Solution of a conjecture of Volkmann on the number of vertices in longest paths and cycles of strong semicomplete multipartite digraphs

Size: px
Start display at page:

Download "Solution of a conjecture of Volkmann on the number of vertices in longest paths and cycles of strong semicomplete multipartite digraphs"

Transcription

1 Solution of a conjecture of Volkmann on the number of vertices in longest paths and cycles of strong semicomplete multipartite digraphs Gregory Gutin Department of Computer Science Royal Holloway University of London Egham, Surrey, TW0 0EX, UK G.Gutin@rhul.ac.uk Anders Yeo Department of Computer Science University of Aarhus, Ny Munkegade, Building Aarhus C, Denmark yeo@daimi.au.dk Abstract A digraph obtained by replacing each edge of a complete multipartite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete multipartite digraph. L. Volkmann conjectured that l c 1, where l (c, respectively) is the number of vertices in a longest path (longest cycle) of a strong semicomplete multipartite digraph. The bound on l is sharp. We settle this conjecture in affirmative. Running title: Solution of a conjecture of Volkmann 1 Introduction, terminology and notation L. Volkmann [6] conjectured that l c 1, where l (c, respectively) is the number of vertices in a longest path (longest cycle) of a strong semicomplete multipartite digraph. An example taken from [] shows that the bound on l is sharp. (We describe this example in the end of this paper.) We settle Volkmann s conjecture in affirmative. We will assume that the reader is familiar with the standard terminology on graphs and digraphs and refer the reader to [3]. By a cycle and a path in a directed graph we mean a directed simple cycle and path, respectively. Let D be a digraph. V (D) (A(D)) denotes 1

2 the vertex (arc) set of D. A digraph D is strong if there exists a path from x to y for every choice of distinct vertices x, y of D. A path from x to y is an (x, y)-path. The subpath of a cycle C from a vertex v to a vertex w will be denoted by C[v, w]. Analogously, C[v, w[ stands for the subpath of C from v to the predecessor of w (in the path C[v, w]). If D has an arc xy A(D), then we often use the notation x y and say that x dominates y and y is dominated by x. For disjoint sets X and Y of vertices in D, we say that X strongly dominates Y, and use the notation X Y, if there is no arc from Y to X. This means that for every pair x X, y Y of adjacent vertices x dominates y, but y does not dominate x. For a subset X of V (D), D X is the subdigraph of D induced by X. A collection B 1, B,..., B m of sets is a partition of a set B, if and only if, m i=1 B i = B and B i B j = for all 1 i < j m. Note that we allow some B i s to be empty sets. A digraph D is called semicomplete p-partite (or, just, semicomplete multipartite) if there is a partition V 1,..., V p of V (D) such that no set of the partition is empty, no arc has both end vertices in the same V i, and, for every pair x i V i, x j V j (i j) at least one of the arcs x i x j and x j x i is in D. The sets V i are the partite sets of D. Semicomplete multipartite digraphs are well studied, see, e.g., survey papers [1, 4, 5, 7]. Bound Lemma.1 Let D be a semicomplete multipartite digraph. Let non-empty sets Q 1, Q,..., Q l form a partition of V (D) such that Q i Q j for every 1 i < j l. Assume that V (D) > l and D Q i has a Hamilton path q i 1 qi...qi Q i for every i = 1,,..., l. Then, D has a (q1 1, ql Q l )-path with at least V (D) l + 1 vertices. Proof: We use the induction on l. Clearly the theorem holds when l = 1, so assume that l > 1. If V (D) Q l > (l 1) then, by the induction hypothesis, there is a (q1 1, ql 1 Q l 1 )- path, p 1 p..p k, in D Q l which contains k V (D) Q l (l 1) + 1 vertices. As {p k 1, p k } q1 l and p k 1 and p k belong to different partite sets, p k 1 q1 l or p k q1 l. Therefore, the path p 1 p...p s q1 l ql...ql Q l, where s = k 1 or k, is of the desired type. If V (D) Q l (l 1), then clearly Q l > 1. As q1 1 {ql 1, ql } and ql 1 and ql belong to different partite sets, q1 1 ql 1 or q1 1 ql. Therefore, the path q1 1 ql sqs+1 l...ql Q l, where s {1, }, is of the desired type. Theorem. Let D be a strong semicomplete multipartite digraph and let l be the number of vertices in a longest path in D and let c be the number of vertices in a longest cycle in D. Then l c 1.

