Základy teorie front II

Size: px
Start display at page:

Download "Základy teorie front II"

Transcription

1 Základy teorie front II Aplikace Poissonova procesu v teorii front Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek & Roman Kotecký, 2011 Statistika pro informatiku MI-SPI, ZS 2011/12, Přednáška 17 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnos@

2 Introduction to Queueing Theory II The Poisson Process in Queueing Theory Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Department of Computer Systems Department of Theoretical Informatics Faculty of Information Technologies Czech Technical University in Prague Rudolf Blažek & Roman Kotecký, 2011 Statistics for Informatics MI-SPI, ZS 2011/12, Lecture 17 The European Social Fund Prague & EU: We Invest in Your Future

3 Queueing Theory Review Queueing System Diagram Fronta Waiting Queue Obsluha Service Facility Customer Population Arriving Customers Vstupní tok požadavků Departing Customers Výstupní tok požadavků Prvky systému hromadné obsluhy 3

4 Queueing Theory Review Kendall Notation A / B / X / Y / Z A:( Customer arrival pattern ( ( (Interarrival time distribution) B:( Service pattern (Service time distribution) X:( Number of parallel servers Y: ( System capacity Z:( Queueing discipline Default values:( Y =, Z = FCFS Example: ( M / M / 3 = M / M / 3 / / FCFS ( ( ( ( (Poisson arrivals, Exp. service times, 3 servers) 4

5 Queueing Theory Review Characteristics of the Input Process Arriving patterns M: ( Markovian or Memoryless Poisson Process ( ( (I.e. exponential & independent interarrival times) D:( Ek:( G:( GI:( Deterministic, constant interarrival times Erlang distribution of order k of interarrival times General probability distribution of interarrival times General & Independent distribution of interarrival times Default Assumption: Poisson Process Charakteristiky vstupního toku požadavků 5

6 Queueing Theory Review Characteristics of the Output Process Service time distribution M: ( Markovian or Memoryless exponential service times D:( Deterministic, constant service times Ek:( Erlang distribution of order k of service times G:( General probability distribution of service times Default Assumption: Exponential service times Charakteristiky výstupního toku požadavků 6

7 Queueing Theory Review Queueing System M/M/m Infinite FCFS Queue m Parallel Servers w/ Exp(μ) service time Infinite Customer Population Arriving Customers Poisson Process w/ rate λ Departing Customers 7

8 Queueing Theory Review Web and Database Servers Example Pool of m application servers (e.g. Tomcat) submits a job to a central database server Application server 1 Application server 2 Central Database Server Application server m 8

9 Queueing Theory Review Web and Database Servers Example We assume Poisson arrival process (λ) for the requests. Scenario 1: Application servers can submit multiple requests We have m application servers Then we obtain a Poisson arrival process with the rate ( ( ( ( ( ( ( ( ( μ = m λ We will see later why... 9

10 Queueing Theory Review Web and Database Servers Example Case 1: Application servers can submit multiple requests Application server 1 Rate λ Application server 2 Rate λ Rate mλ Central Database Server Application server m Rate λ 10

11 Queueing Theory Review Web and Database Servers Example We assume Poisson arrival process (λ) for the requests. Scenario 2: Application servers must wait for their request to finish State k: If k servers are waiting for their requests to finish, then only (m-k) servers can submit requests Then we obtain a state-dependent Poisson arrival process with the rate (k) = (m k) k < m 0 k m 11

12 Queueing Theory Review Plan of Study We will focus on M/M/m systems We must therefore study The Exponential Distribution (interarrival & service times) The Poisson Process (interarrival times are Exponential) Birth & Death Markov chains with continuous time (the number of customers in the system) We will also look at a M/G/ system Poisson arrivals, General service time, many servers 12

13 The Poisson Process 13

14 Defining the Poisson Process by Number of arrivals N(t) = number of arrivals during (0,t) N(t)... Poisson Process with rate λ t3 ~ Exp(λ) t4 ~ Exp(λ) t1 ~ Exp(λ) t2 ~ Exp(λ) t5 ~ Exp(λ) t5 > t -T4 N(t) = 4 0 T1 T2 T3 T4 t Time t Tk(...( arrival time of the k th customer tk ~ Exp(λ)(...( independent exponential interarrival times 14

15 Exponential Distribution Definition!!!!!!!!!!!!!! T ~ Exp(λ) A random variable T has an exponential distribution with rate λ if its density is e t for t 0 f T (t) = 0 for t < 0. We can also write the definition in terms of the distribution function F T (t) =P(T apple t) =1 e t, 8t 0 or in terms of the survival function P(T > t) =e t, 8t 0. 15

