE Score: /10 Be sure to show proper units in every case.] 1. (5 points) Draw structures for the following molecules to the right of each name. 2 N O O 2S p-aminobenzoic

More information

MAT 1033C Final Exam Review. BY: Math Connections/Hands-On Math

MAT 1033C Final Exam Review. BY: Math Connections/Hands-On Math MAT 1033C Final Exam Review BY: Math Connections/Hands-On Math Useful Formulas Rational Expressions/Equations #1, 2, 3, 4, 5, 6, 7, 8, 9, 47, 48, 49 Table of Contents Radicals and Rational Exponents/Equations

More information

Chem 263 Winter 2018 Problem Set #2 Due: February 16

Chem 263 Winter 2018 Problem Set #2 Due: February 16 Chem 263 Winter 2018 Problem Set #2 Due: February 16 1. Use size considerations to predict the crystal structures of PbF2, CoF2, and BeF2. Do your predictions agree with the actual structures of these

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information