c. What are agents? Explain how they interact with environment. Ans:

Size: px
Start display at page:

Download "c. What are agents? Explain how they interact with environment. Ans:"

Transcription

1 (Time: 2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together. (4) Numbers to the right indicate marks. (5) Draw neat labeled diagrams wherever necessary. (6) Use of Non-programmable calculators is allowed. 1. Attempt any three of the following: 15 a. What is Artificial Intelligence? State its applications Artificial Intelligence is the study of how to make computers do things which at the moment, people do better. Perception - Vision - Speech Natural Language - Understanding - Generation - Translation Common Sense Reasoning Robot Control Games - Chess - Backgammon - Checkers - Go Mathematics - Geometry - Logic - Integral Calculus b. Discuss Turing test with Artificial Intelligence approach. The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory operational definition of intelligence. Turing's test deliberately avoided direct physical interaction between the interrogator and the computer, because physical simulation of a person is unnecessary for intelligence. However, the so-called total Turing Test includes a video signal so that the interrogator can test the subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical objects "through the hatch." To pass the total Turing Test, the computer will need - computer vision to perceive objects, and - robotics to manipulate objects and move about. c. What are agents? Explain how they interact with environment.

2 d. What is rational agent? Discuss in brief about rationality. A rational agent is one that does the right thing. What is rational at any given time depends on four things: The performance measure that defines the criterion of success. The agent's prior knowledge of the environment. The actions that the agent can perform. The agent's percept sequence to date e. Explain PEAS description of task environment for automated taxi. f. Give comparison between Full observable and partially observable agent. Fully observable vs. partially observable: If an agent's sensors give it access to the complete state of the environment at each point in time, then we say that the task environ-ment is fully observable. A task environment is effectively fully observable if the sensors detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the performance measure. Fully observable environments are convenient because the agent need not maintain any internal state to keep track of the world. An environment might be partially observable because of noisy and inaccurate sensors or because parts of the state are simply missing from the sensor data for example, a vacuum agent with only a local dirt sensor cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other drivers are thinking. If the agent has no sensors at all then the environment is unobservable. 2. Attempt any three of the following: 15 a. Discuss in brief the formulation of single state problem. 1. initial state e.g., at Arad 2. actions: Actions(s) returns applicabile actions in s: (Go(Sibiu), Go(Timisoara), Go(Zerind) 3. transition model - set of action state pairs (succesor function Result(s,a)): e.g., Result(In(Arad), Go(Zerind))=In(Zerind) 4. goal test - determines if whether a given state is a goal state explicit, e.g., xs = at Bucharest implicit, e.g., xs = checkmate

3 5. path cost (additive) - reflects agent s own performance measure e.g., sum of distances, number of actions executed, etc. c(s, a, s ) is the step cost, assumed to be 0 b. Give the outline of Breadth First Search algorithm. 1. Create a variable called NODE-LIST and set it to initial state. 2. Until a goal state is found or NODE-LIST is empty do: a. Remove the first element from NODE-LIST and call it E. if NODE-LIST was empty, quit. b. For each way that each rule can match the state described in E do: i. Apply the rule to generate a new state. ii. If the new state is goal state, quit and return this state. iii. Otherwise, add the new state to the end of NODE-LIST. exp. node OPEN list CLOSED list { S } {} S { A B C } {S} A { B C D E G } {S A} B { C D E G G' } {S A B} C { D E G G' G" } {S A B C} D { E G G' G" } {S A B C D} E { G G' G" } {S A B C D E} G { G' G" } {S A B C D E} Solution path found is S A G <-- this G also has cost 10 Number of nodes expanded (including goal node) = 7 c. Give the outline of tree search algorithm. function Tree-Search( problem, fringe) returns a solution, or failure fringe Insert(Make-Node(Initial-State[problem]), fringe) loop do if fringe is empty then return failure node Remove-Front(fringe) if Goal-Test(problem,State(node)) then return node fringe InsertAll(Expand(node, problem), fringe) function Expand( node, problem) returns a set of nodes successors the empty set for each action, result in Successor-Fn(problem,State[node]) do s a new Node Parent-Node[s] node; Action[s] action; State[s] result Path-Cost[s] Path-Cost[node] + Step-Cost(State[node], action, result) Depth[s] Depth[node] + 1 add s to successors return successors d. Explain the mechanism of genetic algorithm.