16 Main Properties of the Exponential Distribution Properties of T ~ Exp(λ) If T ~ Exp(λ) then ET =1/ ET 2 =2/ 2 Var T = ET 2 (ET ) 2 =1/ 2 Example: Average arrival rate: λ = 10 arrivals per minute Average wait time between arrivals: 1/10 = 0.1 minutes 16

17 Exponential Distribution Lack of Memory Property Lemma Assume waiting time T ~ Exp(λ). Given that we already waited s units of time, the remaining waiting time T s has the same distribution as if we did not wait at all, i.e. Exp(λ). Abbreviated notation: T ~ Exp(λ) (T s T>s) ~ Exp(λ) We waited s, but no arrival Conditional remaining waiting time We say: Exponential distribution is Memoryless 17

18 Exponential Distribution Lack of Memory Property Lack of memory: Conditional remaining waiting time: (T-s T > s) ~ Exp(λ) Remaining waiting time: T-s Original waiting time: T ~ Exp(λ) 0 s Time t Fix time s and observe that there was no arrival... we know T > s 18

19 Lack of Memory & the Poisson Process Number of arrivals N(t) = number of arrivals during (0,t) N(t)... Poisson Process with rate λ t3 ~ Exp(λ) t4 ~ Exp(λ) t1 ~ Exp(λ) t2 ~ Exp(λ) t5 ~ Exp(λ) t5 > t -T4 N(t) = 4 0 T1 T2 T3 T4 Different notation: Tk( ( ( (...( arrival time of the k th customer t Time t tk ~ Exp(λ)(...( independent exponential interarrival times 19

20 Lack of Memory & the Poisson Process Number of arrivals Conditional remaining waiting time: (t5-s t5 > s)~ Exp(λ) Original waiting time: t5 ~ Exp(λ) Given: t5 > t -T4 Given: t5 > s s = t -T4 0 T4 T1 T2 T3 t Time t Tk( ( ( (...( arrival time of the k th customer tk ~ Exp(λ)(...( independent exponential interarrival times 20

21 Proof of the Lack of Memory Property We want to prove: T ~ Exp(λ) (T s T>s) ~ Exp(λ) It s easier to use the survival function: T Exp( ) if and only if P(T > t) =e t, 8t 0. P(T s > t T > s) 8s, t 0 = = P(T > t + s, T > s) P(T > s) P(T > t + s) = e (t+s) P(T > s) e s = e t... Exp( ). 21

22 Exponential Races Lemma Let S ~ Exp(λ) and T ~ Exp(μ) be independent. Then min(s, T ) Exp( + µ). Proof: P(min(S, T ) > t) =P(S > t, T > t) =P(S > t)p(t > t) = e t e µt = e ( +µ)t... Exp( + µ). 22

23 Exponential Races & Queueing Systems Line 1 Independent waiting times Waiting time for arrival S ~ Exp(λ) Waiting time for arrival V = min(s, T ) ~ Exp(λ+μ) Merged Line Line 2 T ~ Exp(μ) Waiting time for arrival 23

24 Exponential Races & Queueing Systems E.g. average rate of arrivals λ = 3/min Line 1 Waiting S ~ Exp(λ) Independent waiting times Line 2 Waiting T ~ Exp(μ) E.g. average rate of arrivals μ = 5/min Waiting min(s, T ) ~ Exp(λ+μ) Then the average rate of arrivals is λ + μ = 3+5 = 8 / min 24

25 Exponential Races & Queueing Systems Line 1 Waiting S ~ Exp(λ) Independent waiting times Waiting min(s, T ) ~ Exp(λ+μ) Merged Line Line 2 Waiting T ~ Exp(μ) OK, the first arrival has exponential waiting time But how about the next arrivals? Is it a Poisson Process? Are all interarrival times exponential? Are all interarrival times independent? 25

26 Exponential Races & Lack of Memory Waiting for arrival on line 1 or 2 Line 1 s1 ~ Exp(λ) s2 ~ Exp(λ)... independent Line 2 Merged Line t1 ~ Exp(μ) v1 =min(s1, t1) v1 ~ Exp(λ+ μ) 0 v t 1 = (t1-v t1 > v) ~ Exp(μ)... independent v2 = min(s2, t 1) ~ Exp(λ+ μ) Time t Independent interarrival times ~ Exp(λ+ μ) Poisson Process (λ+ μ) Arrival observed at time v. Assume it was from line 1. 26

27 Example Web and Database Servers Example Case 1: Application servers can submit multiple requests Application server 1 Rate λ Application server 2 Rate λ Rate mλ Central Database Server Application server m Rate λ If the Poisson Processes are independent then the we obtain a Poisson Process on the merged line 27