3 Proof: Let P = p 1 p..p l be a path in D of maximum length and let R = V (D) V (P ). Let x 0 = p l and define S i, x i and y i recursively as follows (i = 1,,...). First let S 1 be a (p l, p k )-path in D, such that k is chosen as small as possible. Let x 1 = p k, let y 1 = p l and let S 1 = S 1 {x 1, y 1 } (note that S 1 =, by the maximality of l). Now for i =, 3, 4,... let S i be a (p t, p k )-path in D {p t, p k } R (V (S 1 ) V (S )... V (S i 1 ), such that p t V (P [x i 1, p l ]) and p k V (P [p 1, x i 1 [), and firstly k is chosen as small as possible, thereafter t is chosen as large as possible. Let also x i = p k, y i = p t and S i = S i {x i, y i }. (Some paths S i can be empty) We continue the above process until x i = p 1. Let the last value of i found above be denoted by m (i.e. x m = p 1 ). Observe that the paths S i always exist as D is strong. Observe also that y 1 = p l and that T below is a path in D: T = y 1 S 1 P [x 1, y ]S P [x, y 3 ]S 3...P [x m 1, y m ]S m x m Let U 0 = P [x m, x m 1 ] {x m, x m 1 } and let U i = P [y m i+1, x m i 1 ] {y m i+1, x m i 1 } for i = 1,,.., m 1. Note that some of the U i s (i = 0, 1,,.., m 1) can be empty. Observe that V (T ), U 0, U 1,..., U m 1 partitions the set V (P ) V (S 1 )... V (S m ). Let Z 0, Z 1,..., Z m 1 be the non-empty sets in U 0, U 1,..., U m 1, where the relative ordering has been kept (i.e. if Z i = U i, Z j = U j and i < j then i < j). Let B 0 = Z 0 Z... Z f and B 1 = Z 1 Z 3... Z g, where f (g, respectively) is the maximum even integer (odd integer, respectively) not exceeding m 1. If p l p 1, then we are done (the cycle P p 1 is of length l). Thus, we may assume that p 1 is not dominated by p l. As x m = p 1, we obtain the following: By the definitions of x i, y i and S i, p 1 Z 1 Z... Z m 1 {p l }. (1) Z i Z i+ Z i+3... Z m 1 {p l }, i = 0, 1,.., m. () As {x 0, x 1,..., x m } V (T ) and m m, we have V (T ) m + 1. (3) As V (T ), B 0, B 1 partitions the set V (P ) V (S 1 )... V (S m ), V (T ) + B 0 + B 1 l. (4) All Z i {x i } are disjoint sets containing at least two vertices. Thus, there are at most l/ such sets. Hence, we obtain 3

4 m l. (5) We only consider the case when m is odd since the case of even m can be treated similarly. If B 0 + > m +1 then, by (1), () and Lemma.1, there is a path W 0 from p 1 to p l in D {p 1, p l } B 0 containing at least B 0 + m vertices (let V (Q 1 ) = {p 1 } Z 0, V (Q ) = Z,..., V (Q (m 1)/) = Z m 3, V (Q (m +1)/) = Z m 1 {p l }). Analogously if B 1 > m 1, then there is a path W 1 from p 1 to p l in D {p 1, p l } B 1 containing at least B 1 m vertices (let V (Q 1 ) = {p 1 }, V (Q ) = Z 1,..., V (Q (m 1)/) = Z m, V (Q (m +1)/) = {p l }). We now consider the cases where none, one or two of the paths W 0 and W 1 exist. Case 1: Both W 0 and W 1 exist. The cycle C 0 = W 0 T contains V (T ) + V (W 0 ) vertices (as p 1 and p l are counted twice). The cycle C 1 = W 1 T contains V (T ) + V (W 1 ) vertices. By (3) and (4), this implies the following: V (C 0 ) + V (C 1 ) = V (T ) + V (W 0 ) + V (W 1 ) 4 V (T ) + ( B 0 + m ) + ( B 1 m 1 + 1) 4 = V (T ) + ( V (T ) + B 0 + B 1 ) m V (T ) + l m l + 1. This implies that the largest cycle of C 0 and C 1 contains at least (l + 1)/ vertices. Thus, we are done. Case : Exactly one of W 0 or W 1 exists. Let j {0, 1} be defined such that W j exists, but W 1 j does not exist. Using (4) and (5), and observing that either B 0 + m or B 1 m , we obtain the following (C j = W j T, as above): V (C j ) V (T ) + ( B 0 + m ) + ( B 1 m 1 + 1) 1 V (T ) + B 0 + B 1 m + 1 l m + 1 l l + 1 l+. This is the desired result. Case 3: Neither W 0 nor W 1 exists. This means that B 0 + m +1 0 and B 1 m 1 0. Thus, 4

5 V (T ) V (T ) + ( B 0 + m +1 ) + ( B 1 m 1 = V (T ) + B 0 + B 1 + m l m + l If p 1 p l then there is a cycle of length at least l+ + 1 (using all vertices in V (T )). By (1), p l does not dominate p 1, so we may assume that p 1 and p l are in the same partite set. We have S m = as otherwise S m P is longer than P which is impossible, hence y m and p l are in different partite sets. If p l y m then either P [y m, p l ]y m or P [p 1, y m ]p 1 is a cycle with at least l+1 vertices. Therefore, we may assume that y m p l. Then the cycle T [p l, y m ]p l contains at least l+ vertices. We are done. ) 3 Bondy s example This example originates from []. Let H be a semicomplete m-partite digraph with partite sets V 1, V,..., V m (m 3) such that V 1 = {v} and V i for every i n. Let also V v, v V j for 3 j m, and V k V i for i < k m. It is easy to verify that a longest path (cycle, respectively) in H contains m 1 (m, respectively) vertices. References [1] Bang-Jensen, J., Gutin, G.: Generalizations of tournaments: a survey. J. Graph Theory 8, (1998). [] Bondy, J.A.: Diconnected orientation and a conjecture of Las Vergnas. J. London Math. Soc. 14, 77-8 (1976). [3] Bondy, J.A., Murty, U.R.S.: Graph Theory with Applications, MacMillan Press (1976). [4] Gutin, G.: Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19, (1995). [5] Reid, K.B.: Tournaments: scores, kings, generalizations and special topics. Congressus Nummerantium 115, (1996). [6] Volkmann, L.: Spanning multipartite tournaments of semicomplete multipartite digraphs. Manuscript, June, [7] Volkmann, L.: Cycles in multipartite tournaments: results and problems. Submitted. 5