4 e. Explain how transition model is used for sensing in vacuum cleaner problem. 1.Prediction stage is the same as for sensorless problems: given the action a in belief state b, the predicted belief state is ˆb = PREDICT(b, a) 2. Observation prediction stage determines the set of percepts o that could be observed in the predicted belief state: POSSIBLE PERCEPTS(ˆ b) = {o : o = PERCEPT(s) and s ˆb} 3. Update stage determines, for each possible percept, the belief state that would result from the percept. The new belief state bo is just the set of states in ˆb that could have produced the percept: bo = UPDATE(ˆ b, o) = {s : o = PERCEPT(s) and s ˆb} the updated belief state bo can be no larger than the predicted belief state ˆb -the belief states for the different possible percepts will be disjoint, forming a partition of the original predicted belief state (for deterministic sensing). f. Give the illustration of 8 queen problem using hill climbing algorithm. function Hill-Climbing( problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, a node current Make-Node(Initial-State[problem]) loop do neighbor a highest-valued successor of current if Value[neighbor] Value[current] then return State[current] current neighbor end gets stuck (86%, 3 steps), succeeds (14%, 4 steps) 100 consecutive sideways moves - 94% (21 steps for success, 64 for failure) Variants: stochastic hill climbing, first choice hill climbing 3. Attempt any three of the following: 15 a. Explain the working mechanism of min-max algorithm.

5 The minimax algorithm performs a complete depth-first exploration of the game tree. If the maximum depth of the tree is m and there are b legal moves at each point, then the time complexity of the minimax algorithm is 0(bm). The space complexity is 0(bm.) for an algorithm that generates all actions at once, or 0(m) for an algorithm that generates actions one at a time. choose move to position with highest minimax value = best achievable payoff against best play E.g., 2-ply game: function Minimax-Decision(state) returns an action inputs: state, current state in game return the a in Actions(state) maximizing Min-Value(Result(a, state)) function Max-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v = for a, s in Successors(state) do v Max(v, Min-Value(s)) return v function Min-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v = for a, s in Successors(state) do v = Min(v, Max-Value(s)) return v b. Explain in brief about resolution theorem. c. Write a note on Kriegspiel s Partially observable chess. In deterministic partially observable games, uncertainty about the state of the board arises entirely from lack of access to the choices made by the opponent. The rules of Kriegspiel are as follows: White and Black each see a board containing only their own pieces. A referee, who can see all the pieces, adjudicates the game and period-ically makes

6 announcements that are heard by both players. On his turn, White proposes to the referee any move that would be legal if there were no black pieces. If the move is in fact not legal (because of the black pieces), the referee announces 'illegal." In this case, White may keep proposing moves until a legal one is found and learns more about the location of Black's pieces in the process. Once a legal move is proposed, the referee announces one or more of the following: "Capture on square X" if there is a capture, and "Check by D" if the black king is in chock, where D is the direction of the check, and can be one of "Knight," "Rank," Tile," "Long diagonal," or "Short diagonal." (In case of discovered check, the ref-eree may make two "Check" announcements.) If Black is checkmated or stalemated, the referee says so; otherwise, it is Black's turn to move. d. Explain in brief about knowledge base agent. The central component of a knowledge-based agent is its knowledge base, or KB. function KB-Agent( percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB,Make-Percept-Sentence( percept, t)) action Ask(KB,Make-Action-Query(t)) Tell(KB,Make-Action-Sentence(action, t)) t t + 1 return action e. Explain the syntax for propositional logic. The proposition symbols P1, P2 etc are sentences If S is a sentence, S is a sentence (negation) If S1 and S2 are sentences, S1 S2 is a sentence (conjunction) If S1 and S2 are sentences, S1 S2 is a sentence (disjunction) If S1 and S2 are sentences, S1 S2 is a sentence (implication) If S1 and S2 are sentences, S1 S2 is a sentence (biconditional) f. Write a note on Wumpus world problem. The wumpus world is a cave consisting of rooms connected by passageways. Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone who entities its room. The wumpus can be shot by an agent, but the agent has only one arrow. The only mitigating feature of this bleak environment is the possibility of finding a heap of gold. Although the wumpus world is rather tame by modem computer game standards, it illustrates some important points about intelligence. The precise definition of the task environment is given: Performance measure: for climbing out of the cave with the gold, 1000 for falling into a pit or being eaten by the wumpus, 1 for each action taken and 10 for using up the arrow. The game ends either when the agent dies or when the agent climbs out of the cave. Environment: A 4 x 4 grid of rooms. The agent always starts in the square labeled [1,1], facing to the right. The locations of the gold and the wumpus are chosen ran-domly, with a uniform distribution, from the squares other than the start square. In addition, each square other than the start can he a pit, with probability 0.2. Actuators: The agent can move Forward, Turn Left by 90, or Turnftight by 90. The agent dies a miserable death if it enters a square containing a pit or a live wumpus. (it is safe, albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move forward and bumps into a wall, then the agent does not move. The action Grab can be used to pick up the gold if it is in the same square as the agent. The action Shoot can be used to fire an arrow in a straight line in the direction the agent is facing. The arrow continues until it either hits (or hence kills) the wumpus or hits a wall. The agent has only one arrow, so only the first Shoot action has any effect. Finally_ the action Climb can be used to climb out of the cave, but only from square [1,1]. Sensors: The agent has five sensors. each of which gives a single bit of information:

7 In the square containing the wumpus and in the directly (not diagonally) adjacent squares, the agent will perceive a Stench. In the squares directly adjacent to a pit, the agent will perceive a Breeze. In the square where the gold is, the agent will perceive a Glitter. When an agent walks into a wall, it will perceive a Bump. When the wumpus is killed, it emits a woeful Scream that can be perceived any-where in the cave. 4. Attempt any three of the following: 15 a. What is first order logic? Discuss the different elements used in first order logic. First-order logic can also express facts about same or all of the objects in the universe. Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains Objects: people, houses, numbers, theories, Klaus Iohannis, colors, base-ball games, wars, centuries. Relations: red, round, bogus, prime, multistoried, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, Functions: father of, best friend, third inning of, one more than, end of b. Explain universal and existential quantifier with suitable example. <variables> <sentence> Everyone in this room is smart: x At(x,D21) Smart(x) x P is true in a model m iff P is true with x being each possible object in the model. <variables> <sentence> Someone at Stanford is smart: x At(x, Stanford) Smart(x) x P is true in a model m iff P is true with x being some possible object in the model. c. Convert the following natural sentences into FOL form: i. Virat is cricketer. Virat(cricketer) ii. All batsman are cricketers. For-all(x): batsman(x) -> cricketer(x) iii. Everybody speaks some language For-all(x) Exist(y): Person(x) V language(y) -> speaks(x,y) iv. Every car has wheel. (forall (x) (if (Car x) (exists (y) wheel-of (x y))) v. Everybody loves somebody some time. (forall (x) (exists (y) -> loves-sometime(x y))). d. What is knowledge engineering? Write the steps for its execution. Knowledge engineer: investigates a particular domain, learns what concepts are important, creates a formal representation of the objects and relations in the domain Knowledge engineering steps 1. Identify the task. - list compentency questions that the KB will respond 2. Assemble the relevant knowledge. - knowledge acuisition 3. Decide on a vocabulary of predicates, functions, and constants translate the important domain-level concepts into logic-level names - ontology 4. Encode general knowledge about the domain - axioms for all vocabulary terms 5. Encode a description of the specific problem instance - atomic sentences about instances of concepts in the ontology

8 6. Pose queries to the inference procedure and get answers 7. Debug the knowledge base e. Give comparison between forward chaining and backward chaining. FORWARD CHAINING Forward chaining starts with some initial information and work forward, attempting to match that information with a rule. Once a fact has been matched to the IF part of the rule, the rule is fired. The action could produce new knowledge or a new fact that is stored in the knowledge base. This new fact may then be used to search out the next appropriate rule. This searching and matching process continues until a final conclusion rule is fired. BACKWARD CHAINING Backward chaining starts with a fact in the database, but this time it is the hypothesis. The rule interpreter then begins examining the THEN parts of rules for a match. The inference engine searches for an evidence to support the hypothesis originally stated. If a match is found, the database is updated recording the conditions or premises that the rule stated as necessary for supporting the matched conclusion. The chaining process continues with the system repeatedly attempting to match the right hand side of the rule against the current status of the system. The corresponding IF sides of the rules matched are used to generate new intermediate hypotheses or goal states which are recorded in the database. Again this backward chaining continues until the hypothesis is proved. f. Explain in brief about unification. Lified inference rules require finding substitutions that make different logical expressions look identical. This process is called unification and is a key component of all first-order inference algorithms. We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y) θ = {x/john, y/john} works Unify(α, β) = θ if αθ =βθ 5. Attempt any three of the following: 15 a. What is planning? Explain STRIPS operators with suitable example. Action: Buy(x) Have(x) At(p) Sells(p,x)

9 Buy(x) Precondition: At(p), Sells(p, x) Effect: Have(x) [Note: this abstracts away many important details!] Restricted language efficient algorithm Precondition: conjunction of positive literals Effect: conjunction of literals A complete set of STRIPS operators can be translated into a set of successor-state axioms b. Explain in brief about partially ordered plan. Partially ordered collection of steps with Start step has the initial state description as its effect Finish step has the goal description as its precondition causal links from outcome of one step to precondition of another temporal ordering between pairs of steps Open condition = precondition of a step not yet causally linked A plan is complete iff every precondition is achieved A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it. c. Explain in brief about hierarchical planning.