28 The Winner of an Exponential Race Lemma Let S ~ Exp(λ) and T ~ Exp(μ) be independent. Then the probability that S arrives first is P(S < T )= + µ P(T < S) = µ + µ 28

29 The Winner of an Exponential Race & Queueing Systems Line 1 Waiting S ~ Exp(λ) Independent waiting times Waiting min(s, T ) ~ Exp(λ+μ) Merged Line Line 2 Waiting T ~ Exp(μ) An arrival is observed on the merged line. Where from? µ P(From Line 1) = + µ P(From Line 2) = + µ 29

30 The Winner of an Exponential Race & Queueing Systems Line 1 S ~ Exp(λ), λ = 3/min Independent waiting times λ + μ = 3+5 = 8 / min min(s, T ) ~ Exp(λ+μ) Merged Line Line 2 T ~ Exp(μ), μ = 5/min An arrival is observed on the merged line. Where from? µ P(Line 1) = + µ = 3 8 P(Line 2) = + µ =

31 Exponential Races for n Variables Corollary Let Ti ~ Exp(λi) be independent, i = 1, 2,...,n. Then min(t 1,..., T n ) Exp( n ). Proof is very similar as for two variables 31

32 The Winner of an Exponential Race Corollary Let Ti ~ Exp(λi) be independent, i = 1, 2,...,n. Then the probability that Tk arrives first is P(T k = min(t 1,..., T n )) = k n 32

33 The Poisson Process Definition!!!!!! Poissonův Process s intenzitou λ Let ti ~ Exp(λ) be independent random variables, i = 1, 2,... Let Tn = t1 + t tn with T0 = 0, and define N(s) = max {n: Tn s} for all s 0. Then N(s) is called the Poisson Process with rate λ. ti ~ Exp(λ)(...( independent exponential interarrival times Tn( ( (...( arrival time of the n th customer N(s)( (...( number of arrivals during time interval (0,s) 33

34 Definition and Basic Properties Defining the Poisson Process by Number of arrivals N(s) = number of arrivals during (0,s) N(s)... Poisson Process with rate λ t1 ~ Exp(λ) t2 ~ Exp(λ) t3 ~ Exp(λ) t4 ~ Exp(λ) t5 ~ Exp(λ) t5 > s -T4 N(s) = max {n: Tn s} N(s) = max {1,2,3,4} N(s) = 4 0 T2 T4 T1 =t1 T3 =t1+t2+t3 (T2 =t1+t2) (T4 =t1+t2+t3+t4) s Time t ti ~ Exp(λ)(...( independent exponential interarrival times Tn( ( ( (...( arrival time of the n th customer 34

35 Poisson Processes Definition and Basic Properties The Poisson Distribution Lemma N(s) has a Poisson distribution with mean λs. Definition!!!!!!!!!!!! X ~ Poisson(μ) A random variable X has a Poisson distribution with mean μ if P(X = n) =e µ µn for n = 0, 1,... n! 35

Základy teorie front

Základy teorie front Základy teorie front Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

More information

Markovské řetězce se spojitým parametrem

Markovské řetězce se spojitým parametrem Markovské řetězce se spojitým parametrem Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České

More information

Bootstrap metody II Kernelové Odhady Hustot

Bootstrap metody II Kernelové Odhady Hustot Bootstrap metody II Kernelové Odhady Hustot Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České

More information

Statistika pro informatiku

Statistika pro informatiku Statistika pro informatiku prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-SPI, ZS 2011/12, Přednáška 5 Evropský sociální

More information

Statistika pro informatiku

Statistika pro informatiku Statistika pro informatiku prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-SPI, ZS 2011/12, Přednáška 2 Evropský sociální

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse567-11/

More information

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií České vysoké učení technické v Praze Fakulta informačních technologií Katedra teoretické informatiky Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-MVI Methods of Computational Intelligence(2010/2011)

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 30-1 Overview Queueing Notation

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

Statistika pro informatiku

Statistika pro informatiku Statistika pro informatiku prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-SPI, ZS 2011/12, Přednáška 1 Evropský sociální

More information

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements Queueing Systems: Lecture 3 Amedeo R. Odoni October 18, 006 Announcements PS #3 due tomorrow by 3 PM Office hours Odoni: Wed, 10/18, :30-4:30; next week: Tue, 10/4 Quiz #1: October 5, open book, in class;