Longest paths in strong spanning oriented subgraphs of strong semicomplete multipartite digraphs

Longest paths in strong spanning oriented subgraphs of strong semicomplete multipartite digraphs Longest paths in strong spanning oriented subgraphs of strong semicomplete multipartite digraphs Gregory Gutin Department of Mathematical Sciences Brunel, The University of West London Uxbridge, Middlesex,

More information

Multipartite tournaments with small number of cycles

Multipartite tournaments with small number of cycles Multipartite tournaments with small number of cycles Gregory Gutin and Arash Rafiey Department of Computer Science Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK Gutin(Arash)@cs.rhul.ac.uk

More information

Graphs and Combinatorics

Graphs and Combinatorics Graphs and Combinatorics (2006) 22:241 249 Digital Object Identifier (DOI) 10.1007/s00373-006-0641-8 Graphs and Combinatorics Springer-Verlag 2006 On n-partite Tournaments with Unique n-cycle Gregory Gutin,

More information

Paths and cycles in extended and decomposable digraphs

Paths and cycles in extended and decomposable digraphs Paths and cycles in extended and decomposable digraphs Jørgen Bang-Jensen Gregory Gutin Department of Mathematics and Computer Science Odense University, Denmark Abstract We consider digraphs called extended

More information

Orientations of digraphs almost preserving diameter

Orientations of digraphs almost preserving diameter Orientations of digraphs almost preserving diameter Gregor Gutin Department of Computer Science Roal Hollowa, Universit of London Egham, Surre TW20 0EX, UK, gutin@dcs.rhbnc.ac.uk Anders Yeo BRICS, Department

More information

Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs

Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs Gregory Gutin Arash Rafiey Anders Yeo Abstract For digraphs D and H, a mapping f : V (D) V (H) is a homomorphism of D to H if uv A(D) implies

More information

Componentwise Complementary Cycles in Almost Regular 3-Partite Tournaments

Componentwise Complementary Cycles in Almost Regular 3-Partite Tournaments Componentwise Complementary Cycles in Almost Regular 3-Partite Tournaments Zhihong He 1,,GuojunLi 1 Dawei Ding 2,andQuanhuiLiu 3 1 School of Mathematics and System Sciences, Shandong University, Jinan,

More information

16 February 2010 Draft Version

16 February 2010 Draft Version Local Tournaments with the minimum number of Hamiltonian cycles or cycles of length three Dirk Meierling Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: meierling@math2.rwth-aachen.de

More information

Hamilton Cycles in Digraphs of Unitary Matrices

Hamilton Cycles in Digraphs of Unitary Matrices Hamilton Cycles in Digraphs of Unitary Matrices G. Gutin A. Rafiey S. Severini A. Yeo Abstract A set S V is called an q + -set (q -set, respectively) if S has at least two vertices and, for every u S,

More information

Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs

Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs Gregory Gutin Arash Rafiey Anders Yeo Abstract For digraphs D and H, a mapping f : V (D) V (H) is a homomorphism of D to H if uv A(D) implies

More information

The Greedy Algorithm for the Symmetric TSP

The Greedy Algorithm for the Symmetric TSP The Greedy Algorithm for the Symmetric TSP Gregory Gutin Anders Yeo Abstract We corrected proofs of two results on the greedy algorithm for the Symmetric TSP and answered a question in Gutin and Yeo, Oper.

More information

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo AALBORG UNIVERSITY Total domination in partitioned graphs by Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo R-2007-08 February 2007 Department of Mathematical Sciences Aalborg University Fredrik

More information

Hamiltonian paths in tournaments A generalization of sorting DM19 notes fall 2006

Hamiltonian paths in tournaments A generalization of sorting DM19 notes fall 2006 Hamiltonian paths in tournaments A generalization of sorting DM9 notes fall 2006 Jørgen Bang-Jensen Imada, SDU 30. august 2006 Introduction and motivation Tournaments which we will define mathematically

More information

Paths, cycles, trees and sub(di)graphs in directed graphs

Paths, cycles, trees and sub(di)graphs in directed graphs Paths, cycles, trees and sub(di)graphs in directed graphs Jørgen Bang-Jensen University of Southern Denmark Odense, Denmark Paths, cycles, trees and sub(di)graphs in directed graphs p. 1/53 Longest paths

More information

On the complexity of hamiltonian path and cycle problems in certain classes of digraphs

On the complexity of hamiltonian path and cycle problems in certain classes of digraphs On the complexity of hamiltonian path and cycle problems in certain classes of digraphs Jørgen Bang-Jensen Gregory Gutin Abstract We survey results on the sequential and parallel complexity of hamiltonian