10 d. Write a note on mutex relation. Mutex actions: Inconsistent effects: one action negates an effect of the other: Eat(Cake) and the persistence of Have(Cake) have inconsistent effects because they disagree on the effect Have(Cake). Interference: one of the effects of one action is the negation of a precondition of the other. For example Eat(Cake) interferes with the persistence of Have(Cake) by negating its precondition. Competing needs: one of the preconditions of one action is mutually exclusive with a precondition of the other, e.g., Bake(Cake) and Eat(Cake) are mutex - they compete on the value of the Have(Cake) precondition. Mutex literals: Negated literals: one is the negation of the other Inconsistent support: Have(Cake) and Eaten(Cake) are mutex in S1 because the only way of achieving Have(Cake), is mutex with the only way of achieving Eaten(Cake) e. What is semantic network? Show the semantic representation with suitable example. f. Write a note on Event calculus.

11

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I 1 Knowledge-based Agents Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Logical Agent & Propositional Logic

Logical Agent & Propositional Logic Logical Agent & Propositional Logic Berlin Chen 2005 References: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 7 2. S. Russell s teaching materials Introduction The representation

More information

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring 109 7 LOGICAL AGENS We now turn to knowledge-based agents that have a knowledge base KB at their disposal With the help of the KB the agent aims at maintaining knowledge of its partially-observable environment

More information

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14 0/0/4 Knowledge based agents Logical Agents Agents need to be able to: Store information about their environment Update and reason about that information Russell and Norvig, chapter 7 Knowledge based agents

More information

Logical Agent & Propositional Logic

Logical Agent & Propositional Logic Logical Agent & Propositional Logic Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. S. Russell and P. Norvig. Artificial Intelligence:

More information

Rational Agents. Paolo Turrini. Introduction to Artificial Intelligence 2nd Part. Department of Computing, Imperial College London

Rational Agents. Paolo Turrini. Introduction to Artificial Intelligence 2nd Part. Department of Computing, Imperial College London Rational Agents Department of Computing, Imperial College London Introduction to Artificial Intelligence 2nd Part What you have seen You have seen procedures for computational problem-solving: searching

More information

Intelligent Agents. Pınar Yolum Utrecht University

Intelligent Agents. Pınar Yolum Utrecht University Intelligent Agents Pınar Yolum p.yolum@uu.nl Utrecht University Logical Agents (Based mostly on the course slides from http://aima.cs.berkeley.edu/) Outline Knowledge-based agents Wumpus world Logic in

More information

Introduction to Intelligent Systems

Introduction to Intelligent Systems Logical Agents Objectives Inference and entailment Sound and complete inference algorithms Inference by model checking Inference by proof Resolution Forward and backward chaining Reference Russel/Norvig:

More information

CS 771 Artificial Intelligence. Propositional Logic

CS 771 Artificial Intelligence. Propositional Logic CS 771 Artificial Intelligence Propositional Logic Why Do We Need Logic? Problem-solving agents were very inflexible hard code every possible state E.g., in the transition of 8-puzzle problem, knowledge

More information

Introduction to Intelligent Systems

Introduction to Intelligent Systems Logical Agents Objectives Inference and entailment Sound and complete inference algorithms Inference by model checking Inference by proof Resolution Forward and backward chaining Reference Russel/Norvig:

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 8: Logical Agents - I 2/8/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

More information

Logical Agents. Outline

Logical Agents. Outline Logical Agents *(Chapter 7 (Russel & Norvig, 2004)) Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim INF5390 Kunstig intelligens Logical Agents Roar Fjellheim Outline Knowledge-based agents The Wumpus world Knowledge representation Logical reasoning Propositional logic Wumpus agent Summary AIMA Chapter

More information

Logical Agents. Chapter 7

Logical Agents. Chapter 7 Logical Agents Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Maren Bennewitz, and Marco Ragni Albert-Ludwigs-Universität Freiburg Contents 1 Agents

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 17, 2016

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 10, 5/9/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Logical Agents Chapter 7

More information

Artificial Intelligence Chapter 7: Logical Agents

Artificial Intelligence Chapter 7: Logical Agents Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent State University February 20, 2006 AI: Chapter 7: Logical Agents 1 Contents Knowledge Based Agents

More information

Introduction to Artificial Intelligence. Logical Agents

Introduction to Artificial Intelligence. Logical Agents Introduction to Artificial Intelligence Logical Agents (Logic, Deduction, Knowledge Representation) Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Knowledge-based

More information

Logical Agents (I) Instructor: Tsung-Che Chiang

Logical Agents (I) Instructor: Tsung-Che Chiang Logical Agents (I) Instructor: Tsung-Che Chiang tcchiang@ieee.org Department of Computer Science and Information Engineering National Taiwan Normal University Artificial Intelligence, Spring, 2010 編譯有誤

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2015 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 8 Why FOL?