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

LECTURE #6 BIRTH-DEATH PROCESS

LECTURE #6 BIRTH-DEATH PROCESS LECTURE #6 BIRTH-DEATH PROCESS 204528 Queueing Theory and Applications in Networks Assoc. Prof., Ph.D. (รศ.ดร. อน นต ผลเพ ม) Computer Engineering Department, Kasetsart University Outline 2 Birth-Death

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

GI/M/1 and GI/M/m queuing systems

GI/M/1 and GI/M/m queuing systems GI/M/1 and GI/M/m queuing systems Dmitri A. Moltchanov moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ OUTLINE: GI/M/1 queuing system; Methods of analysis; Imbedded Markov chain approach; Waiting

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Queu(e)ing theory Queu(e)ing theory is the branch of mathematics devoted to how objects (packets in a network, people in a bank, processes in a CPU etc etc) join and leave

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

Chapter 5: Special Types of Queuing Models

Chapter 5: Special Types of Queuing Models Chapter 5: Special Types of Queuing Models Some General Queueing Models Discouraged Arrivals Impatient Arrivals Bulk Service and Bulk Arrivals OR37-Dr.Khalid Al-Nowibet 1 5.1 General Queueing Models 1.

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

Photo: US National Archives

Photo: US National Archives ESD.86. Markov Processes and their Application to Queueing II Richard C. Larson March 7, 2007 Photo: US National Archives Outline Little s Law, one more time PASTA treat Markov Birth and Death Queueing

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Cole s MergeSort. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010

Cole s MergeSort. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Cole s MergeSort prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Pokročilé paralelní algoritmy (PI-PPA)

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 24 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/6/16 2 / 24 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

M/G/1 and M/G/1/K systems

M/G/1 and M/G/1/K systems M/G/1 and M/G/1/K systems Dmitri A. Moltchanov dmitri.moltchanov@tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Description of M/G/1 system; Methods of analysis; Residual life approach; Imbedded

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

Performance Modelling of Computer Systems

Performance Modelling of Computer Systems Performance Modelling of Computer Systems Mirco Tribastone Institut für Informatik Ludwig-Maximilians-Universität München Fundamentals of Queueing Theory Tribastone (IFI LMU) Performance Modelling of Computer

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Introduction to Queuing Theory. Mathematical Modelling

Introduction to Queuing Theory. Mathematical Modelling Queuing Theory, COMPSCI 742 S2C, 2014 p. 1/23 Introduction to Queuing Theory and Mathematical Modelling Computer Science 742 S2C, 2014 Nevil Brownlee, with acknowledgements to Peter Fenwick, Ulrich Speidel

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 26 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/25/17 2 / 26 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

Continuous Time Processes

Continuous Time Processes page 102 Chapter 7 Continuous Time Processes 7.1 Introduction In a continuous time stochastic process (with discrete state space), a change of state can occur at any time instant. The associated point

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

Review of Queuing Models

Review of Queuing Models Review of Queuing Models Recitation, Apr. 1st Guillaume Roels 15.763J Manufacturing System and Supply Chain Design http://michael.toren.net/slides/ipqueue/slide001.html 2005 Guillaume Roels Outline Overview,

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Classical Queueing Models.

Classical Queueing Models. Sergey Zeltyn January 2005 STAT 99. Service Engineering. The Wharton School. University of Pennsylvania. Based on: Classical Queueing Models. Mandelbaum A. Service Engineering course, Technion. http://iew3.technion.ac.il/serveng2005w

More information

Introduction to Queueing Theory with Applications to Air Transportation Systems

Introduction to Queueing Theory with Applications to Air Transportation Systems Introduction to Queueing Theory with Applications to Air Transportation Systems John Shortle George Mason University February 28, 2018 Outline Why stochastic models matter M/M/1 queue Little s law Priority

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Computational intelligence methods

Computational intelligence methods Computational intelligence methods GA, schemas, diversity Pavel Kordík, Martin Šlapák Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-MVI, ZS 2011/12, Lect. 5 https://edux.fit.cvut.cz/courses/mi-mvi/

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Kendall notation. PASTA theorem Basics of M/M/1 queue

Kendall notation. PASTA theorem Basics of M/M/1 queue Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue 1 History of queueing theory An old research area Started in 1909, by Agner Erlang (to model the Copenhagen

More information

Elementary queueing system

Elementary queueing system Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue M/M/1 with preemptive-resume priority M/M/1 with non-preemptive priority 1 History of queueing theory An old

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

MI-RUB Testing Lecture 10

MI-RUB Testing Lecture 10 MI-RUB Testing Lecture 10 Pavel Strnad pavel.strnad@fel.cvut.cz Dept. of Computer Science, FEE CTU Prague, Karlovo nám. 13, 121 35 Praha, Czech Republic MI-RUB, WS 2011/12 Evropský sociální fond Praha