More information

Disjoint paths in unions of tournaments

Disjoint paths in unions of tournaments Disjoint paths in unions of tournaments Maria Chudnovsky 1 Princeton University, Princeton, NJ 08544, USA Alex Scott Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK Paul Seymour 2 Princeton

More information

Paths with two blocks in n-chromatic digraphs

Paths with two blocks in n-chromatic digraphs Paths with two blocks in n-chromatic digraphs L. Addario-Berry, F. Havet and S. Thomassé September 20, 2005 Abstract We show that every oriented path of order n 4 with two blocks is contained in every

More information

Disjoint paths in tournaments

Disjoint paths in tournaments Disjoint paths in tournaments Maria Chudnovsky 1 Columbia University, New York, NY 10027, USA Alex Scott Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK Paul Seymour 2

More information

Alternating cycles and paths in edge-coloured multigraphs: a survey

Alternating cycles and paths in edge-coloured multigraphs: a survey Alternating cycles and paths in edge-coloured multigraphs: a survey Jørgen Bang-Jensen and Gregory Gutin Department of Mathematics and Computer Science Odense University, Denmark Abstract A path or cycle

More information

Out-colourings of Digraphs

Out-colourings of Digraphs Out-colourings of Digraphs N. Alon J. Bang-Jensen S. Bessy July 13, 2017 Abstract We study vertex colourings of digraphs so that no out-neighbourhood is monochromatic and call such a colouring an out-colouring.

More information

ARC-TRACEABLE TOURNAMENTS. Arthur H. Busch. A thesis submitted to the. University of Colorado at Denver. in partial fulfillment

ARC-TRACEABLE TOURNAMENTS. Arthur H. Busch. A thesis submitted to the. University of Colorado at Denver. in partial fulfillment ARC-TRACEABLE TOURNAMENTS by Arthur H. Busch Bachelor of Arts, University of Washington, 1997 A thesis submitted to the University of Colorado at Denver in partial fulfillment of the requirements for the

More information

A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications

A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications Robert Crowston, Gregory Gutin, Mark Jones, Anders Yeo Department of Computer Science Royal Holloway,

More information

arxiv: v1 [math.co] 29 Apr 2016

arxiv: v1 [math.co] 29 Apr 2016 Sufficient conditions for hamiltonian cycles in bipartite digraphs Samvel Kh. Darbinyan Institute for Informatics and Automation Problems, Armenian National Academy of Sciences E-mail: samdarbin@ipia.sci.am

More information

Determining conditions sufficient for the existence of arc-disjoint hamiltonian paths and out-branchings in tournaments

Determining conditions sufficient for the existence of arc-disjoint hamiltonian paths and out-branchings in tournaments Determining conditions sufficient for the existence of arc-disjoint hamiltonian paths and out-branchings in tournaments Alex Beckwith Department of Mathematics, Kenyon College, Gambier, Ohio Aleesha Moran

More information

Connectivity of local tournaments

Connectivity of local tournaments AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 57 (01) Pages 71 79 Connectivity of local tournaments Yubao Guo Andreas Holtkamp Sebastian Milz Lehrstuhl C für Mathematik RWTH Aachen University 5056 Aachen

More information

On the Dynamic Chromatic Number of Graphs

On the Dynamic Chromatic Number of Graphs On the Dynamic Chromatic Number of Graphs Maryam Ghanbari Joint Work with S. Akbari and S. Jahanbekam Sharif University of Technology m_phonix@math.sharif.ir 1. Introduction Let G be a graph. A vertex

More information

k-distinct In- and Out-Branchings in Digraphs

k-distinct In- and Out-Branchings in Digraphs k-distinct In- and Out-Branchings in Digraphs Gregory Gutin 1, Felix Reidl 2, and Magnus Wahlström 1 arxiv:1612.03607v2 [cs.ds] 21 Apr 2017 1 Royal Holloway, University of London, UK 2 North Carolina State

More information

On non-hamiltonian circulant digraphs of outdegree three

On non-hamiltonian circulant digraphs of outdegree three On non-hamiltonian circulant digraphs of outdegree three Stephen C. Locke DEPARTMENT OF MATHEMATICAL SCIENCES, FLORIDA ATLANTIC UNIVERSITY, BOCA RATON, FL 33431 Dave Witte DEPARTMENT OF MATHEMATICS, OKLAHOMA

More information

Supereulerian planar graphs

Supereulerian planar graphs Supereulerian planar graphs Hong-Jian Lai and Mingquan Zhan Department of Mathematics West Virginia University, Morgantown, WV 26506, USA Deying Li and Jingzhong Mao Department of Mathematics Central China

More information

Connectivity of addable graph classes

Connectivity of addable graph classes Connectivity of addable graph classes Paul Balister Béla Bollobás Stefanie Gerke July 6, 008 A non-empty class A of labelled graphs is weakly addable if for each graph G A and any two distinct components

More information

On splitting digraphs

On splitting digraphs On splitting digraphs arxiv:707.03600v [math.co] 0 Apr 08 Donglei Yang a,, Yandong Bai b,, Guanghui Wang a,, Jianliang Wu a, a School of Mathematics, Shandong University, Jinan, 5000, P. R. China b Department