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) First Lecture Today (Tue 21 Jun) Read Chapters 1 and 2 Second Lecture Today (Tue 21 Jun) Read Chapter 7.1-7.4 Next Lecture (Thu 23 Jun) Read Chapters 7.5 (optional:

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman selman@cs.cornell.edu Module: Knowledge, Reasoning, and Planning Part 2 Logical Agents R&N: Chapter 7 1 Illustrative example: Wumpus World (Somewhat

More information

Kecerdasan Buatan M. Ali Fauzi

Kecerdasan Buatan M. Ali Fauzi Kecerdasan Buatan M. Ali Fauzi Artificial Intelligence M. Ali Fauzi Logical Agents M. Ali Fauzi In which we design agents that can form representations of the would, use a process of inference to derive

More information

Logical Agents. Santa Clara University

Logical Agents. Santa Clara University Logical Agents Santa Clara University Logical Agents Humans know things Humans use knowledge to make plans Humans do not act completely reflexive, but reason AI: Simple problem-solving agents have knowledge

More information

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World School of Informatics, University of Edinburgh 26/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Outline Knowledge-based

More information

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Set 6: Knowledge Representation: The Propositional Calculus Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Outline Representing knowledge using logic Agent that reason logically A knowledge based agent Representing

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference Outline Logical Agents ECE57 Applied Artificial Intelligence Spring 007 Lecture #6 Logical reasoning Propositional Logic Wumpus World Inference Russell & Norvig, chapter 7 ECE57 Applied Artificial Intelligence

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 rtificial Intelligence Spring 2018 Logical gents Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart Russell

More information

Class Assignment Strategies

Class Assignment Strategies Class Assignment Strategies ì Team- A'ack: Team a'ack ì Individualis2c: Search for possible ì Poli2cal: look at others and make decision based on who is winning, who is loosing, and conversa;on ì Emo2on

More information

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference Outline Logical Agents ECE57 Applied Artificial Intelligence Spring 008 Lecture #6 Logical reasoning Propositional Logic Wumpus World Inference Russell & Norvig, chapter 7 ECE57 Applied Artificial Intelligence

More information

Logical agents. Chapter 7. Chapter 7 1

Logical agents. Chapter 7. Chapter 7 1 Logical agents Chapter 7 Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules

More information

Logic & Logic Agents Chapter 7 (& background)

Logic & Logic Agents Chapter 7 (& background) Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Logic & Logic Agents Chapter 7 (& background)

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

TDT4136 Logic and Reasoning Systems

TDT4136 Logic and Reasoning Systems TDT436 Logic and Reasoning Systems Chapter 7 - Logic gents Lester Solbakken solbakke@idi.ntnu.no Norwegian University of Science and Technology 06.09.0 Lester Solbakken TDT436 Logic and Reasoning Systems

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität Freiburg

More information

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT The Wumpus Game Stench Stench Gold Stench Start 1 The Wumpus Game Stench in the square containing the wumpus and in the directly adjacent squares in the squares directly adjacent to a pit Glitter in the

More information

First-Order Logic. Propositional logic. First Order logic. First Order Logic. Logics in General. Syntax of FOL. Examples of things we can say:

First-Order Logic. Propositional logic. First Order logic. First Order Logic. Logics in General. Syntax of FOL. Examples of things we can say: Propositional logic First-Order Logic Russell and Norvig Chapter 8 Propositional logic is declarative Propositional logic is compositional: meaning of B 1,1 P 1,2 is derived from meaning of B 1,1 and of

More information

J Propositional logic is declarative J Propositional logic is compositional: q meaning of B 1,1 P 1,2 is derived from meaning of B 1,1 and of P 1,2

J Propositional logic is declarative J Propositional logic is compositional: q meaning of B 1,1 P 1,2 is derived from meaning of B 1,1 and of P 1,2 Propositional logic First-Order Logic Russell and Norvig Chapter 8 J Propositional logic is declarative J Propositional logic is compositional: meaning of B 1,1 P 1,2 is derived from meaning of B 1,1 and

More information

Lecture 7: Logic and Planning

Lecture 7: Logic and Planning Lecture 7: Logic and Planning Planning and representing knowledge Logic in general Propositional (Boolean) logic and its application to planning COMP-424, Lecture 8 - January 30, 2013 1 What is planning?