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

Advanced Queueing Theory

Advanced Queueing Theory Advanced Queueing Theory 1 Networks of queues (reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity, BCMP networks, mean-value analysis, Norton's

More information

Part II: continuous time Markov chain (CTMC)

Part II: continuous time Markov chain (CTMC) Part II: continuous time Markov chain (CTMC) Continuous time discrete state Markov process Definition (Markovian property) X(t) is a CTMC, if for any n and any sequence t 1

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

Systems Simulation Chapter 6: Queuing Models

Systems Simulation Chapter 6: Queuing Models Systems Simulation Chapter 6: Queuing Models Fatih Cavdur fatihcavdur@uludag.edu.tr April 2, 2014 Introduction Introduction Simulation is often used in the analysis of queuing models. A simple but typical

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Monday, Feb 10, 2014 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

NEW FRONTIERS IN APPLIED PROBABILITY

NEW FRONTIERS IN APPLIED PROBABILITY J. Appl. Prob. Spec. Vol. 48A, 209 213 (2011) Applied Probability Trust 2011 NEW FRONTIERS IN APPLIED PROBABILITY A Festschrift for SØREN ASMUSSEN Edited by P. GLYNN, T. MIKOSCH and T. ROLSKI Part 4. Simulation

More information

Link Models for Circuit Switching

Link Models for Circuit Switching Link Models for Circuit Switching The basis of traffic engineering for telecommunication networks is the Erlang loss function. It basically allows us to determine the amount of telephone traffic that can

More information

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia). wkc/course/part2.pdf

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia).  wkc/course/part2.pdf PART II (3) Continuous Time Markov Chains : Theory and Examples -Pure Birth Process with Constant Rates -Pure Death Process -More on Birth-and-Death Process -Statistical Equilibrium (4) Introduction to

More information

Chapter 1. Introduction. 1.1 Stochastic process

Chapter 1. Introduction. 1.1 Stochastic process Chapter 1 Introduction Process is a phenomenon that takes place in time. In many practical situations, the result of a process at any time may not be certain. Such a process is called a stochastic process.

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if 1 Queuing Theory 3. Birth-Death Process Law of Motion Flow balance equations Steady-state probabilities: c j = λ 0λ 1...λ j 1 µ 1 µ 2...µ j π 0 = 1 1+ j=1 c j, if j=1 c j is finite. π j = c j π 0 Example

More information

10.2 For the system in 10.1, find the following statistics for population 1 and 2. For populations 2, find: Lq, Ls, L, Wq, Ws, W, Wq 0 and SL.

10.2 For the system in 10.1, find the following statistics for population 1 and 2. For populations 2, find: Lq, Ls, L, Wq, Ws, W, Wq 0 and SL. Bibliography Asmussen, S. (2003). Applied probability and queues (2nd ed). New York: Springer. Baccelli, F., & Bremaud, P. (2003). Elements of queueing theory: Palm martingale calculus and stochastic recurrences

More information

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users?

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? Multiaccess Problem How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? z The protocols we used to solve this multiaccess problem are

More information

Computational Intelligence Methods

Computational Intelligence Methods Computational Intelligence Methods Ant Colony Optimization, Partical Swarm Optimization Pavel Kordík, Martin Šlapák Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-MVI, ZS 2011/12,

More information

Estimation of arrival and service rates for M/M/c queue system

Estimation of arrival and service rates for M/M/c queue system Estimation of arrival and service rates for M/M/c queue system Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

More information

MI-RUB Testing II Lecture 11

MI-RUB Testing II Lecture 11 MI-RUB Testing II Lecture 11 Pavel Strnad pavel.strnad@fel.cvut.cz Dept. of Computer Science, FEE CTU Prague, Karlovo nám. 13, 121 35 Praha, Czech Republic MI-RUB, WS 2011/12 Evropský sociální fond Praha

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system.

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system. 8. Preliminaries L, L Q, W, W Q L = average number of customers in the system. L Q = average number of customers waiting in queue. W = average number of time a customer spends in the system. W Q = average

More information

(u v) = f (u,v) Equation 1

(u v) = f (u,v) Equation 1 Problem Two-horse race.0j /.8J /.5J / 5.07J /.7J / ESD.J Solution Problem Set # (a). The conditional pdf of U given that V v is: The marginal pdf of V is given by: (u v) f (u,v) Equation f U V fv ( v )

More information

Analysis of Software Artifacts

Analysis of Software Artifacts Analysis of Software Artifacts System Performance I Shu-Ngai Yeung (with edits by Jeannette Wing) Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 2001 by Carnegie Mellon University

More information