More information

DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH THE SAME SIZE

DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH THE SAME SIZE Discussiones Mathematicae Graph Theory 30 (2010 ) 335 347 DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH THE SAME SIZE Jaroslav Ivančo Institute of Mathematics P.J. Šafári University, Jesenná 5 SK-041 54

More information

Decomposing planar cubic graphs

Decomposing planar cubic graphs Decomposing planar cubic graphs Arthur Hoffmann-Ostenhof Tomáš Kaiser Kenta Ozeki Abstract The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree,

More information

Some Complexity Problems on Single Input Double Output Controllers

Some Complexity Problems on Single Input Double Output Controllers Some Complexity Problems on Single Input Double Output Controllers K. M. Hangos 1 Zs. Tuza 1,2, A. Yeo 3 1 Computer and Automation Institute, Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13

More information

Disjoint 3-cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments

Disjoint 3-cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments Disjoint -cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments Jørgen Bang-Jensen Stéphane Bessy Stéphan Thomassé July 0, 0 1 Abstract We prove that every tournament with

More information

Paths with two blocks in n-chromatic digraphs

Paths with two blocks in n-chromatic digraphs Paths with two blocks in n-chromatic digraphs Stéphan Thomassé, Frédéric Havet, Louigi Addario-Berry To cite this version: Stéphan Thomassé, Frédéric Havet, Louigi Addario-Berry. Paths with two blocks

More information

CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH CYKLE ZAWIERAJĄCE WYBRANE KRAWĘDZIE GRAFU

CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH CYKLE ZAWIERAJĄCE WYBRANE KRAWĘDZIE GRAFU GRZEGORZ GANCARZEWICZ CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH CYKLE ZAWIERAJĄCE WYBRANE KRAWĘDZIE GRAFU A b s t r a c t The aim of this paper is to prove that if s 1 and G is a graph of order n 4s

More information

Minimum degree conditions for the existence of fractional factors in planar graphs

Minimum degree conditions for the existence of fractional factors in planar graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(3) (2018), Pages 536 548 Minimum degree conditions for the existence of fractional factors in planar graphs P. Katerinis Department of Informatics, Athens

More information

Hamilton-Connected Indices of Graphs

Hamilton-Connected Indices of Graphs Hamilton-Connected Indices of Graphs Zhi-Hong Chen, Hong-Jian Lai, Liming Xiong, Huiya Yan and Mingquan Zhan Abstract Let G be an undirected graph that is neither a path nor a cycle. Clark and Wormald

More information

Even Cycles in Hypergraphs.

Even Cycles in Hypergraphs. Even Cycles in Hypergraphs. Alexandr Kostochka Jacques Verstraëte Abstract A cycle in a hypergraph A is an alternating cyclic sequence A 0, v 0, A 1, v 1,..., A k 1, v k 1, A 0 of distinct edges A i and

More information

CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM

CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM Discussiones Mathematicae Graph Theory 26 (2006 ) 335 342 8 9 13th WORKSHOP 3in1 GRAPHS 2004 Krynica, November 11-13, 2004 CHVÁTAL-ERDŐS CONDITION AND PANCYCLISM Evelyne Flandrin, Hao Li, Antoni Marczyk

More information

Properly colored Hamilton cycles in edge colored complete graphs

Properly colored Hamilton cycles in edge colored complete graphs Properly colored Hamilton cycles in edge colored complete graphs N. Alon G. Gutin Dedicated to the memory of Paul Erdős Abstract It is shown that for every ɛ > 0 and n > n 0 (ɛ), any complete graph K on

More information

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]).

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]). Coloring Basics A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]). For an i S, the set f 1 (i) is called a color class. A k-coloring is called proper if adjacent

More information

Notes on Graph Theory

Notes on Graph Theory Notes on Graph Theory Maris Ozols June 8, 2010 Contents 0.1 Berge s Lemma............................................ 2 0.2 König s Theorem........................................... 3 0.3 Hall s Theorem............................................

More information

THE RAINBOW DOMINATION NUMBER OF A DIGRAPH

THE RAINBOW DOMINATION NUMBER OF A DIGRAPH Kragujevac Journal of Mathematics Volume 37() (013), Pages 57 68. THE RAINBOW DOMINATION NUMBER OF A DIGRAPH J. AMJADI 1, A. BAHREMANDPOUR 1, S. M. SHEIKHOLESLAMI 1, AND L. VOLKMANN Abstract. Let D = (V,

More information

Generalized Pigeonhole Properties of Graphs and Oriented Graphs

Generalized Pigeonhole Properties of Graphs and Oriented Graphs Europ. J. Combinatorics (2002) 23, 257 274 doi:10.1006/eujc.2002.0574 Available online at http://www.idealibrary.com on Generalized Pigeonhole Properties of Graphs and Oriented Graphs ANTHONY BONATO, PETER

More information

On the number of cycles in a graph with restricted cycle lengths

On the number of cycles in a graph with restricted cycle lengths On the number of cycles in a graph with restricted cycle lengths Dániel Gerbner, Balázs Keszegh, Cory Palmer, Balázs Patkós arxiv:1610.03476v1 [math.co] 11 Oct 2016 October 12, 2016 Abstract Let L be a