More information

Logical Agents: Propositional Logic. Chapter 7

Logical Agents: Propositional Logic. Chapter 7 Logical Agents: Propositional Logic Chapter 7 Outline Topics: Knowledge-based agents Example domain: The Wumpus World Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity,

More information

Logic. proof and truth syntacs and semantics. Peter Antal

Logic. proof and truth syntacs and semantics. Peter Antal Logic proof and truth syntacs and semantics Peter Antal antal@mit.bme.hu 10/9/2015 1 Knowledge-based agents Wumpus world Logic in general Syntacs transformational grammars Semantics Truth, meaning, models

More information

Proof Methods for Propositional Logic

Proof Methods for Propositional Logic Proof Methods for Propositional Logic Logical equivalence Two sentences are logically equivalent iff they are true in the same models: α ß iff α β and β α Russell and Norvig Chapter 7 CS440 Fall 2015 1

More information

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World Agenda Artificial Intelligence 10. Propositional Reasoning, Part I: Principles How to Think About What is True or False 1 Introduction Álvaro Torralba Wolfgang Wahlster 2 Propositional Logic 3 Resolution

More information

First-order logic. First-order logic. Logics in general. Outline. Syntax of FOL: Basic elements. Pros and cons of propositional logic

First-order logic. First-order logic. Logics in general. Outline. Syntax of FOL: Basic elements. Pros and cons of propositional logic First-order logic Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains First-order logic Chapter 8 Objects: people, houses, numbers,

More information

CS 380: ARTIFICIAL INTELLIGENCE LOGICAL AGENTS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE LOGICAL AGENTS. Santiago Ontañón CS 380: RTIFICIL INTELLIGENCE LOGICL GENTS Santiago Ontañón so367@dreel.edu Summary so far: What is I? Rational gents Problem solving: Systematic search Uninformed search: DFS, BFS, ID Informed search:

More information

First-order logic. Chapter 8. Chapter 8 1

First-order logic. Chapter 8. Chapter 8 1 First-order logic Chapter 8 Chapter 8 1 Outline Why FOL? Syntax and semantics of FOL Fun with sentences Wumpus world in FOL Chapter 8 2 Pros and cons of propositional logic Propositional logic is declarative:

More information

AI Programming CS S-09 Knowledge Representation

AI Programming CS S-09 Knowledge Representation AI Programming CS662-2013S-09 Knowledge Representation David Galles Department of Computer Science University of San Francisco 09-0: Overview So far, we ve talked about search, which is a means of considering

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Propositional Logic Marc Toussaint University of Stuttgart Winter 2016/17 (slides based on Stuart Russell s AI course) Motivation: Most students will have learnt about propositional

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Propositional Logic Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Knowledge-based agents Wumpus world Logic in general

More information

Adversarial Search & Logic and Reasoning

Adversarial Search & Logic and Reasoning CSEP 573 Adversarial Search & Logic and Reasoning CSE AI Faculty Recall from Last Time: Adversarial Games as Search Convention: first player is called MAX, 2nd player is called MIN MAX moves first and

More information

Revised by Hankui Zhuo, March 21, Logical agents. Chapter 7. Chapter 7 1

Revised by Hankui Zhuo, March 21, Logical agents. Chapter 7. Chapter 7 1 Revised by Hankui Zhuo, March, 08 Logical agents Chapter 7 Chapter 7 Outline Wumpus world Logic in general models and entailment Propositional (oolean) logic Equivalence, validity, satisfiability Inference

More information

Logical Agents. Outline

Logical Agents. Outline ogical gents Chapter 6, Ie Chapter 7 Outline Knowledge-based agents Wumpus world ogic in general models and entailment ropositional (oolean) logic Equivalence, validity, satisfiability Inference rules

More information

7. Logical Agents. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Knowledge base. Models and Planning. Russell & Norvig, Chapter 7.

7. Logical Agents. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Knowledge base. Models and Planning. Russell & Norvig, Chapter 7. COMP944/984/34 6s Logic COMP944/ 984/ 34: rtificial Intelligence 7. Logical gents Outline Knowledge-based agents Wumpus world Russell & Norvig, Chapter 7. Logic in general models and entailment Propositional

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL Pros/cons of propositional logic Propositional logic is declarative (recall

More information

Artificial Intelligence. Propositional logic

Artificial Intelligence. Propositional logic Artificial Intelligence Propositional logic Propositional Logic: Syntax Syntax of propositional logic defines allowable sentences Atomic sentences consists of a single proposition symbol Each symbol stands

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 1 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL 2 Pros and cons of propositional logic Propositional logic is declarative

More information

Chapter 8 First Order Logic

Chapter 8 First Order Logic 1 Chapter 8 First Order Logic BBM 405 Artificial Intelligence Pinar Duygulu Slides are mostly adapted from AIMA and MIT Open Courseware CS461 Artificial Intelligence Pinar Spring Pros and cons of propositional

More information

Knowledge Representation Logic and Inference Propositional Logic First-order logic Vumpus World

Knowledge Representation Logic and Inference Propositional Logic First-order logic Vumpus World Knowledge Representation Logic and Inference Propositional Logic First-order logic Vumpus World 1 Assume that We design an intelligent agent (travel agent, driving agent, ) What is an intelligent agent?