More information

Local Tournaments and In-Tournaments

Local Tournaments and In-Tournaments Local Tournaments and In-Tournaments Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades

More information

The Restricted Edge-Connectivity of Kautz Undirected Graphs

The Restricted Edge-Connectivity of Kautz Undirected Graphs The Restricted Edge-Connectivity of Kautz Undirected Graphs Ying-Mei Fan College of Mathematics and Information Science Guangxi University, Nanning, Guangxi, 530004, China Jun-Ming Xu Min Lü Department

More information

arxiv: v2 [math.co] 7 Jan 2016

arxiv: v2 [math.co] 7 Jan 2016 Global Cycle Properties in Locally Isometric Graphs arxiv:1506.03310v2 [math.co] 7 Jan 2016 Adam Borchert, Skylar Nicol, Ortrud R. Oellermann Department of Mathematics and Statistics University of Winnipeg,

More information

Eulerian Subgraphs and Hamilton-Connected Line Graphs

Eulerian Subgraphs and Hamilton-Connected Line Graphs Eulerian Subgraphs and Hamilton-Connected Line Graphs Hong-Jian Lai Department of Mathematics West Virginia University Morgantown, WV 2606, USA Dengxin Li Department of Mathematics Chongqing Technology

More information

and critical partial Latin squares.

and critical partial Latin squares. Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial Latin squares Rong Luo Department of Mathematical Sciences Middle Tennessee State University Murfreesboro, TN 37132, U.S.A luor@math.wvu.edu

More information

The Reduction of Graph Families Closed under Contraction

The Reduction of Graph Families Closed under Contraction The Reduction of Graph Families Closed under Contraction Paul A. Catlin, Department of Mathematics Wayne State University, Detroit MI 48202 November 24, 2004 Abstract Let S be a family of graphs. Suppose

More information

Some Nordhaus-Gaddum-type Results

Some Nordhaus-Gaddum-type Results Some Nordhaus-Gaddum-type Results Wayne Goddard Department of Mathematics Massachusetts Institute of Technology Cambridge, USA Michael A. Henning Department of Mathematics University of Natal Pietermaritzburg,

More information

Every line graph of a 4-edge-connected graph is Z 3 -connected

Every line graph of a 4-edge-connected graph is Z 3 -connected European Journal of Combinatorics 0 (2009) 595 601 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Every line graph of a 4-edge-connected

More information

A well-quasi-order for tournaments

A well-quasi-order for tournaments A well-quasi-order for tournaments Maria Chudnovsky 1 Columbia University, New York, NY 10027 Paul Seymour 2 Princeton University, Princeton, NJ 08544 June 12, 2009; revised April 19, 2011 1 Supported

More information

Finding Hamilton cycles in robustly expanding digraphs

Finding Hamilton cycles in robustly expanding digraphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 16, no. 2, pp. 335 358 (2012) Finding Hamilton cycles in robustly expanding digraphs Demetres Christofides 1 Peter Keevash 1 Daniela

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Factors in Graphs With Multiple Degree Constraints

Factors in Graphs With Multiple Degree Constraints Factors in Graphs With Multiple Degree Constraints Richard C. Brewster, Morten Hegner Nielsen, and Sean McGuinness Thompson Rivers University Kamloops, BC V2C0C8 Canada October 4, 2011 Abstract For a graph

More information

Parity Versions of 2-Connectedness

Parity Versions of 2-Connectedness Parity Versions of 2-Connectedness C. Little Institute of Fundamental Sciences Massey University Palmerston North, New Zealand c.little@massey.ac.nz A. Vince Department of Mathematics University of Florida

More information

Every 3-connected, essentially 11-connected line graph is hamiltonian

Every 3-connected, essentially 11-connected line graph is hamiltonian Every 3-connected, essentially 11-connected line graph is hamiltonian Hong-Jian Lai, Yehong Shao, Hehui Wu, Ju Zhou October 2, 25 Abstract Thomassen conjectured that every 4-connected line graph is hamiltonian.

More information

On two conjectures about the proper connection number of graphs

On two conjectures about the proper connection number of graphs On two conjectures about the proper connection number of graphs Fei Huang, Xueliang Li, Zhongmei Qin Center for Combinatorics and LPMC arxiv:1602.07163v3 [math.co] 28 Mar 2016 Nankai University, Tianjin

More information

K 4 -free graphs with no odd holes

K 4 -free graphs with no odd holes K 4 -free graphs with no odd holes Maria Chudnovsky 1 Columbia University, New York NY 10027 Neil Robertson 2 Ohio State University, Columbus, Ohio 43210 Paul Seymour 3 Princeton University, Princeton

More information

The Diophantine equation x n = Dy 2 + 1

The Diophantine equation x n = Dy 2 + 1 ACTA ARITHMETICA 106.1 (2003) The Diophantine equation x n Dy 2 + 1 by J. H. E. Cohn (London) 1. Introduction. In [4] the complete set of positive integer solutions to the equation of the title is described

More information

Domination in Cayley Digraphs of Right and Left Groups

Domination in Cayley Digraphs of Right and Left Groups Communications in Mathematics and Applications Vol. 8, No. 3, pp. 271 287, 2017 ISSN 0975-8607 (online); 0976-5905 (print) Published by RGN Publications http://www.rgnpublications.com Domination in Cayley

More information

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2 Discrete Mathematics 311 (2011) 1111 1118 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Kernels by monochromatic paths in digraphs with covering

More information

The Mixed Chinese Postman Problem Parameterized by Pathwidth and Treedepth

The Mixed Chinese Postman Problem Parameterized by Pathwidth and Treedepth The Mixed Chinese Postman Problem Parameterized by Pathwidth and Treedepth Gregory Gutin, Mark Jones, and Magnus Wahlström Royal Holloway, University of London Egham, Surrey TW20 0EX, UK Abstract In the

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu** 4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN Robin Thomas* Xingxing Yu** School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332, USA May 1991, revised 23 October 1993. Published

More information

Graphs with large maximum degree containing no odd cycles of a given length

Graphs with large maximum degree containing no odd cycles of a given length Graphs with large maximum degree containing no odd cycles of a given length Paul Balister Béla Bollobás Oliver Riordan Richard H. Schelp October 7, 2002 Abstract Let us write f(n, ; C 2k+1 ) for the maximal

More information

Graphs with few total dominating sets

Graphs with few total dominating sets Graphs with few total dominating sets Marcin Krzywkowski marcin.krzywkowski@gmail.com Stephan Wagner swagner@sun.ac.za Abstract We give a lower bound for the number of total dominating sets of a graph

More information

Strong Tournaments with the Fewest Hamiltonian Paths

Strong Tournaments with the Fewest Hamiltonian Paths Strong Tournaments with the Fewest Hamiltonian Paths J. W. Moon and Laura L. M. Yang Department of Mathematical Sciences University of Alberta, Edmonton, Alberta, Canada T6G 2G1 Abstract Busch recently

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Tree-width and planar minors

Tree-width and planar minors Tree-width and planar minors Alexander Leaf and Paul Seymour 1 Princeton University, Princeton, NJ 08544 May 22, 2012; revised March 18, 2014 1 Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

More information

Central Groupoids, Central Digraphs, and Zero-One Matrices A Satisfying A 2 = J

Central Groupoids, Central Digraphs, and Zero-One Matrices A Satisfying A 2 = J Central Groupoids, Central Digraphs, and Zero-One Matrices A Satisfying A 2 = J Frank Curtis, John Drew, Chi-Kwong Li, and Daniel Pragel September 25, 2003 Abstract We study central groupoids, central

More information

Hamilton cycles and closed trails in iterated line graphs

Hamilton cycles and closed trails in iterated line graphs Hamilton cycles and closed trails in iterated line graphs Paul A. Catlin, Department of Mathematics Wayne State University, Detroit MI 48202 USA Iqbalunnisa, Ramanujan Institute University of Madras, Madras

More information

ON THE NUMBER OF ALTERNATING PATHS IN BIPARTITE COMPLETE GRAPHS

ON THE NUMBER OF ALTERNATING PATHS IN BIPARTITE COMPLETE GRAPHS ON THE NUMBER OF ALTERNATING PATHS IN BIPARTITE COMPLETE GRAPHS PATRICK BENNETT, ANDRZEJ DUDEK, ELLIOT LAFORGE December 1, 016 Abstract. Let C [r] m be a code such that any two words of C have Hamming

More information

Highly Hamiltonian Graphs and Digraphs

Highly Hamiltonian Graphs and Digraphs Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-017 Highly Hamiltonian Graphs and Digraphs Zhenming Bi Western Michigan University, zhenmingbi@gmailcom Follow this and

More information

HAMBURGER BEITRÄGE ZUR MATHEMATIK

HAMBURGER BEITRÄGE ZUR MATHEMATIK HAMBURGER BEITRÄGE ZUR MATHEMATIK Heft 8 Degree Sequences and Edge Connectivity Matthias Kriesell November 007 Degree sequences and edge connectivity Matthias Kriesell November 9, 007 Abstract For each

More information

Even Pairs and Prism Corners in Square-Free Berge Graphs

Even Pairs and Prism Corners in Square-Free Berge Graphs Even Pairs and Prism Corners in Square-Free Berge Graphs Maria Chudnovsky Princeton University, Princeton, NJ 08544 Frédéric Maffray CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France Paul

More information

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1 arxiv:509.005v [math.co] 0 Sep 05 On uniquely -colorable plane graphs without prescribed adjacent faces Ze-peng LI School of Electronics Engineering and Computer Science Key Laboratory of High Confidence

More information

arxiv: v2 [math.co] 29 Oct 2017

arxiv: v2 [math.co] 29 Oct 2017 arxiv:1404.3385v2 [math.co] 29 Oct 2017 A proof for a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles G.R. Omidi Department of Mathematical Sciences, Isfahan University of Technology,

More information

Locke and Witte in [9] presented a class of circulant nonhamiltonian oriented graphs of type Cay(Z 2k ; a; b; b + k) Theorem 1 (Locke,Witte [9, Thm 41