More information

First-order logic. Chapter 8. Chapter 8 1

First-order logic. Chapter 8. Chapter 8 1 First-order logic Chapter 8 Chapter 8 1 (Slides borrowed from Stuart Russel: http://aima.eecs.berkeley.edu/slides-tex/) Chapter 8 2 First-order logic Whereas propositional logic assumes world contains

More information

First-Order Logic. Chapter 8

First-Order Logic. Chapter 8 First-Order Logic Chapter 8 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL Pros and cons of propositional logic Propositional logic is declarative

More information

Repetition Prepar Pr a epar t a ion for fo Ex am Ex

Repetition Prepar Pr a epar t a ion for fo Ex am Ex Repetition Preparation for Exam Written Exam Date: 2008 10 20 Time: 9:30 14:30 No book or other aids Maximal 40 points Grades: 0 19 U (did not pass) 20 27 3 (pass) 28 32 4 (verygood) 33 40 5 (excellent)

More information

Logic & Logic Agents Chapter 7 (& Some background)

Logic & Logic Agents Chapter 7 (& Some background) Lecture Notes on Logic & Logic Agents University of Birzeit, Palestine 2013 Artificial Intelligence Logic & Logic Agents Chapter 7 (& Some background) Dr. Mustafa Jarrar Sina Institute, University of Birzeit

More information

Logic. Stephen G. Ware CSCI 4525 / 5525

Logic. Stephen G. Ware CSCI 4525 / 5525 Logic Stephen G. Ware CSCI 4525 / 5525 Logic How can we represent knowledge about the world in a general, reusable way? How can we use existing knowledge to gain new knowledge? Problem Solving Approaches

More information

First-Order Logic. Michael Rovatsos. University of Edinburgh R&N: February Informatics 2D

First-Order Logic. Michael Rovatsos. University of Edinburgh R&N: February Informatics 2D First-Order Logic R&N: 8.1-8.3 Michael Rovatsos University of Edinburgh 4 February 2016 Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Pros and cons of propositional logic Propositional

More information

Knowledge-Based Agents

Knowledge-Based Agents Knowledge-Based Agents Chapter 7.1-7.3 Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer Big Idea Drawing reasonable conclusions from a set of data (observations, beliefs, etc) seems

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Knowledge-Based Agents Chapter

Knowledge-Based Agents Chapter Big Idea Knowledge-Based Agents Chapter 7.1-7.3 Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer Drawing reasonable conclusions from a set of data (observations, beliefs, etc) seems

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

CSCI-495 Artificial Intelligence. Lecture 17

CSCI-495 Artificial Intelligence. Lecture 17 CSCI-495 Artificial Intelligence Lecture 17 Tractable Inference: Horn Logic Resolution in general can be exponential in space and time For tractable inference we need a smaller logic Real-world KBs often

More information

CS 380: ARTIFICIAL INTELLIGENCE FIRST ORDER LOGIC. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE FIRST ORDER LOGIC. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE FIRST ORDER LOGIC Santiago Ontañón so367@drexel.edu Pros and cons of propositional logic Propositional logic is declarative: pieces of syntax correspond to facts Propositional

More information

Last update: March 4, Logical agents. CMSC 421: Chapter 7. CMSC 421: Chapter 7 1

Last update: March 4, Logical agents. CMSC 421: Chapter 7. CMSC 421: Chapter 7 1 Last update: March 4, 00 Logical agents CMSC 4: Chapter 7 CMSC 4: Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general models and entailment Propositional (oolean) logic Equivalence,

More information

Lecture 8: (Predicate) First Order Logic

Lecture 8: (Predicate) First Order Logic Lecture 8: (Predicate) First Order Logic CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA April 04, 2018 Amarda Shehu (580) 1 1 Outline of

More information

Guest Speaker. CS 416 Artificial Intelligence. First-order logic. Diagnostic Rules. Causal Rules. Causal Rules. Page 1

Guest Speaker. CS 416 Artificial Intelligence. First-order logic. Diagnostic Rules. Causal Rules. Causal Rules. Page 1 Page 1 Guest Speaker CS 416 Artificial Intelligence Lecture 13 First-Order Logic Chapter 8 Topics in Optimal Control, Minimax Control, and Game Theory March 28 th, 2 p.m. OLS 005 Onesimo Hernandez-Lerma

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Minimax α β pruning UCT for games Chapter 6 2 Game tree (2-player, deterministic, turns) Chapter 6 3 Minimax Perfect play for deterministic, perfect-information

More information

Logical Agents. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7

Logical Agents. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7 Logical Agents CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7 Wumpus world Wumpus

More information

CS 380: ARTIFICIAL INTELLIGENCE INFERENCE IN PROPOSITIONAL LOGIC

CS 380: ARTIFICIAL INTELLIGENCE INFERENCE IN PROPOSITIONAL LOGIC CS 380: ARTIFICIAL INTELLIGENCE INFERENCE IN PROPOSITIONAL LOGIC 11/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary of last day: Logic:

More information

Lecture Overview [ ] Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 6. Motivation. Logical Agents

Lecture Overview [ ] Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 6. Motivation. Logical Agents Lecture Overview [7.1-7.4] COMP 3501 / COMP 4704-4 Lecture 6 Prof. JGH 318 Logical Agents Wumpus World Propositional Logic Inference Theorem Proving via model checking Motivation Existing techniques help

More information

Logical Agents. Chapter 7

Logical Agents. Chapter 7 Logical Agents Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

Logical Agents. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7

Logical Agents. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7 Logical Agents CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7 Knowledge-based agents

More information

Outline. First-order logic. Atomic sentences. Intelligent Systems and HCI D7023E. Syntax of FOL: Basic elements. Pros and cons of propositional logic

Outline. First-order logic. Atomic sentences. Intelligent Systems and HCI D7023E. Syntax of FOL: Basic elements. Pros and cons of propositional logic Outline Intelligent Systems and HCI D7023E Lecture 8: First-order Logic [Ch.8] Paweł Pietrzak Why FOL? Syntax and semantics of FOL Using FOL Knowledge engineering in FOL Some inference in FOL 1 Pros and

More information

New rubric: AI in the news

New rubric: AI in the news New rubric: AI in the news 3 minutes Headlines this week: Silicon Valley Business Journal: Apple on hiring spreee for AI experts Forbes: Toyota Invests $50 Million In Artificial Intelligence Research For

More information

Reasoning. Inference. Knowledge Representation 4/6/2018. User

Reasoning. Inference. Knowledge Representation 4/6/2018. User Reasoning Robotics First-order logic Chapter 8-Russel Representation and Reasoning In order to determine appropriate actions to take, an intelligent system needs to represent information about the world

More information

Logical Agents. Administrative. Thursday: Midterm 1, 7p-9p. Next Tuesday: DOW1013: Last name A-M DOW1017: Last name N-Z

Logical Agents. Administrative. Thursday: Midterm 1, 7p-9p. Next Tuesday: DOW1013: Last name A-M DOW1017: Last name N-Z Logical Agents Mary Herchenhahn, mary-h.com EECS 492 February 2 nd, 2010 Administrative Thursday: Midterm 1, 7p-9p DOW1013: Last name A-M DOW1017: Last name N-Z Next Tuesday: PS2 due PS3 distributed---

More information

Lecture 7: Logical Agents and Propositional Logic

Lecture 7: Logical Agents and Propositional Logic Lecture 7: Logical Agents and Propositional Logic CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA March 07, 2018 Amarda Shehu (580) 1 1

More information

Logical Agents. Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7

Logical Agents. Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 7 Logical Agents CE417: Introduction to Artificial Intelligence Sharif University of Technology Soleymani In which we design agents that can form representations of a complex world, use a process of inference

More information

Knowledge- Based Agents. Logical Agents. Knowledge Base. Knowledge- Based Agents 10/7/09

Knowledge- Based Agents. Logical Agents. Knowledge Base. Knowledge- Based Agents 10/7/09 Knowledge- Based Agents Logical Agents CISC481/681, Lecture #8 Ben Cartere>e A knowledge- based agent has a base of knowledge about the world It uses that base to make new inferences about the world From

More information

COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning " Hanna Kurniawati"

COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning  Hanna Kurniawati COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning " Hanna Kurniawati" Last week" Main components of PRM" Collision check for a configuration"

More information

Knowledge Representation using First-Order Logic (Part III)

Knowledge Representation using First-Order Logic (Part III) Knowledge Representation using First-Order Logic (Part III) This lecture: R&N Chapters 8, 9 Next lecture: Chapter 13; Chapter 14.1-14.2 (Please read lecture topic material before and after each lecture

More information

20/c/applet/more.html Local Beam Search The best K states are selected.

20/c/applet/more.html Local Beam Search The best K states are selected. Have some fun Checker: http://www.cs.caltech.edu/~vhuang/cs 20/c/applet/more.html 1 Local Beam Search Run multiple searches to find the solution The best K states are selected. Like parallel hill climbing

More information

Artificial Intelligence

Artificial Intelligence Torralba and Wahlster Artificial Intelligence Chapter 10: Propositional Reasoning, Part I 1/46 Artificial Intelligence 10. Propositional Reasoning, Part I: Principles How to Think About What is True or

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Chương 3 Tri th ức và lập luận

Chương 3 Tri th ức và lập luận Chương 3 Tri thức và lập luận Nội dung chính chương 3 Lecture 1 Lecture 2 Lecture 3,4 I. Logic ngôn ngữ của tư duy II. Logic mệnh đề (cú pháp, ngữ nghĩa, sức mạnh biểu diễn, các thuật toán suy diễn) III.

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 9: Logical Agents 2 2/13/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

More information