Locke and Witte in [9] presented a class of circulant nonhamiltonian oriented graphs of type Cay(Z 2k ; a; b; b + k) Theorem 1 (Locke,Witte [9, Thm 41 Arc Reversal in Nonhamiltonian Circulant Oriented Graphs Jozef Jirasek Department of Computer Science P J Safarik University Kosice, Slovakia jirasek@kosiceupjssk 8 March 2001 Abstract Locke and Witte

More information

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Journal of Combinatorial Theory, Series B 72, 104109 (1998) Article No. TB971794 Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Carsten Thomassen Department of Mathematics,

More information

Cycle Spectra of Hamiltonian Graphs

Cycle Spectra of Hamiltonian Graphs Cycle Spectra of Hamiltonian Graphs Kevin G. Milans, Dieter Rautenbach, Friedrich Regen, and Douglas B. West July, 0 Abstract We prove that every graph consisting of a spanning cycle plus p chords has

More information

EXACT DOUBLE DOMINATION IN GRAPHS

EXACT DOUBLE DOMINATION IN GRAPHS Discussiones Mathematicae Graph Theory 25 (2005 ) 291 302 EXACT DOUBLE DOMINATION IN GRAPHS Mustapha Chellali Department of Mathematics, University of Blida B.P. 270, Blida, Algeria e-mail: mchellali@hotmail.com

More information

On improving matchings in trees, via bounded-length augmentations 1

On improving matchings in trees, via bounded-length augmentations 1 On improving matchings in trees, via bounded-length augmentations 1 Julien Bensmail a, Valentin Garnero a, Nicolas Nisse a a Université Côte d Azur, CNRS, Inria, I3S, France Abstract Due to a classical

More information

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS Discussiones Mathematicae Graph Theory 34 (2014) 127 136 doi:10.7151/dmgt.1724 ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS Dingguo Wang 2,3 and Erfang Shan 1,2 1 School of Management,

More information

Set-orderedness as a generalization of k-orderedness and cyclability

Set-orderedness as a generalization of k-orderedness and cyclability Set-orderedness as a generalization of k-orderedness and cyclability Keishi Ishii Kenta Ozeki National Institute of Informatics, Tokyo 101-8430, Japan e-mail: ozeki@nii.ac.jp Kiyoshi Yoshimoto Department

More information

Cycles of length 1 modulo 3 in graph

Cycles of length 1 modulo 3 in graph Discrete Applied Mathematics 113 (2001) 329 336 Note Cycles of length 1 modulo 3 in graph LU Mei, YU Zhengguang Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China Received

More information

Triangle-free graphs with no six-vertex induced path

Triangle-free graphs with no six-vertex induced path Triangle-free graphs with no six-vertex induced path Maria Chudnovsky 1, Paul Seymour 2, Sophie Spirkl Princeton University, Princeton, NJ 08544 Mingxian Zhong Columbia University, New York, NY 10027 June

More information

A counterexample to a conjecture of Schwartz

A counterexample to a conjecture of Schwartz A counterexample to a conjecture of Schwartz Felix Brandt 1 Technische Universität München Munich, Germany Maria Chudnovsky 2 Columbia University New York, NY, USA Ilhee Kim Gaku Liu Sergey Norin McGill

More information

HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH

HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH HAMILTONIAN CYCLES AVOIDING SETS OF EDGES IN A GRAPH MICHAEL J. FERRARA, MICHAEL S. JACOBSON UNIVERSITY OF COLORADO DENVER DENVER, CO 8017 ANGELA HARRIS UNIVERSITY OF WISCONSIN-WHITEWATER WHITEWATER, WI

More information

Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree

Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree S. Bessy and F. Havet, Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles

More information

All Ramsey numbers for brooms in graphs

All Ramsey numbers for brooms in graphs All Ramsey numbers for brooms in graphs Pei Yu Department of Mathematics Tongji University Shanghai, China yupeizjy@16.com Yusheng Li Department of Mathematics Tongji University Shanghai, China li yusheng@tongji.edu.cn

More information

The existence and uniqueness of strong kings in tournaments

The existence and uniqueness of strong kings in tournaments Discrete Mathematics 308 (2008) 2629 2633 www.elsevier.com/locate/disc Note The existence and uniqueness of strong kings in tournaments An-Hang Chen a, Jou-Ming Chang b, Yuwen Cheng c, Yue-Li Wang d,a,

More information

Cycles with consecutive odd lengths

Cycles with consecutive odd lengths Cycles with consecutive odd lengths arxiv:1410.0430v1 [math.co] 2 Oct 2014 Jie Ma Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Abstract It is proved that there

More information

Graphs and digraphs with all 2 factors isomorphic

Graphs and digraphs with all 2 factors isomorphic Graphs and digraphs with all 2 factors isomorphic M. Abreu, Dipartimento di Matematica, Università della Basilicata, I-85100 Potenza, Italy. e-mail: abreu@math.fau.edu R.E.L. Aldred, University of Otago,

More information

Research Article Dicycle Cover of Hamiltonian Oriented Graphs

Research Article Dicycle Cover of Hamiltonian Oriented Graphs Discrete Mathematics Volume 2016, Article ID 7942192, 5 pages http://dxdoiorg/101155/2016/7942192 Research Article Dicycle Cover of Hamiltonian Oriented Graphs Khalid A Alsatami, 1 Hong-Jian Lai, 2 and

More information